Midterm Exam - Solutions

Question 1. [15 points] The Market Equilibrium.

Consider a good x that is sold and purchased in a market. The demand function is $Q^d \equiv d(P,Z)$ with $d_P < 0$ and $d_Z < 0$ where Z is an exogenous variable. The supply function is $Q^s \equiv s(P)$ with $s_P > 0$. Suppose that there exists a unique equilibrium in this market. The equilibrium value of the market price is P^* . At this price, the total amount of good x being traded is Q^* . Show that, locally,

$$\frac{\mathrm{d}P^{\star}}{\mathrm{d}Z} < 0$$
 and $\frac{\mathrm{d}Q^{\star}}{\mathrm{d}Z} < 0$

Imposing the equilibrium condition $Q^d = Q^s = Q$, the system reduces into

 $\begin{array}{rcl} Q^{\star} & = & d(P^{\star},Z) \\ Q^{\star} & = & s(P^{\star}) \end{array}$

These define implicit functions

$$P^{\star} = P(Z)$$

 $Q^{\star} = Q(Z)$

To find the marginal effects, take the total differential

$$dQ^{\star} = d_P dP^{\star} + d_Z dZ$$

$$dQ^{\star} = s_P dP^{\star}$$

Eliminating dQ, we have

$$d_P \mathrm{d} P^* + d_Z \mathrm{d} Z = s_P \mathrm{d} P$$

and this implies

$$\frac{\mathrm{d}P^{\star}}{\mathrm{d}Z} = \frac{d_Z}{s_P - d_P} < 0$$

Then, using $dQ^* = s_p dP^*$ and $s_p > 0$, we have

$$\frac{\mathrm{d}Q^{\star}}{\mathrm{d}Z} = s_p\left(\frac{\mathrm{d}P^{\star}}{\mathrm{d}Z}\right) = \frac{s_p d_Z}{s_p - d_p} < 0$$

Question 2. [15 points] The Classical Model.

Consider a version of the classical macroeconomic model of aggregate demand and aggregate supply:

$$M \equiv \left(\frac{1}{V}\right) PY$$
$$Y \equiv \alpha N$$

Here, M is the supply of money, V is the velocity of money, P is the aggregate price, Y is the level of output, and N is the total amount of labor supplied. $\alpha > 0$ is a constant parameter representing the productivity of labor. Suppose that $Z \equiv (M, V, N)$ is the vector of exogenous variables satisfying $Z \in \mathbb{R}^3_{++}$.

(a) Find the equilibrium value P^* of the aggregate price. In equilibrium, Y^* is equal to αN . Then, we have

$$P^{\star} = \frac{MV}{Y^{\star}} = \frac{MV}{\alpha N}$$

(b) Suppose that N increases by dN > 0 due to population growth. If the monetary authority wants to stabilize P exactly at P*, what is the required change dM in the supply of money? Taking the total differential of P* derived above under the assumption that V does not change, we have

$$dP^{\star} = \left(\frac{V}{\alpha}\right) d\left(\frac{M}{N}\right)$$
$$= \left(\frac{V}{\alpha}\right) \left(\frac{NdM - MdN}{N^2}\right)$$

Equating this to zero, we have

$$0 = \left(\frac{V}{\alpha}\right) \left(\frac{NdM - MdN}{N^2}\right)$$
$$0 = \frac{NdM - MdN}{N^2}$$
$$0 = NdM - MdN$$
$$dM = \left(\frac{M}{N}\right) dN$$

<u>Question</u> 3. [15 points] Yoda and His Non-Negativity Constraint. Yoda, a Jedi master with income w > 0, wants to maximize his utility

$$u(x) \equiv (\beta - x)^{-1}$$

from good x. β is a preference parameter satisfying $\beta > w$. The price of good x is equal to 1; the budget constraint thus reads $x \le w$. Show that Yoda would not choose $x^* = 0$. Yoda's problem can be written as

$$\max_{x \in \mathbb{R}} (\beta - x)^{-1} \quad \text{subject to: } x \le w$$

The Lagrange function associated with this problem is

$$L(x, \lambda) \equiv (\beta - x)^{-1} + \lambda(w - x)$$

The first-order necessary conditions read

$$\begin{aligned} -(\beta - x^*)^{-2}(-1) - \lambda^* &\leq 0, \quad x^* \geq 0, \quad x^* \left[-(\beta - x^*)^{-2}(-1) - \lambda^* \right] &= 0 \\ w - x^* \geq 0, \quad \lambda^* \geq 0, \quad \lambda^*(w - x^*) = 0 \end{aligned}$$

We want to show that $x^* \neq 0$. To do this, let's assume $x^* = 0$ and then find a contradiction. If $x^* = 0$, we must have

$$\beta^{-2} - \lambda^* \leq 0$$
 and $\lambda^* w = 0$

Since w > 0, we have $\lambda^* = 0$. Then, the first inequality reads

$$\begin{array}{rrrr} \beta^{-2}-0 &\leq & 0 \\ \beta^{-2} &\leq & 0 \end{array}$$

Since $\beta > 0$, this is a contradiction. $x^* = 0$ does not satisfy the first-order necessary conditions, and it is not optimal.