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THE TORSION THEORY COGENERATED BY �–M-SMALL
MODULES AND GCO-MODULES
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Let M be a module and K a submodule of a module N in ��M�. We call K a
�–M-small submodule of N if whenever N = K + L, N/L is M-singular for any
submodule L of N , we have N = L. Also we call N a �–M-small module if N is a
�–M-small submodule of its M-injective hull. In this article, we consider �Z�M

�N� =
Rej�N��������, the reject of ������ in N , where ������ is the class of all �–M-small modules.
We investigate the properties of �Z�M

�N� and consider the torsion theory ��V in ��M�

cogenerated by ������. We compare the ��V and the torsion theory �V cogenerated by
M-small modules and finally we give a characterization of GCO-modules.
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1. PRELIMINARIES

All rings we consider are rings with identity and all modules are unitary right
modules. Let R be a ring and M an R-module.

An R-module N is subgenerated by M if N is isomorphic to a submodule of an
M-generated module. ��M� denotes the full subcategory of Mod-R whose objects are
all R-modules subgenerated by M . Let N ∈ ��M�. M-injective hull of N or injective
hull of N in ��M� is denoted by N̂ . (see Wisbauer, 1991 or Dung et al., 1994).

We use the notation N ≤e M for an essential submodule and N ≤d M for a
direct summand N of M . A module N in ��M� is called M-singular (or singular in
��M�) if N � L/K for an L ∈ ��M� and K ≤e L. Every module N ∈ ��M� contains a
largest M-singular submodule which is denoted by ZM�N� (Dung et al., 1994).

Let K be a submodule of M . K is called small in M if K + L �= M holds for
every proper submodule L of M and denoted by K � M . A module N in ��M� is
called M-small (or small in ��M�) if N � K � L for K�L ∈ ��M�. In case M = R,
instead of R-small, we just say small. A module N is M-small if and only if N � N̂ .
We denote the class of all M-small modules by �. � is closed under submodules,
homomorphic images and finite direct sums.
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624 ÖZCAN

Note that the family of simple modules in ��M� splits into four disjoint classes
by combining the exclusive choices [M-projective or M-singular] and [M-injective or
M-small].

Let N be a submodule of a module M . N is called �-small in M if whenever
M = N + K and M/K is singular for any K ≤ M we have M = K, denoted by
N �� M (Zhou, 2000).

Recently Zhou generalized small submodules to �-small submodules in Mod-R
considering the class of all singular modules in place of the class of all R-modules.
In this article, we consider �-small submodules in the category ��M� for a
module M and define it as a �–M-small submodule. M-small modules are dual
of M-singular modules. Also we define �–M-small modules as a generalization of
M-small modules. Rej�N���, the reject of � in N , is considered by Talebi and
Vanaja (2002) and they investigate the torsion theory �V cogenerated by � and
characterize lifting modules as an analogue of extending modules. In this article we
deal with these subjects considering the class of �–M-small modules.

In Section 2, we investigate general properties of �–M-small (sub)modules and
the reject of the class of all �–M-small modules in N in ��M� and characterize lifting
modules.

Section 3 is related with the torsion theory ��V cogenerated by the class of
�–M-small modules. We study some conditions for ��V to be cohereditary or split.

In the last section, GCO-modules are characterized.

2. �–M-SMALL MODULES

In this section first we define �–M-small (sub)modules and study the basic
properties of them.

Definition. Let M be a module and K ≤ N ∈ ��M�. K is called a �–M-small
submodule of N in ��M� if whenever N = K + X and N/X is M-singular for X ≤ N
we have N = X, we denote it by K ��M

N .

Clearly, if K �� N ∈ ��M�, then K ��M
N . The properties of �-small sub-

modules that are listed in Lemma 1.3 in Zhou (2000) also hold in ��M�. We write
them for convenience. Note that the class of M-singular modules is closed under
submodules, homomorphic images and direct sums (Dung et al., 1994).

Lemma 2.1. Let N ∈ ��M�.

a) For modules K�L ∈ ��M� with K ≤ L ≤ N we have

L ��M
N if and only if K ��M

N and L/K ��M
N/K	

b) For K�L ∈ ��M�,

K + L ��M
N if and only if K ��M

N and L ��M
N	

c) If K ��M
N and f 
 N → L is a homomorphism, then f�K� ��M

L. In particular, if
K ��M

N ≤ L then K ��M
L.

d) If K ≤ L ≤d N ∈ ��M� and K ��M
N then K ��M

L.
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TORSION THEORY COGENERATED BY �–M-SMALL 625

The following lemma can be seen by a proof similar to Zhou (2000, Lemma 1.2).

Lemma 2.2. Let N ∈ ��M�. The following are equivalent:

(1) K ��M
N ;

(2) if N = X + K, then N = X ⊕ Y for a projective semisimple submodule Y with
Y ≤K.

Now as a generalization of M-small modules we define �–M-small modules for
a module M .

Definition. Let N ∈ ��M�. N is called a �–M-small module in ��M� if N � K ��M

L ∈ ��M�.

Note that a module N in ��M� is a �–M-small module if and only if N ��M
N̂

(Özcan, 2002, Lemma 2.4). We denote the class of all �–M-small modules in ��M�
by ��. The class of �–M-small modules is closed under submodules, homomorphic
images and finite direct sums. If N is �–M-small and M-singular, then N is M-small.

Let � be a class of modules in ��M�. For any N in ��M�, the reject of � in
N is denoted by Rej�N��� = ⋂

�ker g 
 g ∈ Hom�N�C�� C ∈ ��. Talebi and Vanaja
(2002) define �ZM�N� as a dual of M-singular submodule as follows:

�ZM�N� = Rej�N���	

For M = R, we write �Z�N� instead of �ZM�N�. They call N an M-cosingular (non-M-
cosingular) module if �ZM�N� = 0 (�ZM�N� = N ).

Now we consider the class of �–M-small modules and define

�Z�M
�N� = Rej�N����	

Then �Z�M
�N� ≤ �ZM�N�. For M = R, we write �Z��N� instead of �Z�M

�N�. We call
N a �–M-cosingular (non-�–M-cosingular) module if �Z�M

�N�= 0 (�Z�M
�N�=N ). Then

everyM-cosingular module is �–M-cosingular and every non-�–M-cosingular module
is non-M-cosingular. Clearly, N ∈ ��M� is non-�–M-cosingular if and only if every
nonzero factor module of N is non-�–M-small.

Definitions. Let A ≤ B ≤ N ∈ ��M�. A is called a coessential submodule of B in N

if B/A � N/A, denoted by A
ce
↪→ B in N . A submodule A of N is said to be coclosed

in N if it has no proper coessential submodule in N , denoted by A
cc
↪→ N . If A and

B are submodules of N in ��M�, it is said that A is a coclosure of B in N if A is a
coessential submodule of B in N and A is a coclosed submodule of N .

The following two results can be seen by proofs similar to Lemma 2.3 and
Proposition 2.4 in Talebi and Vanaja (2002).

Lemma 2.3. Let N ∈ ��M�. Then:

(1) If N is non-�–M-cosingular and X ≤ N is a �–M-small module, then X � N ;
(2) Any non-�–M-cosingular submodules of N is coclosed in N ;
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626 ÖZCAN

(3) A submodule of a non-�–M-cosingular module is coclosed if and only if it is a
non-�–M-cosingular module;

(4) If M is non-�–M-cosingular, then �� = �.

Let A and B in ��M�. A is called a small cover of B if there exists an
epimorphism f 
 A → B with ker f � A.

Proposition 2.4. The class of all non-�–M-cosingular modules is closed under
homomorphic images, direct sums, extensions, small covers, and coclosed submodules.

It follows that if M is a generator in ��M� and non-�–M-cosingular, then every
module in ��M� is non-�–M-cosingular.

Now we list some properties of �Z�M
�N� that can be seen easily.

Proposition 2.5. Let A�B and Ai �i ∈ I� be modules in ��M�. Then:

(1) If A ≤ B, then �Z�M
�A� ≤ �Z�M

�B� and ��Z�M
�B�+ A�/A ≤ �Z�M

�B/A�;
(2) If f 
 B → A is a homomorphism, then f��Z�M

�B�� ≤ �Z�M
�A�;

(3) �Z�M
�A/�Z�M

�A�� = 0;
(4) �Z�M

�
⊕

i∈I Ai� =
⊕

i∈I �Z�M
�Ai�;

(5) �Z�M
�
∏

i∈I Ai� ≤
∏

i∈I �Z�M
�Ai�;

(6) If A = B + S where S is a �–M-small module, then �Z�M
�B� = �Z�M

�A�;
(7) �Z�M

�A� is the smallest submodule of A such that A/�Z�M
�A� is �–M-cosingular.

Corollary 2.6. The class of all �–M-cosingular modules is closed under submodules,
direct sums and direct products.

A module M is called hereditary in ��M� if every submodule of M is projective
in ��M�.

Proposition 2.7. Let M be a (projective) hereditary module in ��M�. Then every
M-singular injective module in ��M� is non-�–M-cosingular.

Proof. The homomorphic image of any injective module in ��M� is injective in
��M� by Wisbauer (1991, 39.6). Hence any nonzero factor module of any nonzero
M-singular injective module in ��M� is not �–M-small. Therefore, every M-singular
injective module in ��M� is non-�–M-cosingular. �

Proposition 2.8. Let M be a non-M-singular module (i.e., ZM�M� = 0) and S be a
simple M-singular module in ��M�. Then �Z�M

�̂S� �= 0.

Proof. Since the class of M-singular modules is closed under extensions, Ŝ is
M-singular. Then �Z�M

�̂S� = �ZM�̂S� �= 0 by Talebi and Vanaja (2002, Proposition 2.8).
�

Corollary 2.9. Let M be a module and S be a simple module in ��M� such that Ŝ is
M-singular. Then �Z�M

�̂S� �= 0.
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TORSION THEORY COGENERATED BY �–M-SMALL 627

Note that if N is a projective injective simple module in ��M�, then �Z�M
�N� = 0

and �ZM�N� = N by definitions and Talebi and Vanaja (2002, Proposition 2.8).

Proposition 2.10. Let N ∈ ��M� be indecomposable. Then either �Z�M
�N� = �ZM�N�

or N is projective injective simple module in ��M�.

Proof. If �Z�M
�N� = N , then �Z�M

�N� = �ZM�N�. Assume �Z�M
�N� �= N . Let X be a

submodule of N such that N/X is a �–M-small module. We claim that N/X
is an M-small module. Let N̂/X = N/X + A for some submodule A of N̂/X. By
Lemma 2.2, N̂/X = Y/X ⊕ A for a projective semisimple submodule Y/X with Y/X ≤
N/X. Since Y/X is injective in ��M�, Y/X ≤d N/X. Let S/X be a submodule of N/X
such that N/X = Y/X ⊕ S/X. Then N/S is projective in ��M� and hence S ≤d N .

If S = 0, then X = 0. Hence N = Y is semisimple projective injective in ��M�.
Since N is indecomposable, N is simple.

If S �= 0, then S = N . Then Y/X = 0 and so N/X � N̂/X. It follows that
�Z�M

�N� = �ZM�N�. �

Corollary 2.11. Let N ∈ ��M� be a direct sum of indecomposable modules. Then
N has a decomposition N = A⊕ B such that �Z�M

�A� = �ZM�A� and B is semisimple
projective in ��M�.

Remark 2.12. Now we list some examples in the literature so that a module N is
a direct sum of indecomposable modules.

(a) Every local summand of N is a summand (Mohamed and Müller, 1990,
Theorem 2.17).

(b) N is a locally noetherian CS-module (extending) (Dung et al., 1994,
Corollary 8.3).

(c) N is a self-hereditary CS-module (Dung et al., 1994, Theorem 10.5).
(d) N is a

∑
-CS-module (Gomez Pardo et al., 2001).

(e) N is a countable CS-module (Gomez Pardo et al., 2000).

The class of �–M-cosingular modules need not be closed under homomorphic
images. In Corollary 4.4, some conditions are given for the class of �–M-cosingular
modules to be closed under homomorphic images.

Example 2.13. Let R = M = � and N = �. Since � is a small module, �Z���� =�Z��� = 0. Since �� is uniform and not a projective �-module, �Z���� = �Z��� = �
by Proposition 2.10 and Talebi and Vanaja (2002, Proposition 2.7). So let ���� → �
be an epimorphism. Then ���� is �-cosingular but � is not.

The class of �–M-cosingular modules need not be closed under extensions.

Example 2.14. Let R = � and M = �/4�. Since M is uniform, �Z�M
�M� =

�ZM�M� = 2M by Proposition 2.10 and Özcan and Harmanci (2003, Example 4.4).
Since �/2� is M-small, �Z�M

��/2�� = �ZM��/2�� = 0.

Now we define �Z�
�M
�N� for N ∈ ��M�. We set �Z0

�M
�N� = N , �Z1

�M
�N� = �Z�M

�N�

and define inductively �Z�
�M
�N� for any ordinal �. Thus, if � is not a limit ordinal we
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628 ÖZCAN

set�Z�
�M
�N� = �Z�M

��Z�−1
�M

�N��, while if � is a limit ordinal we set�Z�
�M
�N� = ⋂

�<�
�Z�

�M
�N�.

Hence there is a descending sequence

N = �Z0
�M
�N� ⊇ �Z�M

�N� ⊇ �Z2
�M
�N� ⊇ 	 	 	 of submodules of N	

The following example characterizes the �Z��RR� where R is the ring of 2× 2
upper triangular matrices over a field.

Example 2.15. Let R = M = [
F F

0 F

]
where F is a field. Let A = [

F F

0 0

]
and

B = [
0 0
0 F

]
. Then RR = A⊕ B, A is injective and B is simple. Hence �Z��A� =�Z�A� = A and �Z��B� = �Z�B� = 0. This implies that �Z��RR� = �Z�RR� = A. Since R

is a hereditary ring, A = �Z�RR� = �Z2�RR� = �Z3�RR� by Talebi and Vanaja (2002,
Proposition 2.7). Also we have that A = �Z��RR� = �Z2

��RR� = �Z3
��RR�.

Theorem 2.16. Let N ∈ ��M� and � ≥ 1 be any ordinal. Then

�Z�+1
�M

�N� = ⋂
�X � X ce

↪→�Z�
�M
�N� in N�

and the family of all coessential submodules of �Z�
�M
�N� in N is closed under finite

intersections.

Proof. Let N ∈ ��M� and X ≤ �Z�
�M
�N� be such that �Z�

�M
�N�/X is �–M-small.

We claim that �Z�
�M
�N�/X � N/X. Let L be a submodule of N such that

N/X = �Z�
�M
�N�/X + L/X. Then N = �Z�

�M
�N�+ L. Consider the natural epimorphism

f 
 N → N/L. Then N/L ≤ ��Z�M
�N�+ L�/L = f��Z�M

�N�� ≤ �Z�M
�N/L� and hence

�Z�M
�N/L� = N/L. On the other hand if we consider the epimorphism g 
 N/X →

N/L, we have that g�N/X� = g��Z�
�M
�N�/X� = N/L is �–M-small. This implies that

N = L. Hence �Z�+1
�M

�N� = ⋂
�X �X ce

↪→�Z�
�M
�N� in N �. The other inclusion is obvious.

For the last part, let X and Y be coessential submodules of �Z�
�M
�N� in N .

Then �Z�
�M
�N�/X and �Z�

�M
�N�/Y are M-small. Since �Z�

�M
�N�/�X ∩ Y� is isomorphic to

a submodule of ��Z�
�M
�N�/X�⊕ ��Z�

�M
�N�/Y�, then X ∩ Y

ce
↪→�Z�

�M
�N� by above. �

Corollary 2.17. If �Z�M
�N� has a coclosure in N , then �Z2

�M
�N� is the unique coclosure

of �Z�M
�N� and hence is the largest non-�–M-cosingular submodule of N , i.e., �Z2

�M
�N� =

�Z3
�M
�N�.

Proof. It can be seen by the proof of Talebi and Vanaja (2002, Corollary 3.4) by
taking �Z�M

�N� instead of �ZM�N�. �

Definitions. A module M is called lifting if for every submodule A of M , there is a
decomposition M = M1 ⊕M2 such that M1 ≤ A and A ∩M2 is small in M . If N and
L are submodules of M , then N is called a supplement of L (in M) if N + L = M and
N ∩ L � N . M is called an amply supplemented if, for all submodules N and L of M
with N + L = M , N contains a supplement of L in M .
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TORSION THEORY COGENERATED BY �–M-SMALL 629

Theorem 2.18. Let N be an amply supplemented module in ��M�, L a subfactor of
N and f 
 L → T an epimorphism. Then �Z2

�M
�L� is the largest non-�–M-cosingular

submodule of L and f��Z2
�M
�L�� = �Z2

�M
�T�.

Proof. It can be seen by the proof of Talebi and Vanaja (2002, Theorem 3.5) by
taking �Z�M

�N� instead of �ZM�N�.

Let N ∈ ��M�. Lifting modules are characterized in Talebi and Vanaja (2002,
Theorem 4.1) by using �Z2

M�N�. N is lifting if and only if N = �Z2
M�N�⊕ K for some

K ≤ N such that K and �Z2
M�N� are lifting, K is �Z2

M�N�-projective and N is amply
supplemented. By the technique of Talebi and Vanaja (2002, Theorem 4.1), we
characterize lifting modules by using �Z2

�M
�N�. Note that if N is a lifting module in

��M�, then �Z2
�M
�N� need not be equal to �Z2

M�N�, and as an example we may consider
simple injective projective modules.

Theorem 2.19. Let N be a module in ��M�. Then N is lifting if and only if N =
�Z2

�M
�N�⊕ K for some K ≤ N such that K and �Z2

�M
�N� are lifting, K is �Z2

�M
�N�-projective

and N is amply supplemented.

3. THE TORSION THEORY COGENERATED BY �–M-SMALL MODULES

Let � be a class of modules in ��M�. The torsion theory cogenereated by a class
of � of modules which is closed under isomorphisms and submodules in ��M� is
�c = ��c��c� where

�c = �T ∈ ��M� 
 ∀C ∈ ��Hom�T� C� = 0�

= �T ∈ ��M� 
 Rej�T��� = T� and

�c = �F ∈ ��M� 
 ∀T ∈ �c�Hom�T� F� = 0�

= �F ∈ ��M� 
 ∀0 �= U ≤ F�Rej�U��� �= U�	

Talebi and Vanaja consider the torsion theory cogenerated by �, we denote it
by �V = ��V ��V � where

�V = �T ∈ ��M� 
 �ZM�T� = T� and

�V = �F ∈ ��M� 
 ∀0 �= K ≤ F��ZM�K� �= K�	

In this article we consider the torsion theory cogenerated by the class of �–M-
small modules. We denote it by ��V = ���V ���V � where

��V = �T ∈ ��M� 
 �Z�M
�T� = T� and

��V = �F ∈ ��M� 
 ∀0 �= K ≤ F��Z�M
�K� �= K�	

Clearly, ��V ≤ �V (i.e., ��V ⊆ �V and �V ⊆ ��V ). Let us denote the radical
associated with ��V by ��V . Then ��V is the largest non-�–M-cosingular submodule
of N ∈ ��M�.
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630 ÖZCAN

Next we consider the modules having a projective cover and define the dual
Lambek torsion theory �P because we deal with the relationship between ��V and �P .

Let M be a module. Assume that M has a projective cover P in ��M� and
consider the torsion theory generated by P, �P = ��P��P� where

�P = �F ∈ ��M� 
 Hom�P� F � = 0� and

�P = �T ∈ ��M� 
 ∀F ∈ �P�Hom�T� F� = 0�	

This is cohereditary (i.e., �P is closed under homomorphic images). Since
P ∈ �P , GenM�P� ⊆ �P (GenM�P� is the class of objects in ��M� which are generated
by P). Also we have

�P ⊆ � ⊆ �V ⊆ ��V � ��V ⊆ �V ⊆ �P	

Applying Proposition 4.5 of Özcan and Harmanci (2003) and Proposition 2.4,
we get the following proposition.

Proposition 3.1. Assume a module M has a projective cover P in ��M�. Then the
following are equivalent:

(1) �Z�M
�M� = M;

(2) �Z�M
�P� = P;

(3) �P = ��;
(4) �P = ��V ;
(5) GenM�P� ⊆ ��V .

In this case,

�P = � = �� = ��V = {
N ∈ ��M� 
 �Z�M

�N� = 0
} = {

N ∈ ��M� 
 �ZM�N� = 0
}
	

A torsion theory �� �� � splits if every module N in ��M� has a decomposition
N = N1 ⊕ N2 such that N1 ∈ � , N2 ∈ � . In the following theorem, we give some
examples of a module M where ��V splits. Also, in Corollary 4.3 we give more
examples to such a module.

Theorem 3.2. ��V splits in the following cases:

(1) Every �–M-cosingular module is projective in ��M�;
(2) M is a projective perfect module in ��M� and ��M� has no injective simple module;
(3) Every injective module in ��M� is lifting.

Proof. (1) Let N ∈ ��M�. Then N/�Z�M
�N� is projective in ��M�. Let A be a

submodule of N such that N = �Z�M
�N�⊕ A. We have �Z�M

�A� = 0. Then �Z�M
�N� =

�Z2
�M
�N� and hence �Z�M

�N� ∈ ��V and A ∈ ��V .

(2) By Talebi and Vanaja (2002, Theorem 3.8), �V = ��M� and then
��V = ��M�.
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(3) If every injective module is lifting and N ∈ ��M�, then N = E ⊕ S where
E is injective and S is M-small by Jayaraman and Vanaja (2000). Also E = ⊕

i∈I Ei

where each Ei is a local module. Let I1 = �i ∈ I 
 �Z�M
�Ei� = Ei� and I2 = I − I1.

Let A = ⊕
i∈I1 Ei and B = ⊕

i∈I2 Ei. Then �Z�M
�A� = A and �Z2

�M
�B� = 0 since every

proper submodule of Ei is a small submodule. So N = A⊕ �B ⊕ S� where A ∈ ��V

and B ⊕ C ∈ ��V . �

Theorem 3.3. Let M be a module such that every injective module in ��M� is amply
supplemented. Then:

(1) ��V = �N ∈ ��M� � �Z2
�M
�N� = N�;

(2) ��V = �N ∈ ��M� � �Z2
�M
�N� = 0�;

(3) ��V = �Z2
�M
�N� for all N ∈ ��M�, and;

(4) ��V is cohereditary.

Proof. For any N ∈ ��M�, �Z�M
�N� = N ⇔�Z2

�M
�N� = N , by definitions. Also if

�Z2
�M
�N� = 0, then N ∈ ��V . The converse holds by Theorem 2.18. Hence (1) and (2)

are proved. (3) and (4) also follow from Theorem 2.18. �

4. GCO-MODULES

In this section we give some characterizations of GCO-modules and then reach
some other conditions so that ��V splits in addition to Theorem 3.2. Now we recall
the definition.

M is called a GCO-module if every singular simple module is M-projective
or M-injective (Dung et al., 1994). M is a GCO-module if and only if every
M-singular simple module is M-injective (Dung et al., 1994, 16.4). In Özcan (2002)
it is proved that M is a GCO-module if and only if every M-small module in ��M�
is M-projective.

Theorem 4.1. Let M be a module. The following are equivalent:

(1) M is a GCO-module;
(2) Every M-singular module is non-�–M-cosingular;
(3) Every M-singular module is non-M-cosingular.

Proof. (1) ⇒ (2) Let 0 �= N be an M-singular module and X be a proper
submodule of N such that N/X is �–M-small. By Dung et al. (1994, 16.3 and 16.4),
every module in ��M� is a GCO-module and every submodule of a module has
a maximal submodule. Then there exists a maximal submodule L of N such that
X≤L. Then N/L is simple M-singular. By hypothesis N/L is M-injective. Since N/L
is a homomorphic image of N/X, N/L is M-small. But simple M-small modules can
not be M-injective. Hence N is non-�–M-cosingular.

(2) ⇒ (3) It is clear.

(3) ⇒ (1) Let N be an M-singular simple module. By (3) N is non-
M-cosingular. If N is M-small, then �ZM�N� = 0, a contradiction. Hence N is
M-injective. �
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632 ÖZCAN

Theorem 4.2. Let M be a module. Consider the following conditions:

(1) M is a GCO-module;
(2) Every M-cosingular module is projective in ��M�;
(3) Every �–M-cosingular module is projective in ��M�;
(4) Every module in ��M� is a direct sum of non-M-cosingular and a semisimple

module; and
(5) Every module in ��M� is a direct sum of non-�–M-cosingular and a semisimple

module.

Then (5) ⇒ (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) ⇒ (2). If in addition, the class
of �–M-cosingular modules is closed under homomorphic images, then (1)–(5) are all
equivalent.

Proof. (5) ⇒ (4) It is clear.

(4) ⇒ (2) Let N be an M-cosingular module in ��M� and f 
 K → N be an
epimorphism where K ∈ ��M�. Then K has a decomposition K = A⊕ B where A is
non-M-cosingular and B is semisimple. Since f�A� ≤ �ZM�N� = 0, A ≤ ker f . Then
ker f = A⊕ �B ∩ ker f�. Since B is semisimple, ker f is a direct summand of K.
It follows that N is projective.

(5) ⇒ (3) It can be seen as in (4) ⇒ (2).

(3) ⇒ (2) It is clear.

(2) ⇒ (1) Let N be an M-singular simple module in ��M�. If N is M-small
then N is M-cosingular. By (2), N is projective in ��M�, a contradiction. So N is
M-injective.

Now assume the class of �–M-cosingular modules is closed under
homomorphic images.

(1) ⇒ (3) Let N be a �–M-cosingular module. We claim that N is semisimple.
Let x ∈ N and K be a maximal submodule of xR. Then xR/K is simple. If
xR/K is M-singular, then �Z�M

�xR/K� = xR/K by Theorem 4.1. But since N is
�–M-cosingular, by assumption, �Z�M

�xR/K� = 0, a contradiction. Hence xR/K is
projective in ��M�. It follows that xR is semisimple, i.e., N is semisimple. By the
above theorem, N is projective in ��M�.

(2) ⇒ (4) Since the class of �–M-cosingular modules is closed under
homomorphic images, every �–M-cosingular module is semisimple. Then by Talebi
and Vanaja (2002, Theorem 3.8), (4) holds.

(3) ⇒ (5) It can be seen as in (2) ⇒ (4). �

Corollary 4.3. Let M be a GCO-module. If a) the class of �–M-cosingular modules
is closed under homomorphic images, or b) ��V is cohereditary, then ��V and �V split.

Proof. The proof of (a) follows from the equivalence of (1), (4), and (5) of
Theorem 4.2.
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By the hypothesis of (b), ��V is closed under homomorphic images. As in
the proof of (1) ⇒ (3) of Theorem 4.2, every module in ��V and hence in �V is
semisimple and projective. �

Corollary 4.4. The class of �–M-cosingular modules is closed under homomorphic
images, if (1) every injective module in ��M� is amply supplemented and M is a GCO-
module, or (2) M has a projective cover in ��M� and �Z�M

�M� = M .

Proof. (1) Let N be a �–M-cosingular module. We claim that N is semisimple.
Let x ∈ N and K be a maximal submodule of xR. If xR/K is M-singular,
then �ZM�xR/K� = xR/K by Theorem 4.1. Then �Z2

M�xR/K� = xR/K. But since
�ZM�xR� = 0, �Z2

M�xR/K� = 0 by Talebi and Vanaja (2002, Theorem 3.6), a
contradiction. Hence xR/K is projective in ��M�. It follows that xR is semisimple,
i.e., N is semisimple. By Theorem 4.1, N is projective in ��M�.

Let X be a submodule of N and consider the natural epimorphism
� 
 N → N/X. Then ���Z2

M�N�� = �Z2
M�N/X� = 0 by Theorem 2.18. Since �ZM�N/X� is

a direct summand of N/X by above, we have �Z2
M�N/X� = �ZM�N/X� = 0.

(2) By Proposition 3.1. �
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