Questions

1. [10 points] Consider a firm that uses two inputs (\boldsymbol{k} and $\boldsymbol{\ell}$). The firm operates with the production target $\boldsymbol{y}>0$, and its cost function is $C(k, \ell) \equiv 3 k+\ell$. The Lagrange function associated with the firm's cost minimization problem is

$$
L(k, \ell, \lambda) \equiv-(3 k+\ell)+\lambda(\sqrt{k \ell}-y)
$$

What is the economic interpretation of $\boldsymbol{\lambda}^{\star}$? (Hint: Notice that a unique solution exists.)
2. [10 points] Let $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ where \boldsymbol{A} is a 2×2 matrix, and $\boldsymbol{x}=\left(\boldsymbol{x}_{1}, x_{2}\right)$ is a column vector. If $x_{1} / x_{2}=3$ is the general solution, what does this imply about the matrix A?
3. [10 points] Solve the following optimization problem:

$$
\max _{x} f(x) \equiv 9-x^{2} \quad \text { where } x \in D \equiv\{\ldots,-2,-1,0,1,2, \ldots\} \backslash\{0\}
$$

4. [15 points] You are in an exam. You can cheat or not. If you cheat, you may get caught and be punished. The probability that you get caught is $p \in(0,1)$. Your utilities from different outcomes satisfy the following:

- If you don't cheat in the exam, your utility is 5 .
- If you cheat, there are two possibilities:
- If you get caught, your utility is $\mathbf{- 4 0}$.
- If you don't get caught, your utility is $\mathbf{1 0}$.

Assuming that you are an expected utility maximizer, what is the minimum level of \boldsymbol{p} that leads you to not to cheat in the exam?
5. [15 points] A firm that produces a good under perfect competition can use two different technologies. The first technology satisfies constant-returns-to-scale as in $\boldsymbol{Y}_{1}=\boldsymbol{A} \boldsymbol{K}_{\mathbf{1}}$ where $\boldsymbol{A}>\mathbf{0}$ is some measure of productivity, and $\boldsymbol{K}_{\mathbf{1}}$ is the flow of machine-hours allocated to the first technology. The second technology is of decreasing-returns-to-scale and reads $\boldsymbol{Y}_{\mathbf{2}}=\sqrt{\boldsymbol{K}_{\mathbf{2}}}$. Suppose that the firm has a total flow $\boldsymbol{K}>0$ of machinehours. Solve the problem of maximizing $\boldsymbol{Y}_{\mathbf{1}}+\boldsymbol{Y}_{\mathbf{2}}$ subject to the resource constraint $K_{1}+K_{2}=\boldsymbol{K}$.
6. [15 points] Consider a closed economy IS-LM model. Equilibrium-defining equations are

$$
\begin{gathered}
Y=C+I+G, \quad C=C_{0}+f(Y)-g(r), \quad I=I_{0}-h(r), \\
G=G_{0}, \quad \text { and } \quad M_{0}=3 Y-i(r)
\end{gathered}
$$

where $C_{0}, I_{0}, G_{0}, M_{0}>0$ are exogenously given, and f, g, h, i are continuously differentiable and strictly increasing functions satisfying

$$
\begin{aligned}
Y^{\star} & =C_{0}+f\left(Y^{\star}\right)-g\left(r^{\star}\right)+I_{0}-h\left(r^{\star}\right)+G_{0} \\
M_{0} & =3 Y^{\star}-i\left(r^{\star}\right)
\end{aligned}
$$

for the unique equilibrium $\left(r^{\star}, Y^{\star}\right)$. You should also suppose that $f^{\prime}\left(Y^{\star}\right) \in(0,1)$ (Why?). Find $\mathbf{d} \boldsymbol{r}^{\star} / \mathbf{d} \boldsymbol{M}_{\mathbf{0}}$ and $\mathrm{d} \boldsymbol{Y}^{\star} / \mathrm{d} \boldsymbol{G}_{\mathbf{0}}$, and interpret your results.

