FULL NAME

ID NUMBER

\qquad

SIGNATURE

Final Exam

January 15, 2014

Instructions

1. This exam's contribution to your final grade is 50%.
2. There are six questions in this exam. You should answer all of these questions.
3. You may use a calculator which does not have smart phone functionalities.
4. Mobile phones and laptop computers should be turned off.
5. You are not allowed to leave the room for the first 20 minutes of the exam time.
6. This is a closed-books and closed-notes exam.
7. You are not allowed to talk to each other during the exam.
8. Student Discipline Regulations of the Institutions of Higher Education are in effect. According to the 9th article, cheating in this exam may have severe consequences for you-including a temporary suspension of your studies up to two semesters.
9. You have exactly 75 minutes to complete the exam.

Questions

1. [1 point] Consider an individual with a nominal wage of $W>0$ and a nominal non-wage income of $R>0$. Suppose that this individual consumes two goods-milk and sugar. Let $P_{m}>0$ and $P_{s}>0$ respectively denote the unit prices of milk and sugar. Also suppose that the individual cannot borrow. Write down the budget constraint the individual faces.

Answer

2. [7 points] Solve the following optimization problem: $\max _{x \geq 0}-\left(x^{2}-9\right)$

Answer $\quad x^{\star}=$
3. [2 points] Imagine a market where the quantity supplied is equal to 100 units. Let the demand function be in the form of $Q^{\mathrm{d}} \equiv 127-P^{3}$. What is the equilibrium price level?

Answer $\quad P^{\star}=$
4. [15 points] A perfectly-competitive firm uses capital-denoted by $k \geq 0$ - to produce a commodity. The production function is defined as in $y \equiv \sqrt{k}$. Let the unit price of capital be 3 , and denote the profit-maximizing level of output by y^{\star}. What is $\partial y^{\star} / \partial p$ equal to where $p>0$ is the market price of the commodity?

Answer $\quad \frac{\partial y^{*}}{\partial p}=$
5. [20 points] An individual consumes two goods- x and y. The utility derived from the consumption of these goods reads $U(x, y) \equiv 1+x y-2 y$ where

$$
U(x, y):(3,+\infty) \times \mathbb{R}_{+} \rightarrow \mathbb{R}
$$

Let the budget constraint be $2 x+4 y \leq 12$. Solve the individual's utility maximization problem.

Answer $\quad x^{\star}=\quad y^{\star}=$
6. [5 points] Write down a strictly increasing and a strictly convex cost function as a function of the volume of output.

Answer $\quad C(y)=$

