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ABSTRACT 
In this study, the Shannon entropies of six different road-

profiles ranging from “very good asphalt road” to “dirt road 

(terrain)” were calculated. Results indicate that each type of 

road has a well defined entropy value and that the entropies of 

roads ranging from “very good asphalt” to “dirt road 

(terrain)” lie on a nearly linear locus. A second approach 

presented in this paper consists in measuring the sprung mass 

vertical acceleration of a vehicle running over segments of 

roads of different qualities and calculating the entropies of the 

acceleration signals. This procedure has been applied to assess 

the influence of nonlinear damping and vehicle speed. It has 

been seen that it is possible to identify the type of the road 
surface through the calculation of entropy if the vehicle 

operating parameters are known. Finally, it is observed that the 

locus of entropy values is concave on the plot of acceleration 

entropy versus root mean square (RMS) acceleration.  
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NOMENCLATURE 
ω Angular frequency [rad/s] 

V Longitudinal vehicle velocity [m/s] 
σ2 Variance of the road irregularities [m2] 

α Spatial cut-off frequency [m-1]  

(A coefficient depending on the type of road surfaces) 

xu  Unsprung mass vertical displacement [m] 

xs  Unsprung mass vertical displacement [m] 

ms  Sprung mass [kg] 

mu  Unsprung mass [kg] 

ks  Suspension stiffness [N/m] 
ku  Tire stiffness [N/m] 

cs  Suspension damping [Ns/m] 

κ Constant factor determining the damping coefficient in 

bounce and rebound modes  

ωs Sprung mass natural frequency,   

  Unsprung mass natural frequency,   

   

  Sprung mass damping ratio,   

  Sprung/unsprung mass ratio,  
H(X) Shannon entropy of random variable X 

 
 

INTRODUCTION 
Road roughness has been extensively studied in the 

literature for many reasons. First of all, road roughness directly 

affects vehicle ride comfort. Moreover, dynamic wheel loads 

that are generated by the roughness of the road deteriorate road 

surface quality and affect road maintenance costs. As far as 

bridge crossing is concerned, these loads must be taken into 

account at the design stage of the bridge as the deterioration of 

road surface quality -and resulting increase in dynamics wheel 
loads- are likely to endanger the stability of the structure.  A 

typical road-profile is characterized by the existence of large 

isolated irregularities, such as potholes or bumps, which are 

superposed to smaller but continuously distributed profile 

irregularities. For the purposes of the present study, only the 

latter type of road irregularities is considered. 

A substantial number of indices have been proposed so far 

for the measurement of road roughness. Response-type road 

roughness measuring (RTRRM) systems measure the 
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cumulative relative displacement between the axle and the 

vehicle body and average those displacements over some 

distance of the roadway (mm/km). RTRRMs are reported to not 

correlate well with user response to roadway roughness.  

Profile-based indices are obtained by either simulating the 

response of an RTRRM system as it traverses the profile or by 
filtering and weighting the spectra of wavebands that make up 

the road surface profile. Profile based indices, such as the 

International Roughness Index (IRI), the Ride Number (RN
Sayers 

and RN
Janoff

), and the Ride Quality Index (RQI), were reported 

to correlate well with drivers’ perception of ride comfort [1]. 

In the literature, random road-profiles have often been 
considered as stochastic processes [2]. More precisely, 

extensive research studies have been dedicated for the 

determination of accurate power spectral density (PSD) 

representations of road-profiles resulting in the formulation of 

international standards. An example of such a standard is the 

ISO 8608 [3], which classifies road-profiles from “very good” 

to “very poor” according to their power spectral density. 

Meanwhile in the literature, there has been only one attempt 

concerning the analysis of road roughness  using the entropy 

concept [4], which is an analysis tool originating from 

information theory that has found important applications in 
stochastic analysis and signal processing.   

In this study, the entropies of six different road-profiles 

ranging from “very good asphalt road” to “dirt road (terrain)” 

have been calculated. The procedure for the calculation of the 

entropies encompasses four steps that can be listed as:  

1) Constructing a road-profile satisfying the power spectral 

density relation by adequately filtering a white noise input,  

2) Obtaining the histogram of the road-profile to assess the 

distribution of road elevations along the road segment,  

3) Obtaining the probability mass function of the former 

distribution of road elevations, and finally,  

4) Calculating the Shannon entropy of the road-profile.  
 Another analysis approach employed in this study consists 

in measuring the sprung mass vertical acceleration of the 

vehicle running over segments of roads of different qualities 

and applying the four-step procedure for calculating the 

entropies of the acceleration signals. The procedure has been 

applied many times to assess the influence of changing vehicle 

operating parameters. It has been seen that it is possible to 

identify the type of the road surface through the calculation of 

the entropy values for a vehicle, whose operating parameters 

are known. 

 
 

ENTROPY AND SHANNON ENTROPY CONCEPTS 
The concept of entropy has applications starting from 

classical thermodynamics in physics and chemistry and 

extending into probability theory in statistics and mathematics, 

and not being limited to the information theory including the 

communication theory in electrical engineering, Kolmogorov 

complexity in computer science, investment theory in 

economics, and Occam’s razor principle in philosophy of 

science [5]. Concept of entropy appeared with the second law 

of thermodynamics, formed the basis of statistical mechanics 

and expanded by the formation of information theory. It is 

difficult to assign a physical significance or physical quality to 

the concept of entropy from both the second law of 

thermodynamics developed using classical thermodynamics 

arguments or the information theory developed using statistical 
arguments [6]. In fact, entropy needs no interpretation as it is 

being used by the different disciplines of the scientific 

community as a tool for consistent reasoning of difficult and 

complex problems providing simple answers.  

The concept of entropy was first introduced by R. Clausius 

[7, 8] in terms of heat to identify an additional thermodynamic 

state variable to quantify the qualitative experimental 

observation that all spontaneous processes occurring in an 

isolated constant-volume system result in the evolution of the 

system to a state of equilibrium [9]. This phenomenological 

concept of entropy suggests that the entropy change of an 

isolated system cannot be negative for any process and can at 
least be zero for reversible processes [10].  

The atomistic or statistical concept of entropy first 

developed by L. Boltzmann and J. W. Gibbs consists in 

modeling of the energetic function entropy using the probability 

theory to express disorder in a quantitative way through a 

quantity Ω as: 

 

lnS k                    (1) 

          

where k is the Boltzmann constant and Ω represents the number 

of microstates corresponding to a given macrostate [11]. 

Boltzmann entropy provides the correlation between the 

concepts of disorder and entropy and is generalized by Gibbs, 

who defined entropy over a statistical ensemble of N0 particles, 

i.e. over the probability distribution of various macrostates of a 

system [12] given by: 

 

0

1

ln
r

i i

i

S kN P P


                                                                   (2) 

where Pi is the probability that a particle lies in the ith 

macrostate. Both Boltzmann and Gibbs entropies form the 

foundation of statistical mechanics and are the basis of all the 

entropy concepts in modern physics. The entropy concept as a 

measure of information developed by C. E. Shannon [13] using 

statistical arguments also leads to the Boltzmann and Gibbs 
entropies.  

In information theory, the concept of entropy can be 

interpreted through the Shannon axioms as a measure of the 

uncertainty in a probability distribution. Shannon axioms are 

defined for discrete probability distributions rather than 

continuous ones, but they can also be applied to continuous 

distributions [14]. Probability P(A) of an event A can be 

interpreted as a measure of uncertainty about the occurrence or 

nonoccurrence of A in a single application of an experiment. 

The cases when P(A) of an event is equal to 0.9 or 0.1 indicate 

almost certainty about the occurrence or nonoccurrence of that 

event, respectively. The uncertainty about event A would be 
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maximum if P(A) is equal to 0.5. Thus, this heuristic entropy 

could be interpreted as the measure of uncertainty of the 

occurrence or nonoccurrence of any event in a system prior to 

the execution of the underlying experiment [15]. The entropy of 

a discrete random variable X with a probability mass function 

 is defined as: 
 

 
2( ) ( ) log ( )

x

H X p x p x                                                 (3) 

where x defines the state in which X resides, i.e. p(x) is the 

probability that X is in the state of x. The entropy is defined as 

zero when this probability is equal to zero. Thus, entropy does 

not depend on the actual values taken by the random variable X, 

but only on its probabilities. Logarithms to base 2 are used to 

measure the average uncertainty in the random variable in units 

of bits. Therefore, entropy can be interpreted in terms of 

information as the number of bits on average required to 

describe the random variable [5]. 

If X is a continuous random variable, then the differential 

Shannon entropy is applied to continuous probability 
distributions of the random variable X, and is defined as: 

 

2( ) ( ) log ( )H X f x f x dx                                         (4)                                   

where  is the probability density function. Differential 
form of the Shannon entropy may be interpreted as a measure 

of the extent to which the distribution of the continuous random 

variable X is concentrated over a small range of values or 

dispersed over a wide range of values, or, in other words, as a 

measure of the degree of indeterminacy of X represented by its 

distribution [16]. 

The concept of entropy in information theory is related to 

the concept of entropy in statistical mechanics through the 
asymptotic equipartition property, which shows that the 

probability of a typical sequence is about 2-nH(X) and there are 

about 2nH(X) such sequences. In fact, using the probability 

distributions, it can be deduced from Eqn. (2) and Eqn. (3) that, 

as the same mathematical expression  appears in 
both equations, the thermodynamic entropy is identical to the 

information-theory entropy except for the presence of the 

Boltzmann constant [17]. The presence of such a relation is 

necessary, but not sufficient in itself to form a connection 

between these two fields, so that information theory can be 

applied to justify problems involving discrete random data, 

which cannot be handled by a statistical mechanics or a 
phenomenological thermodynamics approach due to the type of 

data. Studies [14, 17, 18] using the additive property and the 

concavity of the Shannon entropy have successfully showed 

that this concept can be used to relate some random data from a 

system to more important physical properties or information 

about a system.  

 

 

ROAD SURFACE MODELING 
According to previous investigations on the subject [2], the 

displacement power spectral density of typical roads fits 
sufficiently accurately a piecewise linear curve in the 

logarithmic scale. This is also known as the split power 

approximation. The problem with the split power 

approximation is that it cannot be generated by linear shape 

filters [19]. Hence, it is not suitable for simulating the response 

of the vehicle. For a variety of road and terrain inputs, a good 

approximation of power spectral density given as a rational 

function of reasonably low order [20] is shown as: 

 

 

                                      (5) 

 

In this study, six different road-profiles, whose power 

spectral density functions are in the form of Eqn. (5), are 

considered. Angular frequency and variance data [20] for these 

profiles are given in Table 1.  

It is often desired to analyze a system with a white noise 

input rather than one subjected to a fully shaped spectral 

density function. In such a case, a shaping filter is used to 

obtain the power spectral density function of the actual input 

from white noise. Then, by combining the filter equations with 

the equations of motion of the vehicle, a new system with white 
noise input can be obtained and analyzed. This procedure is 

applied in what follows. 

Hac [20] gives the filter equation corresponding to the 

previously mentioned road surface model as: 

 

 
( ) ( ) ( )

d
w t Vw t t

dt
                                                       (6) 

where w(t) is the road surface displacement in meters to be 

solved, V the forward vehicle velocity in m/s, and η(t) the zero 

mean white noise in meters. In other words, η(t) is the white 

noise input to the filter and w(t) is the output of the filter. The 

2

2 2
( )

( )

V
S

V

 


  




Table 1. ROAD SURFACE TYPE PARAMETERS [20] 

 

 

Type of Road α·10
3 [m-1] σ

2·10
6 [m2] 

Road 1: Very Good Asphalt 150 9 

Road 2: Good Asphalt  225 44 

Road 3: Average Asphalt 300 105 

Road 4: Poor Asphalt  375 190 

Road 5: Paved Road 450 300 

Road 6: Dirt Road (Terrain) 750 750 
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relation between the power spectral density functions of the 

input and output of a system is given by:  

 

 
 

2

( ) ( ) ( )output inputS H S                                             (7) 

                          

where H() is the complex frequency response function for the 
filter, which is derived in what follows. 

 Given the first order linear filter Eqn. (6) and letting 

(t)=eit, where  is the frequency in rad/s, one can write 

( ) ( ) i tw t H e  . Differentiating both sides of the equation 

gives:  

 

 
( ) ( ) i td

w t i H e
dt

                                            (8) 

 

Substituting Eqn. (8) in the filter equation gives: 

 

 ( ) ( )i t i t i ti H e VH e e                              (9) 

 

from where H(ω) and its square are obtained as: 

  

 

1
( )H

i V


 


  

            (10) 

 

and 

 

 
 

2

2 2

1
( )

( )
H

V


 



            (11) 

 

Letting Sinput()=S0 , where S0 is the constant power 
spectral density function of the white noise process, and 

combining equations Eqn. (5) and Eqn. (11) gives: 

 

 

2

0

2 2 2 2( ) ( )

SV

V V

 

    


 
                       (12) 

 

Using Eqn. (12), S0 is obtained as:  

 

 

2

0

V
S

 




 

                                 (13) 

 

Finally, it is necessary to obtain a white noise with constant 

power spectral density S0. A zero mean random data z(k) with a 

variance 2 can be obtained from another zero mean random 
data x(k) with unity variance if random data x(k) is multiplied 

by . Thus, z(k) = x(k) has variance 2 [21]. However, it is 
desired to obtain a white noise with a PSD level given by Eqn. 

(13). Accordingly, the white noise produced by a random 
number generator should be multiplied by the square root of 

Eqn. (13) so as to obtain white noise with a PSD level of S0. As 

a consequence, the desired white noise is obtained as: 

 

 

2

( ) (0,1)
V

t
 




 N                               (14)

 
 

where N(0,1) gives N data points with zero mean and unity 

variance 2. 
 

 

ROAD SURFACE CLASSIFICATION BASED ON 
DIRECT ROAD ELEVATION MEASUREMENTS 

The following procedure is implemented to compute the 

Shannon entropy of a given road surface. We assume the 

availability of an on-board measurement system collecting data 
at ordinary traffic speeds. 

 
 
Construction of road data 

 In the literature, the profile of a given road type is often 

considered as ergodic [2]. Hence, we assume that a 

measurement system collecting data through different parallel 

paths along the road would return similar statistical properties 

for each path. Thus, it is sufficient to construct a single profile 

of road elevations according to Eqn. (6) for each road type. 

Determining the size of the data to be collected depends on 

various restrictions. Simple calculations based on the selection 
of an effective bandwidth according to the spatial cut-off 

frequency and a sampling frequency (fs = 100 Hz), based on the 

fact that in such studies the largest frequency of interest is in 

the order of 50 Hz, formed the grounds of the decision to 

choose a measurement length of 10 seconds and a data size of 

N = 1,000. To be on the conservative side, a second set of 

calculations was also performed for N = 10,000 for all types of 

roads to investigate the effect of data size on the computed 

value of entropy. 

 

   
Construction of the histogram of the road data 

 A histogram of the data needs to be produced before 

obtaining the probability mass function of this data. Basically, 

this serves to separate data into adjacent bins each representing 

a range of road elevations and to compute the frequency 

distribution of data in each bin.  The range of data to be 

considered for each bin of the histogram depends on the 

accuracy of the measurement system. In this study, we have 

assumed that this accuracy is in the range of 0.1 mm.    

 

 

Calculation of the probability mass function 

Once the histogram is obtained, the number of data in each 

bin is divided by the size of data in order to assign a probability 

value to each bin.  
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Calculation of Shannon’s entropy 

Equation (3) is applied to compute the entropy of each 
road surface type. In this paper, a random number generator is 

employed in generating a normal distribution of data, which is 

subsequently processed through Eqn. (6) to Eqn. (14). To cope 

with the inherent inefficiency of this generator in yielding data 

with the exact desired frequency distribution and given that, for 

practical purposes, we can only work with data of finite size, 

the entropy calculation procedure has to be repeated many 

times, each time with a new data set for each road surface type, 

hence each time yielding a different value of entropy for each 

road surface type. In this study, we show, through simulations, 

that each road surface type is represented by a characteristic 

value of Shannon entropy. 
  

 

Simulation Results 
 We calculated the Shannon entropy of each road surface 

type using this procedure assuming that the instrumentation 

system travels consecutively at speeds of 10, 20 and 30 m/s. 

Application of the entropy calculation procedure ten times for 

each tour of the vehicle gives the results presented in Figure 1, 

where sample sizes of N = 1,000 and N = 10,000 are both 

employed. It is observed that each road surface type is 

characterized by a specific value of entropy at a given speed. 
Moreover, as the quality of a road surface deteriorates, its 

entropy increases. 

Using larger sizes of data resulted in more satisfactory 

values of entropy as it was expected. However, it was noted for 

the case where the vehicle travels over different types of 

surfaces that the continuous gathering of data from the 

beginning of the test may lead to erroneous conclusions on the 

type of road surface. Hence, a large data size may be 

impractical if the vehicle is traveling over different road 

surfaces during data collection. This observation led us to 

investigate the reliability of conclusions that can be reached 

with a data of smaller size. Figure 1 indicates that the entropy 

estimates for N = 1,000 for different road surface types are 
different from those obtained using N = 10,000. Despite the 

smaller data size, it is still possible to distinguish between 

different road surface types. However, a larger data size allows 

for better distinguishing between traveling speeds. Results of 

Fig. 1 are gathered in Tables 2 and 3, which may be used to 

interpolate the calculated values of entropy to characterize road 

surfaces when the travelling speeds are available. 

 

 

ROAD SURFACE CLASSIFICATION BASED ON 
ACCELEROMETER MEASUREMENTS 

Another approach for classifying road surface types 
consists in measuring the sprung mass vertical acceleration of 

the vehicle running over segments of roads of different qualities 

and applying the procedure for calculating the entropies of the 

acceleration signals. For this purpose, we need to introduce a 

vehicle model and then proceed to the calculation of entropies 

for different operating conditions of the vehicle, namely vehicle 

operating mass, damping coefficient and speed. 

 
 

 
Figure 1. ENTROPY VALUES CALCULATED ON SIX 
DIFFERENT ROAD-PROFILES AT THREE DIFFERENT 
SPEEDS. “o”: N = 1,000; “*”: N = 10,000. 
 
 

 

Table 2. ENTROPY VALUES CALCULATED ON SIX 
DIFFERENT ROAD-PROFILES AT THREE DIFFERENT 
SPEEDS FOR N = 1,000 

 

Speed 

(m/s) 

Entropy (Bits) 

Road 1 Road 2 Road 3 Road 4 Road 5 Road 6 

10 6.4 7.6 8.3 8.7 9.0 9.4 

20 6.7 8.0 8.6 9.0 9.2 9.5 

30 7.0 8.2 8.7 9.1 9.4 9.6 

 

 

 
Table 3. ENTROPY VALUES CALCULATED ON SIX 
DIFFERENT ROAD-PROFILES AT THREE DIFFERENT 
SPEEDS FOR N = 10,000 

 

Speed 

(m/s) 

Entropy (Bits) 

Road 1 Road 2 Road 3 Road 4 Road 5 Road 6 

10 6.4 7.7 8.6 9.2 9.6 10.6 

20 6.9 8.3 9.1 9.7 10.1 11.0 

30 7.3 8.6 9.4 10.0 10.4 11.3 
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Equations of Motion for the Vehicle Model 
Various vehicle models, such as the Quarter Car Vehicle 

Model, the Half Car Vehicle Model, and the Seven DOF 

Vehicle Model, are used by the vehicle dynamics community 

for the assessment of ride comfort. For passenger vehicles, the 

Quarter Car Vehicle Model shown in Figure 3 has been proven 

to model adequately the vehicle center of gravity (CG) bounce 

motion as long as road disturbance is small enough to assume 
linear suspension spring stiffness and therefore is used in this 

study for simplicity. 

The equations of motion of the quarter car model are given 

by:    

 

               (15) 
 

 

  

         (16) 

 

 

              (17) 
 

 

   

          (18) 

 

where states are selected as , , 

, and .  
 The signals that can be processed for the classification of 

road surface entropy can be listed as: 

- Sprung mass CG acceleration, 

- Suspension stroke,  

- Unsprung mass acceleration. 

Given that real time integration is problematic due to 

inherent noise in the measurement system, it is generally 

preferred to work with the acceleration signal rather than the 

velocity or the displacement. This precludes using suspension 

stroke for the calculation of entropy. Since modern vehicles are 

equipped with accelerometers mounted on their sprung mass, 

for practical purposes we use the sprung mass CG acceleration 

signal for the classification of road surfaces. 

 

 

Simulation Results 

Figure 3 shows the entropy and root mean square (RMS) values 

of sprung mass acceleration values calculated for linear and 

nonlinear vehicle models traveling over the six different road 
surface types at speeds of 10, 20 and 30 m/s. The RMS values 

calculated for poor quality roads are scattered over a wide 

range as also suggested by the high entropy values calculated 

for the same road types. On the contrary, the RMS values for 

the good quality roads are densely collected around smaller 

values. 

Tables 2 and 3 may be used to interpolate calculated 

entropy values to characterize road surfaces when the travelling 

speed is available. Results of Fig. 3 are combined in Fig. 4 

where the independent variable -sprung mass acceleration 

RMS- can be considered as an indicator of the road surface 
quality. It is observed that as the quality of the road 

deteriorates, the expected increase of entropy follows a power 

law relationship of the form 

 

            (19) 
 

This relationship is valid for both the linear and nonlinear 

vehicle models running at different speeds on all six types of 

 
 

 
Figure 3. QUARTER CAR VEHICLE MODEL.  

 

 
Figure 2. SPRUNG MASS ACCELERATION ENTROPY AND 
RMS VALUES CALCULATED ON SIX DIFFERENT ROAD-
PROFILES AT THREE DIFFERENT SPEEDS AND FOR 
LINEAR “o”: κ = 0.0; AND NONLINEAR DAMPING “*”: κ = 0.5. 
(N = 1,000). 
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road surfaces. Changing the sprung mass (loaded vehicle) also 

resulted in data falling on the same curve. The concave nature 

of the curve is typical of the general understanding of entropy. 

The following observations prevail: 

1. Figure 4 serves the purpose of rating the quality of a road-

profile according to vehicle operating conditions (mass, 

speed, suspension characteristics) and measured vertical 

acceleration RMS. It is a clear indication of the intuitively 

supported fact that analyses based on the sole knowledge of 
road vertical displacement data (as suggested by many of 

the RTRRM indices) and without consideration of vehicle 

operating parameters can only yield a rough estimation of 

ride comfort. We have thus far observed that the increase of 

sprung mass, the decrease of vehicle speed, the decrease of 

suspension damping in compression mode all contribute to 

moving down the above mentioned curve. The analysis may 

be extended to include unsprung mass and tire stiffness. 

Furthermore, if similar curves are obtained for suspension 

stroke and tire deflection, a novel tool for passive 

suspension optimization may be obtained. 
2. Entropy is a measure of uncertainty: If vehicle body bounce 

is perceived as a random event occurring as a result of some 

random input road signal, the increase in entropy should be 

understood as an increase in the chance of occurrence of a 

critical sequence of road displacement signals reducing ride 

comfort (corresponding to the human tolerance limits to 

vertical vibrations). In this respect, the rapid increase in 

entropy observed for a vehicle travelling on roads with good 

surface quality at increasing traveling speeds complies with 

an increase in the chance of occurrence of such disturbing 

signals.  

3. There exist a one-to-one relationship between acceleration 

RMS and entropy. In this respect, the knowledge of any two 

of the following three parameters sets, i.e. acceleration 

RMS, operation condition, and entropy, fixes the other. For 

example, knowing the entropy and the RMS acceleration 

allows estimating the operating conditions. In general, 
suspension properties of the vehicle are known and the 

speed can be measured online. Thus, the mass of the sprung 

mass can be estimated.  

 

 

DISCUSSION OF RESULTS, CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE WORK 

In the first part of this study, the Shannon entropies of six 

different road-profiles ranging from “very good asphalt road” to 

“dirt road (terrain)” were calculated. Results indicate that each 

type of road has a well defined entropy value at a given vehicle 

speed and that the entropies of roads ranging from “very good 
asphalt” to “dirt road (terrain)” lie on a nearly linear locus.  

A second approach presented in this paper consists in 

measuring the sprung mass vertical acceleration of a vehicle 

running over segments of roads of different qualities and 

calculating the entropies of the acceleration signals. This 

procedure has been applied many times to assess the influence 

of vehicle operating parameters. It has been seen that it is 

possible to identify the type of the road surface and, more 

importantly, the decrease in ride comfort through the 

calculation of entropy for a vehicle with known operating 

parameters. An important observation is that the loci of 
acceleration entropy values versus acceleration RMS lie on a 

single concave curve, which contains all the required 

information related to the ride comfort of the vehicle interacting 

with different type of road surfaces. 

Studies are currently under way to determine the shape of 

the curve shown in Fig. 4 for vehicles of different classes and 

undergoing non-stationary road events such as bump or pothole 

crossing.  
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