Questions

1. [10 points] Consider a firm that uses two inputs $(k \text{ and } \ell)$. The firm operates with the production target y > 0, and its cost function is $C(k, \ell) \equiv 3k + \ell$. The Lagrange function associated with the firm's cost minimization problem is

$$L(k,\ell,\lambda)\equiv -(3k+\ell)+\lambda(\sqrt{k\ell}-y).$$

What is the economic interpretation of λ^* ? (*Hint*: Notice that a unique solution exists.)

- 2. [10 points] Let Ax = 0 where A is a 2×2 matrix, and $x = (x_1, x_2)$ is a column vector. If $x_1/x_2 = 3$ is the general solution, what does this imply about the matrix A?
- **3.** [10 points] Solve the following optimization problem:

$$\max_{x} f(x) \equiv 9-x^2 \quad ext{where } x \in D \equiv \{...,-2,-1,0,1,2,...\} \setminus \{0\}$$

- **4.** [15 points] You are in an exam. You can cheat or not. If you cheat, you may get caught and be punished. The probability that you get caught is $p \in (0, 1)$. Your utilities from different outcomes satisfy the following:
 - If you don't cheat in the exam, your utility is 5.
 - If you cheat, there are two possibilities:
 - If you get caught, your utility is -40.
 - If you don't get caught, your utility is 10.

Assuming that you are an expected utility maximizer, what is the minimum level of p that leads you to not to cheat in the exam?

- 5. [15 points] A firm that produces a good under perfect competition can use two different technologies. The first technology satisfies constant-returns-to-scale as in $Y_1 = AK_1$ where A > 0 is some measure of productivity, and K_1 is the flow of machine-hours allocated to the first technology. The second technology is of decreasing-returns-to-scale and reads $Y_2 = \sqrt{K_2}$. Suppose that the firm has a total flow K > 0 of machine-hours. Solve the problem of maximizing $Y_1 + Y_2$ subject to the resource constraint $K_1 + K_2 = K$.
- 6. [15 points] Consider a closed economy IS-LM model. Equilibrium-defining equations are

$$Y = C + I + G,$$
 $C = C_0 + f(Y) - g(r),$ $I = I_0 - h(r),$
 $G = G_0,$ and $M_0 = 3Y - i(r)$

where $C_0, I_0, G_0, M_0 > 0$ are exogenously given, and f, g, h, i are continuously differentiable and strictly increasing functions satisfying

$$egin{array}{rcl} Y^{\star} &=& C_0 + f(Y^{\star}) - g(r^{\star}) + I_0 - h(r^{\star}) + G_0 \ M_0 &=& 3Y^{\star} - i(r^{\star}). \end{array}$$

for the unique equilibrium (r^*, Y^*) . You should also suppose that $f'(Y^*) \in (0, 1)$ (Why?). Find dr^*/dM_0 and dY^*/dG_0 , and interpret your results.