## FULL NAME

## ID NUMBER

$\qquad$

## SIGNATURE

## Midterm Exam

November 25, 2013

## Instructions

1. This exam's contribution to your final grade is $50 \%$.
2. There are four questions in this exam. You should answer only two of these questions.
3. You do not need a calculator.
4. Mobile phones and laptop computers should be turned off.
5. You are not allowed to leave the room for the first 20 minutes of the exam time.
6. This is a closed-books and closed-notes exam.
7. You are not allowed to talk to each other during the exam.
8. Student Discipline Regulations of the Institutions of Higher Education are in effect. According to the 9th article, cheating in this exam may have severe consequences for you-including a temporary suspension of your studies up to two semesters.
9. You have exactly 60 minutes to complete the exam.

## Questions

1. [5 points] Consider the market for a commodity. The demand and the supply functions satisfy

$$
q^{d} \equiv \alpha \quad q^{s} \equiv \beta-\frac{1}{p-\gamma}
$$

where $\alpha, \beta, \gamma>0$ and $\beta>\alpha$. Let $q^{\star}$ and $p^{\star}$ respectively denote the equilibrium levels of quantity and price, and find $q^{\star}$ and $p^{\star}$.

## Answer:

From $q^{d}=q^{s}=q^{\star}$, we have

$$
\alpha=\beta-\frac{1}{p^{\star}-\gamma} \Rightarrow \frac{1}{p^{\star}-\gamma}=\beta-\alpha \Rightarrow p^{\star}-\gamma=\frac{1}{\beta-\alpha} \Rightarrow p^{\star}=\gamma+\frac{1}{\beta-\alpha} .
$$

Then, from $q^{d}=\alpha$, we have $q^{\star}=\alpha$.
2. [15 points] Consider the model defined by

$$
E \equiv C+I \quad C \equiv f(Y, r) \quad \text { and } \quad I \equiv g(r)
$$

where $Y$ is the national income, $E$ is the aggregate expenditure, $C$ is the consumption expenditure, $I$ is the investment expenditure and $r$ is the real interest rate. The functions $f(\bullet, \bullet)$ and $g(\bullet)$ satisfy

$$
f_{Y}(Y, r)>0 \quad f_{r}(Y, r)<0 \quad \text { for all }(Y, r) \quad \text { and } \quad g_{r}(r)<0 \quad \text { for all } r .
$$

Let $Y^{\star}$ denote the equilibrium level of $Y$ such that $E^{\star}=Y^{\star}$. The implicit function theorem holds locally around this unique equilibrium so that the function $Y^{\star} \equiv Y(r)$ exists. Find

$$
\frac{\mathrm{d} Y^{\star}}{\mathrm{d} r}
$$

## Answer:

By the definition of the equilibrium, we have

$$
Y^{\star}=f\left(Y^{\star}, r\right)+g(r) .
$$

Taking the total derivative of both sides, we have

$$
\begin{gathered}
\mathrm{d} Y^{\star}=f_{Y}\left(Y^{\star}, r\right) \mathrm{d} Y^{\star}+f_{r}\left(Y^{\star}, r\right) \mathrm{d} r+g_{r}(r) \mathrm{d} r \\
\left(1-f_{Y}\left(Y^{\star}, r\right)\right) \mathrm{d} Y^{\star}=\left(f_{r}\left(Y^{\star}, r\right)+g_{r}(r)\right) \mathrm{d} r \\
\frac{\mathrm{~d} Y^{\star}}{\mathrm{d} r}=\frac{f_{r}\left(Y^{\star}, r\right)+g_{r}(r)}{1-f_{Y}\left(Y^{\star}, r\right)}
\end{gathered}
$$

3. [30 points] There are $n \in \mathbb{N}$ markets in an economy. In market $i \in\{1,2, \ldots, n\}$, commodity $i$ is traded at price $p_{i}$. Let $p \in \mathbb{R}^{n}$ denote the (column) vector of prices. The linear demand and supply functions for commodity $i$ are such that

$$
q_{d}^{i} \equiv \delta_{i} p \quad q_{s}^{i} \equiv \sigma_{i} p
$$

where $q_{d}^{i}$ denotes the quantity demanded and $8 q_{s}^{i}$ denotes the quantity supplied. Here, $\delta_{i} \equiv\left(\delta_{i 1}, \ldots, \delta_{i n}\right) \in \mathbb{R}^{n}$ and $\sigma_{i} \equiv\left(\sigma_{i 1}, \ldots, \sigma_{i n}\right) \in \mathbb{R}^{n}$ are (row) vectors of known constants. Notice that these markets are interconnected because $q_{d}^{i}$ and $q_{s}^{i}$ change not only with $p_{i}$ but also with $\left(p_{1}, \ldots, p_{i-1}, p_{i+1}, \ldots, p_{n}\right)$. In a general equilibrium of this economy, all markets clear. Formally, in equilibrium, $q_{d}^{i}=q_{s}^{i}$ for all $i$.
i. [5 points] Define the appropriate system of linear equations in matrix form where $p^{\star}$ denotes the unknown vector of equilibrium prices.
Answer:
In general equilibrium, we have, for each $i$,

$$
\delta_{i} p^{\star}=\sigma_{i} p^{\star}
$$

This can be written, for each $i$, as

$$
\delta_{i} p^{\star}-\sigma_{i} p^{\star}=0 .
$$

More explicitly, this reads, for each $i$,

$$
\delta_{i 1} p_{1}^{\star}+\ldots+\delta_{i n} p_{n}^{\star}-\left(\sigma_{i 1} p_{1}^{\star}+\ldots+\sigma_{i n} p_{n}^{\star}\right)=0 .
$$

Then, we have

$$
A p^{\star}=0
$$

where $A$ is defined as the $n \times n$ matrix with the typical element

$$
a_{i j} \equiv \delta_{i j}-\sigma_{i j} .
$$

ii. [5 points] Is this system homogeneous? Explain.

Answer:
This system is homogeneous because the known coefficient vector on the right-hand side is equal to the null vector 0 .
iii. [5 points] Set $n=2$. Under what condition(s) on ( $\left.\delta_{11}, \delta_{12}, \delta_{21}, \delta_{22}, \sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22}\right)$ the system has a nontrivial solution?
Answer:
With $n=2$, the system $A p^{\star}=0$ reduces into

$$
\left[\begin{array}{ll}
\delta_{11}-\sigma_{11} & \delta_{12}-\sigma_{12} \\
\delta_{21}-\sigma_{21} & \delta_{22}-\sigma_{22}
\end{array}\right]\left[\begin{array}{l}
p_{1}^{\star} \\
p_{2}^{\star}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

This system attains a nontrivial solution $p^{\star} \neq 0$ if $\operatorname{det} A=0$. This condition implies

$$
\left(\delta_{11}-\sigma_{11}\right)\left(\delta_{22}-\sigma_{22}\right)=\left(\delta_{21}-\sigma_{21}\right)\left(\delta_{12}-\sigma_{12}\right) .
$$

iv. [15 points] Find the general solution of the $2 \times 2$ system.

## Answer:

The general solution of the system is a price ratio $k$ such that

$$
\frac{p_{2}^{\star}}{p_{1}^{\star}}=k .
$$

Under the condition $\left(\delta_{11}-\sigma_{11}\right)\left(\delta_{22}-\sigma_{22}\right)=\left(\delta_{21}-\sigma_{21}\right)\left(\delta_{12}-\sigma_{12}\right)$, we have

$$
k=-\frac{\delta_{11}-\sigma_{11}}{\delta_{12}-\sigma_{12}}=-\frac{\delta_{21}-\sigma_{21}}{\delta_{22}-\sigma_{22}}
$$

