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Abstract. Based on a lattice theoretical approach, we give a complete
characterization of modules with Fleury’s spanning dimension. An ex-
ample of a non-Artinian, non-hollow module satisfying this finiteness
condition is constructed. Furthermore we introduce and characterize the
dual notion of Fleury’s spanning dimension.

1. Introduction

Smith and Vedadi [SV] characterized modules which satisfy the ascend-

ing (resp. descending) chain condition for non-essential submodules. Mod-

ules that satisfy the descending chain condition for non-small submodules

have been studied by Fleury in [F] in his search for a dual Goldie dimen-

sion. He termed modules with DCC on non-small modules modules with

finite spanning dimensions. A conceptual cleaner dualization of Goldie’s di-

mension than Fleury’s had been carried out by Grzeszczuk and Puczylowski

in [GP] by introducing a notion of Goldie dimension for modular lattice. The

dual Goldie dimension of a module being the Goldie dimension of the dual of

its lattice of submodules reassembles earlier dualization attempts made by

Varadarajan [V], Takeuchi [T] and Reiter [Re]. Fleury’s spanning dimension

however remained a rather subtle module theoretic condition between the

Artinianess of a module and the finiteness of the dual Goldie dimension of it.

In this paper we will give a complete characterization of Fleury’s notion and

will also construct a non-Artinian, non-hollow example with finite spanning

dimension. Following Grzeszczuk and Puczylowski idea we will prove Smith

and Vedadi’s results for modular lattices and apply them to the dual lattice

of the lattice of submodules of a module to obtain this characterization. We

close by considering modules with ascending chain conditions on non-small

submodules.

Throughout this paper, R denotes an associative ring with unit and all

modules are unitary left R-modules.
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2. Modular Lattices

A lattice (L,∧,∨) (or for short L) is a partial ordered set (L,≤) such

that for any a, b ∈ L there exist elements a ∧ b and a ∨ b such that a ∧ b is

the largest element c in L with c ≤ a and c ≤ b while a ∨ b is the smallest

element c in L with a ≤ c and b ≤ c. For two elements a ≤ b we denote

by [a, b] = {c ∈ L | a ≤ c ≤ b} the interval of elements between a and

b. A lattice (L,∨,∧) is complete if joins
∨

X and meets
∧

X exist for any

non-empty subsets X ⊆ L. In this case the smallest element of L is denoted

by 0 and its largest element by 1. L is called modular if for all a, b, c ∈ L :

a ≤ b ⇒ b ∧ (a ∨ c) = a ∨ (b ∧ c).

All lattices in this paper are supposed to be complete and modular. For

a thorough introduction to lattice theory we refer the reader to Grätzer’s

book [G].

If M is a module over a ring R and L(M) is its set of submodules, then

(L(M), +,∩) is a complete modular lattice with the inclusion as partial

ordering.

The dual lattice Lo of a lattice (L,∧,∨) consists of the same underlying

set L, but with reversed partial ordering <o, i.e. for all a, b ∈ L : a <o b ⇔
a > b. If L is complete (modular), then also Lo is.

An element a is a complement of an element b in a modular lattice L

if a ∨ b = 1 and a ∧ b = 0. We say that L is decomposable if there exist

complements different from 0 and 1. An element a ∈ L shall be called

decomposable if [0, a] is decomposable. Note that in case of L = L(M), a

submodule A of M is a complement in L(M) if and only if it is a direct

summand of M .

A pseudo-complement of an element a in L is a maximal element of the

set Ωa = {c ∈ L | a ∧ c = 0} and L is called pseudo-complemented if every

element of L has a pseudo-complement in L. Given a pseudo-complement b

of a the element a∨b has the property, that for any c ∈ L : c∧(a∨b) = 0 ⇒
c = 0, since if c ∧ (a ∨ b) = 0, then (c ∧ (a ∨ b)) ∨ b = b and by modularity

b = (c ∨ b) ∧ (a ∨ b) = ((c ∨ b) ∧ a) ∨ b. This implies (c ∨ b) ∧ a ≤ b ∧ a = 0.

As b is maximal, c ≤ b, and hence c ≤ c∧ (b∨ a) = 0, i.e. c = 0. An element

x ∈ L such that y ∧ x = 0 ⇒ y = 0, for all y ∈ L, is called an essential

element of L. The main object of this paper are chain conditions for non-

zero elements that are not essential (called non-essential) with applications

to the dual submodule lattice of a module. A lattice L is called uniform

if every non-zero element of L is essential in L. An element a ∈ L, such
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that whenever a ≤ b ∈ L and a is essential in [0, b] then a = b, is called

(essentially) closed in L.

Goldie’s dimension notion for modules is based on a notion of an in-

dependent family of submodules which generalizes the notion of a basis for

vector space. Transferring Goldie’s notion to modular lattices, Grzeszczuk

and Puczylowski called a subset I ⊆ L \ {0} of a lattice L independent if

for any finite subset X of I and x ∈ I \ X one has (
∨

X) ∧ x = 0. They

proved the following Theorem in [GP, Theorem 5]:

Theorem 2.1. For a complete modular lattice L the following conditions

are equivalent:

(a) L does not contain infinite independent sets.

(b) L contains a finite independent set {a1, . . . , an} such that a1∨· · ·∨an

is essential in L and the lattices [0, ai] are uniform for 1 ≤ i ≤ n.

(c) sup{k|L contains an independent subset of cardinality equal to k} =

n < ∞
(d) For any ascending chain a1 < a2 < · · · of elements of L there exists

j such that for all k ≥ j, aj is essential in [0, ak].

We say that L has finite Goldie dimension if it satisfies one of the con-

ditions above. The number n from line (c) is called the Goldie dimension of

L.

While in general complete modular lattices do not have to be pseudo-

complemented, any submodule lattice L(M) of a module M is pseudo-

complemented since L = L(M) satisfies an even stronger property, namely

for any element a ∈ L and chain C ⊆ L one has

a ∧
∨

C =
∨
c∈C

(a ∧ c).

A complete modular lattice satisfying this property is called upper contin-

uous. If L is upper continuous, then, by Zorn’s Lemma, Ωa has a maximal

element for each a ∈ L, i.e. L is pseudo-complemented. To characterize lat-

tices that satisfy the ascending chain conditions on non-essential elements,

we need to weaken the above notions. We say that a complete modular lat-

tice L is weakly upper continuous (or a *-lattice) if for any a ∈ L and chain

C ⊆ L: ∨
c∈C

(a ∧ c) = 0 =⇒ a ∧
∨

C = 0.

Any weakly upper continuous lattice L is pseudo-complemented, because

for any a ∈ L, the set Ωa = {b ∈ L | a ∧ b = 0} is closed under joins of

chains and hence has a maximal element by Zorn’s Lemma. Call a lattice L
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amply pseudo-complemented if for any a, b ∈ L with a ∧ b = 0, there exists

a pseudo-complement a′ of b with a ≤ a′. Any weakly upper continuous

lattice is amply pseudo-complemented, because the set Ωa,b = {a′ ∈ L |
a ≤ a′ and a′∧ b = 0} is non-empty and closed under joins of chains. Hence

by Zorn’s Lemma has a maximal element, which is the desired pseudo-

complement of b.

Recall that a lattice L is called compact if 1 =
∨

X for some set X of L,

then there exist elements a1, . . . , an ∈ X with 1 = a1 ∨ · · · ∨ an. Noetherian

lattices are compact. We call an element a of a complete lattice proper if

a 6= 1.

Theorem 2.2. The following statements are equivalent for a complete mod-

ular lattice L:

(a) L satisfies the ascending chain condition (ACC) on non-essential

elements;

(b) L is weakly upper continuous and [0, a] is Noetherian (resp. compact)

for all a ∈ S, where S is one of the following sets:

(i) the set of non-essential elements of L or

(ii) the set of proper closed elements of L or

(iii) the set of decomposable elements of L.

In this case L is amply pseudo-complemented and has finite Goldie dimen-

sion.

Proof (a) ⇒ (b.i) Let 0 6= a ∈ L and C ⊆ L a chain of elements with∨
c∈C(a∧ c) = 0. Then a∧ c = 0 for all c ∈ C which shows that the elements

of C are non-essential elements. Thus C must be finite, since otherwise it

contained a countable infinite subchain b1 < b2 < b3 < · · · of non-essential

elements that does not stop, which would contradict condition (a). Since

C is finite,
∨

C is an element of C and we a ∧ ∨
C = 0. This shows that

L is weakly upper continuous. If a is non-essential, then so is every non-

zero element in [0, a]. In particular, any chain in [0, a] will stop, i.e. [0, a] is

Noetherian (resp. compact).

(b.i) ⇒ (b.ii) is trivial since any proper closed element is non-essential

in L.

(b.ii) ⇒ (b.iii) let a be a decomposable element with a = b ∨ c and

b ∧ c = 0 where 0 < b, c < a. By the remark preceding the Theorem,

a weakly upper continuous lattice is amply pseudo-complemented. Thus

there are mutual pseudo-complements b′ and c′ such that b ≤ b′ and c ≤ c′

and b′ is a pseudo-complement of c′ and vice-versa. Note that if b′ ≤ x
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with b′ being essential in [0, x], then (x ∧ c′) ∧ b′ = c′ ∧ b′ = 0 implies

x ∧ c′ = 0. As b′ is maximal with respect to b′ ∧ c′ = 0, we have b′ = x, i.e.

b′ is closed. By assumption [0, b′] is Noetherian (resp. compact). Hence also

[0, b] is Noetherian (resp. compact). Analogously [0, c] is Noetherian (resp.

compact) and so is the interval [0, b ∨ c] = [0, a].

(b.iii) ⇒ (a) First note that L has to have finite Goldie dimension.

Suppose that there exists a countably infinite independent family of ele-

ments {ai}i∈N. Since a1 ∧ (a2 ∨ · · · ∨ an) = 0 for any n > 1, we have by

weak upper continuity also a1 ∧ (∨i>1ai) = 0. Thus ∨i≥1ai is decomposable

and by hypothesis [0,
∨

i≥1 ai] is compact, i.e. there exist n > 1 such that∨n
i=1 ai =

∨
i≥1 ai, i.e. an+1 ≤

∨n
i=1 ai which contradicts the assumption that

the set {ai}i∈N is independent. Thus L has finite Goldie dimension.

Let a1 ≤ a2 ≤ a3 . . . be a chain of non-essential elements. Since L has

finite Goldie dimension there exists by Theorem 2.1(d) an index i such that

ai is essential in [0, aj] for any j > i. Given a pseudo-complement b of ai

we have also that b ∧ aj = 0 for j > i since ai is essential in [0, aj]. By

weak upper continuity b ∧ (∨j≥iaj) = 0. Hence b ∨ ∨
j≥i aj =

∨
j≥i b ∨ aj

is decomposable and by assumption [0,
∨

j≥i b ∨ aj] is compact. Thus there

exist n ≥ i such that aj ≤ b ∨ an and hence aj = an for all j ≥ n. 2

Examples of lattices satisfying Theorem 2.2 are obviously Noetherian

lattices or uniform lattices. Before we apply our Theorem to modules we

note the following:

Proposition 2.3. Let L be a lattice such that every pseudo-complement is

a complement, then the following conditions are equivalent:

(a) L satisfies ACC on non-essential elements;

(b) L is pseudo-complemented and [0, a] is Noetherian for any decom-

posable element a ∈ L;

(c) L is Noetherian or uniform.

Proof (a) ⇒ (b) is trivial by 2.2(b.iii).

(b) ⇒ (c) If L is not uniform, then there exists a non-zero non-essential

element a ∈ L. Since L is pseudo-complemented, a has a pseudo-complement

in L, which by assumption is a complement. Thus 1 is a decomposable

element and hence Noetherian by assumption.

(c) ⇒ (a) is trivial. 2
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3. Modules with descending chain condition on non-small

submodules

Let M be a left R-module over a (unital associative) ring R. As men-

tioned before, the submodule lattice L(M) is upper continuous, hence The-

orem 2.2 becomes [SV, Theorem 1.8]. It is also interesting to apply Theorem

2.2 to the dual of L(M).

The dual Goldie dimension of a module is the Goldie dimension of

L(M)0. A submodule N of M is called small if it is essential in L(M)o and

is called coclosed if it is essentially closed in L(M)o. Given two submodules

N and L of M , N is called a supplement of L in M if N is a pseudo-

complement of L in L(M)o. If L(M)o is (amply) pseudo-complemented,

then M is called (amply) supplemented. The existence of supplements in

a module is not secured, since in general, the lattice L(M)o is not upper

continuous. According to Grothendieck, an object in an abelian category is

said to satisfy (AB5) if its lattice of subobjects is upper continuous. Mod-

ules M whose dual submodule lattice L(M)o is upper continuous are said

to satisfy (AB5∗), i.e. for any chain of submodules {Bi}i and submodule A

of M one has A + (
⋂

i Bi) =
⋂

i(A + Bi). We say that a module M satisfies

weak (AB5∗) if L(M)o is weakly upper continuous., i.e. if for any chain of

submodules {Bi}i and submodule A of M with A + Bi = M for all i, also

A + (
⋂

i Bi) = M . With this terminology, the dual version of Theorem 2.2

yields the following characterization of modules with finite spanning dimen-

sion. Recall that in his attempt to dualize the Goldie dimension for mod-

ules, P.Fleury said that a module has finite spanning dimension if for any

descending chain of submodules N1 ⊇ N2 ⊇ · · · there exists an i ∈ N such

that Nj is small in M for all j ≥ i (see [F]). This condition is obviously

equivalent to M satisfying the descending chain condition for non-small

submodules. For more information on modules with spanning dimension we

refer the reader to [Ra, S1, S2, S3].

Theorem 3.1. The following statements are equivalent for a left R-module

M .

(1) M has finite spanning dimension, i.e. M satisfies the descending

chain condition (DCC) on non-small submodules;

(2) M satisfies weak (AB5∗) and every factor M/N by a non-small sub-

module N of M is Artinian (resp. finitely cogenerated);

(3) M satisfies weak (AB5∗) and every factor M/N by a non-zero co-

closed submodule N of M is Artinian (resp. finitely cogenerated);
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(4) M satisfies weak (AB5∗) and every decomposable factor module of

M is Artinian (resp. finitely cogenerated).

In this case M is amply supplemented and has finite dual Goldie dimension.

The radical Rad(M) of a module M is the sum of all small submod-

ules. In general Rad(M) does not need to be small. In [AS] Al-Khazzi and

Smith proved that Rad(M) is Artinian if and only if M has DCC on small

submodules. Note that M/Rad(M) is Artinian for any module with dual

Goldie dimension. Thus M is Artinian if and only if M has DCC on small

submodules and on non-small submodules.

A module M is called hollow if L(M)o is uniform. Artinian and hollow

modules have finite spanning dimension. For M = R, this are the only

possibilities as we will see. Recall that a module M is called π-projective

if whenever M = N + K, then End(M) = Hom(M, N) + Hom(M,K).

Projective modules are π-projective. Proposition 2.3 yields the following

Corollary:

Corollary 3.2. Let M be a module such that every supplement is a direct

summand, then the following statements are equivalent:

(a) M has finite spanning dimension;

(b) M is supplemented and decomposable factor modules of M are Ar-

tinian;

(c) M is Artinian or hollow.

In particular a π-projective module M with finite spanning dimension is

Artinian or hollow.

Proof The first statement is a direct translation from Proposition 2.3. A

supplemented π-projective module has the property that supplements are

direct summands since those are precisely the quasi-discrete modules (see

[CLVW]). 2

In order to find a module with finite spanning dimension which is nei-

ther Artinian nor hollow we might think of finding a module whose radical

Rad(M) is a waist, i.e. either N ⊆ Rad(M) or Rad(M) ⊆ N for any sub-

module N of M . In this case Rad(M) is the largest small submodule of M

and M has finite spanning dimension if and only if M/Rad(M) has. Thus

we need to find a module with finite dual Goldie dimension greater than 1,

whose radical is non-Artinian and a waist.

Example 3.3. Let K be a field and V a vector space over K. Denote by

R = [K, V ⊕ V ] the trivial extension of K by V ⊕ V , i.e. as K-vector space
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R = K ⊕ V ⊕ V and multiplication is defined by (λ, v, w).(λ′, v′, w′) =

(λλ′, λv′ + vλ′, λw′ + wλ′) for all λ, λ′ ∈ K and v, v′, w, w′ ∈ V . Let M =

V ⊕K ⊕K and define a left R-module structure on it by

(λ, v, w) · (u, α, β) = λ(u, α, β) + (αv + βw, 0, 0)

where λ, α, β ∈ K and u, v, w ∈ V .

Claim: (V, 0, 0) is a waist of M .

Let (u, α, β) ∈ M . If (u, α, β) 6∈ (V, 0, 0), then we can assume that α 6= 0

or β 6= 0. Without loss of generality, suppose α 6= 0. For any v ∈ V , we have

(0, α−1v, 0) · (u, α, β) = 0 · (u, α, β) + (αα−1v, 0, 0) = (v, 0, 0).

Thus (V, 0, 0) ⊆ R(u, α, β).

As a consequence we have that (V, 0, 0) is small in M , as any waist is.

Moreover M/(V, 0, 0) ∼= K2 is semisimple and so Rad(M) = (V, 0, 0) and

any non-small submodule of M contains (V, 0, 0). Thus any chain of non-

small submodules of M can be considered a chain in M/(V, 0, 0) which is

finite dimensional. Hence any chain of non-small submodules stops.

M is not hollow as it has the two maximal submodules R · (0, 1, 0) and

R · (0, 0, 1).

Also note that M is Artinian if and only if Rad(M) is Artinian if and

only if dim(V ) < ∞.

So for any infinite dimensional vector space V over K, we have that

M = V ⊕ K ⊕ K is a non-Artinian non-hollow left R-module with finite

spanning dimension.

We can show a kind of Fitting’s Lemma for modules with chain con-

ditions on non-small submodules. A ring S is called strongly π-regular if

for any f ∈ S the chain fS ⊇ f 2S ⊇ · · · ⊇ fnS ⊇ · · · stops, while a

module M is called strongly co-Hopfian if for every endomorphism f of

M , the chain Im(f) ⊇ Im(f 2) ⊇ · · · Im(fn) ⊇ · · · stops (see [HKC]).

Recall from [CLVW] that the small ideal of a module M is defined as

∇(M) = {f ∈ EndR(M) | Imf ¿ M}. We see that any module M with

finite spanning dimension and ∇(M) = 0 is strongly co-Hopfian. On the

other hand, if a module M has finite dual Goldie dimension, then any epi-

morphism f : M → M has a small kernel (see [CLVW]). These modules are

called generalized Hopfian in [GH].

Recall that a module M is called semi-projective if fS = Hom(M, Im(f))

for all f ∈ S = End(M) (see [CLVW, 4.20]).

Proposition 3.4. Let M be a module with finite spanning dimension and

let S = End(M). For any f ∈ S there exists n > 0 such that fn ∈ ∇(M)
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or Im(fn) is a supplement of Ker(fn) in M . In particular if M is semi-

projective, then S/∇(M) is strongly π-regular.

Proof If fn 6∈ ∇(M) for all n > 0, then Im(f) ⊇ Im(f 2) ⊇ · · · is

a descending chain of non-small submodules and must stop. Thus there

exists n > 0 such that Im(fn) = Im(fm) for all m > n. Let x ∈ M then

there exists y ∈ M such that (x)fn = (y)f 2n as Im(fn) = Im(f 2n). Hence

x = (y)fn + (x− (y)fn) ∈ Im(fn) + Ker(fn).

Note that Im(fn), as a factor module of M , has finite dual Goldie dimension

and that any epimorphism of a module with finite dual Goldie dimension

has small kernel. Since fn : Im(fn) → Im(f 2n) = Im(fn) is an epimorphism,

its kernel Ker(fn) ∩ Im(fn) is small in Im(fn), i.e. Im(fn) is a supplement

of Ker(fn) in M .

Assume that M is semi-projective. Let f ∈ S. If there exists n > 0 such

that fn ∈ ∇(M), then fn is nilpotent in S ′ = S/∇(M) and so fnS ′ = fmS ′

for all m > n. If for all n > 0 : fn 6∈ ∇(M), then there exists n > 0 such

that Im(fn) = Im(fm) for all m > n. Thus fnS = Hom(M, Im(fm)) = fmS

and also fnS ′ = fmS ′, i.e. S ′ = S/∇(M) is strongly π-regular. 2

4. Ascending chain conditions on non-small submodules

We close this paper by dualizing Smith and Vedadi’s result on modules

with DCC on non-essential submodules.

Theorem 4.1. The following statements are equivalent for a lattice L:

(a) L satisfies DCC on non-essential elements;

(b) [0, a] is Artinian for any non-essential element a ∈ L;

(c) [0, a] is Artinian for any decomposable element a ∈ L.

If L is amply pseudo-complemented, then the following statement is equiva-

lent to (a− c):

(d) [0, a] is Artinian for any proper closed element a ∈ L.

Proof (a) ⇒ (b) is clear, since any descending chain in [0, a] with a non-

essential, is a descending chain of non-essential elements.

(b) ⇒ (c) if a is decomposable with a = b ∨ c and b ∧ c = 0, then b and

c are non-essential, hence [0, b] and [0, c] are Artinian and so is their direct

sum [0, a].

(c) ⇒ (a) If a1 ≥ a2 ≥ · · · is a descending chain of non-essential ele-

ments, then there exists b ∈ L with b ∧ a1 = 0. Thus ai ∈ [0, b ∨ a1] which

is Artinian by hypothesis and hence the chain has to stop.
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(b) ⇒ (d) is clear since proper closed elements are non-essential.

Suppose that L is amply pseudo-complemented and [0, a] is Artinian for

all closed elements a ∈ L. Let a ∈ L be a non-essential element and b an

element with a∧ b = 0. There exists a pseudo-complement a′ of b such that

a ≤ a′, as L is amply pseudo-complemented. Hence [0, a′] is Artinian as

pseudo-complements are closed and also [0, a] is Artinian as a ≤ a′. 2

As mentioned before, the submodule lattice L(M) is upper continuous

and hence amply pseudo-complemented. Thus Theorem 4.1 becomes [SV,

Theorem 1.4]. More interesting is it to apply Theorem 4.1 to the dual of

L(M) which leads to the following Theorem.

Theorem 4.2. The following conditions are equivalent for a module M .

(a) M satisfies ACC on non-small submodules;

(b) M/N is Noetherian for every non-small submodule N of M ;

(c) every decomposable factor module of M is Noetherian.

If M is amply supplemented then (a− c) is also equivalent to:

(d) M/N is Noetherian for every non-zero coclosed submodule N of M .

Note that condition (d) does not necessarily imply (a − c) if M is not

amply supplemented, since (d) is trivially fulfilled for modules M whose only

coclosed submodule is M . Recall that a coclosed ideal in a commutative ring

is idempotent (see [CLVW, 4.17]). Hence any commutative ring R whose

only idempotent ideals are 0 and R, has only one coclosed ideal, namely

I = R which fulfills condition (d) trivially. On the other hand if Rad(M) = 0

for a module M , then any submodule is non-small and ”ACC on non-smalls”

means ”Noetherianess”. Thus any commutative non-Noetherian ring R with

Jac(R) = 0 and without non-trivial idempotent ideals, is an example of a

module satisfying 4.2(d) but not having ACC on non-smalls. We shall give

such an example now:

Lemma 4.3. If F is a field of characteristic zero and X is any infinite set

of variables, then the polynomial ring R = F [X] in the variables x ∈ X

over F is a non-Noetherian integral domain with Jac(R) = 0 and without

non-trivial idempotent ideals.

Proof Surely R is a commutative non-Noetherian domain with Jac(R) = 0.

Any element 0 6= f ∈ R can be uniquely written as a finite linear combi-

nation of monomials in variables x ∈ X and the constant polynomial 1.

Denote by supp(f) the support of f , which is the finite set of variables

that appear in the monomials which span f . Let I be an idempotent ideal
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of R and consider the set {|supp(f)| | 0 6= f ∈ I}, which is non-empty

subset of N, since I 6= 0. Let 0 6= f ∈ I with |supp(f)| being minimal.

Suppose that supp(f) is not empty and let x ∈ supp(f). We can write

f =
∑n

l=0 glx
l for some polynomials gl, with gn 6= 0, whose support is con-

tained in supp(f) \ {x}. Applying n-times the partial derivative ∂
∂x

to f

yields ∂n

∂xn (f) = (n!)gn which is non-zero since gn 6= 0 and F has character-

istic zero. Note that I is closed under the action of any derivation D, i.e.

D(I) ⊆ I, because D(I) = D(II) ⊆ D(I)I + ID(I) ⊆ I. Hence 0 6= gn ∈ I

having smaller support than f contradicts the minimality of the support of

f . Thus supp(f) must be empty, which makes f a non-zero, hence invertible,

constant. Thus I = R. 2

Example 3.3 is an example of a module with ACC on non-small sub-

modules which is neither Noetherian nor hollow. Another example of such

a module is the following:

Example 4.4. Let R be the trivial extension of Z by Q, i.e. R = Z × Q
with componentwise addition and multiplication defined by

(n, q)(m, p) = (nm, np + qm), ∀n,m ∈ Z, q, p ∈ Q.

Note that Jac(R) = 0 × Q is a waist. To see this, take (n, q) ∈ R with

n 6= 0. Then for all p ∈ Q we have (0, 1
n
p)(n, q) = (0, p), i.e. R(n, q) ⊃ 0×Q.

Thus any non-small submodules contains Jac(R) and as R/Jac(R) ' Z is

Noetherian, R has ACC on non-small submodules, but is neither Noetherian

nor hollow (as Z is not hollow).

Any Noetherian, non-Artinian, non-local ring is an example of a module

with ACC, but not DCC, on non-small submodules, while for any Artinian,

non-Noetherian module M over some ring R, the module M ⊕M satisfies

DCC, but not ACC, on non-small submodules.

Since Rad(M) contains all small submodules, all submodules that prop-

erly contain Rad(M) are non-small. Thus if M has ACC on non-small sub-

modules, then any chain of submodules containing Rad(M) stops and we

have:

Proposition 4.5. M/Rad(M) is Noetherian if M satisfies ACC on non-

small submodules.

The last observation and a result by Al-Khazzi and Smith in [AS] which

says that Rad(M) is Noetherian if and only if M has ACC on small sub-

modules allows to conclude that a module is Noetherian if and only if it

satisfies ACC on small submodules and on non-small submodules.
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Analogously to Propositon 3.4 we finish the paper with a statement on

endomorphisms of modules with ACC on non-small submodules.

Proposition 4.6. Let M be a module with ACC on non-small submodules.

Then for any f ∈ S there exists n > 0 such that Im(fn) ∩ Ker(fn) = 0 or

Ker(f) is small in M . In particular M is generalized Hopfian (see [GH]).

Proof If Ker(f) is not small in M , then Ker(f) ⊆ Ker(f 2) ⊆ · · · is an

ascending chain of non-small submodules that must stop. Thus there exists

n > 0 such that Ker(fn) = Ker(fm) for all m > n. Let x ∈ Im(fn)∩Ker(fn)

and y ∈ M with x = (y)fn. Since 0 = (x)fn = (y)f 2n. Thus y ∈ Ker(f 2n) =

Ker(fn), i.e. x = (y)fn = 0.

If f is an epimorphism of M , then so is any power of f . Hence if there

exists n > 0 with 0 = Im(fn) ∩ Ker(fn) = Ker(fn), then Ker(fn) = 0 =

Ker(f) and f is an isomorphism. Otherwise Ker(f) is small in M . 2
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