Questions - Answers

1. [20 points] Consider an economy that produces cookies (c) using labor hours (ℓ). The price of a cookie is p, and the price of an hour of labor is w. The demand and the supply functions for the cookies satisfy

$$
q_{c}^{d}=\alpha w-\beta p \quad \text { and } \quad q_{c}^{s}=\gamma p
$$

where $\alpha, \beta, \gamma>0$ are exogenously given parameters. The demand and the supply functions for labor hours are given as in

$$
q_{\ell}^{d}=\delta(p-w) \quad \text { and } \quad q_{\ell}^{s}=\sigma w
$$

where $\delta, \sigma>0$ are exogenously given parameters.
i. Define a system of linear equations (in matrix form of $A x=b$) that solves for the equilibrium prices p^{\star} and w^{\star}.
ii. Is the system homogeneous? Explain.
iii. Under what condition on $(\alpha, \beta, \gamma, \delta, \sigma)$ does the system have a nontrivial (general) solution?
iv. Find the nontrivial (general) solution w^{\star} / p^{\star} in terms of $(\alpha, \beta, \gamma, \delta, \sigma)$.

Answer:

The equilibrium is characterized by

$$
\alpha w-\beta p=\gamma p \quad \text { and } \quad \delta(p-w)=\sigma w
$$

That is, we have

$$
\left[\begin{array}{cc}
\beta+\gamma & -\alpha \\
\delta & -(\delta+\sigma)
\end{array}\right]\left[\begin{array}{c}
p^{\star} \\
w^{\star}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The system is homogeneous because it has the coefficient vector of $[0,0]$ on the right-hand side.
For this system to have a a nontrivial (general) solution, the determinant of the 2×2 matrix should be equal to zero. That is, we must have

$$
|A|=0 \Rightarrow-(\beta+\gamma)(\delta+\sigma)+\alpha \delta=0
$$

This implies the following condition on $(\alpha, \beta, \gamma, \delta, \sigma)$:

$$
\alpha \delta=(\beta+\gamma)(\delta+\sigma)
$$

Since the determinant is equal to zero, one of the equations is redundant. Let's look at the first equation to solve for w^{\star} / p^{\star}. We have

$$
(\beta+\gamma) p^{\star}=\alpha w^{\star} \Rightarrow \frac{w^{\star}}{p^{\star}}=\frac{\beta+\gamma}{\alpha}
$$

If one uses the second equation, the solution is the same as dictated by the restriction $\alpha \delta=(\beta+\gamma)(\delta+\sigma)$ on the parameters.
2. [10 points] The profit function of a firm is defined as in

$$
\pi(h) \equiv p \sqrt{h}-w h
$$

where $h \geq 0$ denotes the demand for labor by the firm, $p>0$ denotes the exogenously given price of the product, and $w>0$ denotes the exogenously given price of labor. Solve the firm's problem, i.e., find $h^{\star}=h(w / p)$.
Answer:
The problem can be formally defined as in

$$
\max _{h \geq 0} p \sqrt{h}-w h
$$

This is a very simple optimization problem. The first-order necessary condition implies that there is unique stationary point:

$$
h:\left(\frac{1}{2}\right) p\left(h^{\star}\right)^{-1 / 2}-w=0 \Rightarrow h^{\star}=\left(\frac{1}{4}\right)\left(\frac{w}{p}\right)^{-2}
$$

The second-order sufficient condition reads

$$
-\left(\frac{1}{4}\right) p h^{-3 / 2}<0
$$

for any $h \geq 0$. This means the function is strictly concave. Thus, the stationary point is the unique interior global solution of the problem.
3. [20 points] Consider a square where the length of a side is denoted by $\ell>0$. The circle with the largest area that you can draw inside this square has radius $\ell / 2$. Recalling that the area of a circle with radius r is equal to πr^{2}, formulate (and solve) an optimization problem that indeed proves $r^{\star}=\ell / 2$.

a circle inside a square

Answer:

The problem can be stated as in

$$
\max _{r} \pi r^{2} \quad \text { subject to: } r>0 \quad \text { and } \quad 2 r \leq \ell
$$

The first constraint originates from the fact that we need to draw a circle. The second one originates from the fact that it should be within the square of length ℓ.
Notice that the only stationary point of πr^{2} is $r=0$ and that it is therefore not the solution given the first constraint. Then, the solution could only be at the other boundary $r=\ell / 2$. In other words, since πr^{2} is strictly convex and strictly increasing in r, the solution is

$$
r^{\star}=\frac{\ell}{2}
$$

and the slope of the objective function is strictly positive at the optimum:

$$
2 \pi r^{\star}=2 \pi\left(\frac{\ell}{2}\right)=2 \pi \ell>0
$$

