## FULL NAME

## ID NUMBER

$\qquad$

## SIGNATURE

## FINAL EXAM

## Instructions

- This exam's contribution to your final grade is $40 \%$.
- There are six questions in this exam. You should answer two of these questions.
- Mobile phones and laptop computers should be turned off.
- You are not allowed to leave the room for the first 30 minutes of the exam time.
- This is a closed-books and closed-notes exam.
- You are not allowed to talk to each other during the exam.
- Student Discipline Regulations of the Institutions of Higher Education are in effect. According to the 9 th article, cheating in this exam may have severe consequences for you-including a temporary suspension of your studies up to two semesters.
- You have exactly 80 minutes to complete the exam.


# Questions (Answer only two of the questions.) 

## Question 1. [20 points] The Market Equilibrium.

A model of a market is as follows:

$$
\begin{aligned}
Q^{d} & =\alpha \\
Q^{s} & =s(P, X) \\
Q^{d}-Q^{s} & =f(P)
\end{aligned}
$$

Here, $Q^{d}$ denotes the quantity demanded, $Q^{s}$ denotes the quantity supplied, $P$ denotes the price level, and $X$ is a measure of technology. The endogenous variables are $Q^{d}, Q^{s}$ and $P . \alpha>0$ is a fixed parameter, $s(P, X)$ is a $C^{1}$ function that is strictly increasing in both $P$ and $X$, and $f(P)$ is a $C^{1}$ function satisfying

$$
f(\theta)=0 \text { and } f^{\prime}(P)<0
$$

where $\theta>0$ is a fixed parameter. Using this model, the purpose is to understand equilibrium in its usual sense. Explain why it is assumed that $f(\theta)=0$ and that $f^{\prime}(P)<0$.

## Question 2. [20 points] Cost Minimization vs. Profit Maximization.

A perfectly competitive firm, which employs only capital $k$ and labor $\ell$, is constrained with

$$
f(k, \ell)=y^{\star}
$$

where $f(\bullet, \bullet)$ is its production function and $y^{\star}>0$ is its exogenously given production target. Define the firm's cost function $c(k, \ell)$ and profit function $\pi(k, \ell)$ with an exogenous output price $p$ and exogenous input prices $\left(w_{k}, w_{\ell}\right)$, and show that cost minimization is identical to profit maximization for this firm (Hint: You do not need to solve these minimization and maximization problems. Just recall that a maximization problem can be written as a minimization problem!).

Question 3. [20 points] If you're gonna be poorer tomorrow, you should save more today. A consumer/saver has the utility function

$$
U\left(c_{1}, c_{2}\right) \equiv \ln \left(c_{1}\right)+0.95 \ln \left(c_{2}\right)
$$

where subscripts 1 and 2 respectively denote today and tomorrow, and $c$ is the level of consumption. The consumer/saver has an income of $y_{1}=1000$ today, and her exogenous income tomorrow is denoted by $y_{2}>0$. The budget constraints read

$$
c_{1}+s=1000 \quad \text { and } \quad c_{2}=(1.10) s+y_{2}
$$

where $s$ denotes saving. Show that

$$
\frac{\partial s^{\star}}{\partial y_{2}}<0
$$

where $s^{\star}$ is the utility-maximizing level of saving (Hint: Work with an interior solution, and do not check the S.O.S.C.s).

## Question 4. [20 points] Oil Shocks and the Monetary Policy.

Many economists believe that expansionary demand policies would lead to higher inflation during recessions if the economy has been hit by a negative supply shock. To understand this, a linear demand-and-supply model of an economy in the short run is specified by

$$
y^{d}=\alpha(m-p) \quad y^{s}=\beta p-\gamma p^{\text {oil }} \quad \text { and } \quad y^{d}=y^{s}=y^{\star}
$$

where $y^{d}$ is the aggregate demand, $y^{s}$ is the aggregate supply, $y^{\star}$ is the equilibrium level of output, $p$ is the aggregate price level, $m>0$ is the (exogenous) supply of money, and $p^{\text {oil }}>0$ is the (exogenous) world price of crude oil. The fixed parameters are such that $\alpha, \beta, \gamma>0$. Suppose that the economy is initially in equilibrium. A sudden increase in $p^{\text {oil }}$ causes firms to decrease their scale; $y^{\star}$ decreases and $p^{\star}$ increases. Mathematically show that, if the government uses expansionary monetary policy $(\Delta m>0)$ to increase $y^{\star}$ back to its initial level, the economy has to face an even higher level of $p^{\star}$.

## Question 5. [20 points] "Jeopardy!"

Edmond Dantès has initially 100 dollars. His utility from money is defined by

$$
u(m)=2 \sqrt{m}
$$

In the casino, there is a (fair) coin toss game that pays five times the invested money with probability $50 \%$ and pays nothing otherwise. For example, if Edmond Dantès puts $x$ dollars to the game, he either gets $5 x$ dollars back ( $4 x$ net) or loses the amount $x$ that he has invested. Your task, as you may have guessed, is to find the optimal amount $x^{\star}$ of invested money under the assumption that Edmond Dantès is an expected utility maximizer (Hint: Work with an interior solution, and do not check the S.O.S.C.s).

Question 6. [20 points] The Effect of Non-Wage Income on Leisure.
Write down a simple consumption-leisure model of an individual, solve the model, and analyze the effect of non-wage income-exogenous income that does not depend on leisure-on optimal choice of leisure.

