Midterm Exam - Solutions

Question 1. [15 points] The Market Equilibrium.

Consider a good x that is sold and purchased in a market. The demand function is $Q^{d} \equiv d(P, Z)$ with $d_{P}<0$ and $d_{Z}<0$ where Z is an exogenous variable. The supply function is $Q^{s} \equiv s(P)$ with $s_{P}>0$. Suppose that there exists a unique equilibrium in this market. The equilibrium value of the market price is P^{\star}. At this price, the total amount of good x being traded is Q^{\star}. Show that, locally,

$$
\frac{\mathrm{d} P^{\star}}{\mathrm{d} Z}<0 \text { and } \frac{\mathrm{d} Q^{\star}}{\mathrm{d} Z}<0
$$

Imposing the equilibrium condition $Q^{d}=Q^{s}=Q$, the system reduces into

$$
\begin{aligned}
Q^{\star} & =d\left(P^{\star}, Z\right) \\
Q^{\star} & =s\left(P^{\star}\right)
\end{aligned}
$$

These define implicit functions

$$
\begin{aligned}
P^{\star} & =P(Z) \\
Q^{\star} & =Q(Z)
\end{aligned}
$$

To find the marginal effects, take the total differential

$$
\begin{aligned}
\mathrm{d} Q^{\star} & =d_{P} \mathrm{~d} P^{\star}+d_{Z} \mathrm{~d} Z \\
\mathrm{~d} Q^{\star} & =s_{P} \mathrm{~d} P^{\star}
\end{aligned}
$$

Eliminating dQ, we have

$$
d_{P} \mathrm{~d} P^{\star}+d_{Z} \mathrm{~d} Z=s_{P} \mathrm{~d} P^{\star}
$$

and this implies

$$
\frac{\mathrm{d} P^{\star}}{\mathrm{dZ}}=\frac{d_{Z}}{s_{P}-d_{P}}<0
$$

Then, using $\mathrm{d} Q^{\star}=s_{P} \mathrm{~d} P^{\star}$ and $s_{P}>0$, we have

$$
\frac{\mathrm{d} Q^{\star}}{\mathrm{d} Z}=s_{P}\left(\frac{\mathrm{~d} P^{\star}}{\mathrm{d} Z}\right)=\frac{s_{P} d_{Z}}{s_{P}-d_{P}}<0
$$

Question 2. [15 points] The Classical Model.

Consider a version of the classical macroeconomic model of aggregate demand and aggregate supply:

$$
\begin{aligned}
M & \equiv\left(\frac{1}{V}\right) P Y \\
Y & \equiv \alpha N
\end{aligned}
$$

Here, M is the supply of money, V is the velocity of money, P is the aggregate price, Y is the level of output, and N is the total amount of labor supplied. $\alpha>0$ is a constant parameter representing the productivity of labor. Suppose that $Z \equiv(M, V, N)$ is the vector of exogenous variables satisfying $Z \in \mathbb{R}_{++}^{3}$.
(a) Find the equilibrium value P^{\star} of the aggregate price.

In equilibrium, Y^{\star} is equal to αN. Then, we have

$$
P^{\star}=\frac{M V}{Y^{\star}}=\frac{M V}{\alpha N}
$$

(b) Suppose that N increases by $\mathrm{d} N>0$ due to population growth. If the monetary authority wants to stabilize P exactly at P^{\star}, what is the required change $\mathrm{d} M$ in the supply of money?
Taking the total differential of P^{\star} derived above under the assumption that V does not change, we have

$$
\begin{aligned}
\mathrm{d} P^{\star} & =\left(\frac{V}{\alpha}\right) \mathrm{d}\left(\frac{M}{N}\right) \\
& =\left(\frac{V}{\alpha}\right)\left(\frac{N \mathrm{~d} M-M \mathrm{~d} N}{N^{2}}\right)
\end{aligned}
$$

Equating this to zero, we have

$$
\begin{aligned}
0 & =\left(\frac{V}{\alpha}\right)\left(\frac{N \mathrm{~d} M-M \mathrm{~d} N}{N^{2}}\right) \\
0 & =\frac{N \mathrm{~d} M-M \mathrm{~d} N}{N^{2}} \\
0 & =N \mathrm{~d} M-M \mathrm{~d} N \\
\mathrm{~d} M & =\left(\frac{M}{N}\right) \mathrm{d} N
\end{aligned}
$$

Question 3. [15 points] Yoda and His Non-Negativity Constraint.
Yoda, a Jedi master with income $w>0$, wants to maximize his utility

$$
u(x) \equiv(\beta-x)^{-1}
$$

from good x. β is a preference parameter satisfying $\beta>w$. The price of $\operatorname{good} x$ is equal to 1 ; the budget constraint thus reads $x \leq w$. Show that Yoda would not choose $x^{\star}=0$.
Yoda's problem can be written as

$$
\max _{x \in \mathbb{R}}(\beta-x)^{-1} \quad \text { subject to: } x \leq w
$$

The Lagrange function associated with this problem is

$$
L(x, \lambda) \equiv(\beta-x)^{-1}+\lambda(w-x)
$$

The first-order necessary conditions read

$$
\begin{gathered}
-\left(\beta-x^{\star}\right)^{-2}(-1)-\lambda^{\star} \leq 0, \quad x^{\star} \geq 0, \quad x^{\star}\left[-\left(\beta-x^{\star}\right)^{-2}(-1)-\lambda^{\star}\right]=0 \\
w-x^{\star} \geq 0, \quad \lambda^{\star} \geq 0, \quad \lambda^{\star}\left(w-x^{\star}\right)=0
\end{gathered}
$$

We want to show that $x^{\star} \neq 0$. To do this, let's assume $x^{\star}=0$ and then find a contradiction. If $x^{\star}=0$, we must have

$$
\beta^{-2}-\lambda^{\star} \leq 0 \quad \text { and } \quad \lambda^{\star} w=0
$$

Since $w>0$, we have $\lambda^{\star}=0$. Then, the first inequality reads

$$
\begin{aligned}
\beta^{-2}-0 & \leq 0 \\
\beta^{-2} & \leq 0
\end{aligned}
$$

Since $\beta>0$, this is a contradiction. $x^{\star}=0$ does not satisfy the first-order necessary conditions, and it is not optimal.

