Introduction to MATLABB

for
Numerical Analysis and Mathematical Modeling

Selis Önel, PhD

Advantages over other programs

- Contains large number of functions that access numerical libraries (LINPACK, EISPACK)
ex: solves simultaneous eqn. with a single function call
- Has strong graphics support ex: Plots results of computations with a few statements
- Treats all numerical objects as double-precision arrays ex: Does not require declaration/conversion of datia types

Reference: J. Kiusalaas, Numerical Methods in Engineering with MATLABB, Cambridge University Press, New York, NY, 2005

Set the Path for the Folder First

Where will you

 keep your MATLAB® files?- Click Fille and click Set Path
- Add the folder you want to use to the top of the list
- Save and Close the window
- Set the Current Directory to the same folder

Using the Command Window

The command window is interactive
Each command is executed upon its entry
i.e. just like an electronic calculator
>> MATLAB®'s prompt for input
\% (percent) Marks the beginning of a comment
; (semicolon)

- Suppresses printout of intermediate input and results
- Separates the rows of a matrix
, (comma) Separates variables

Creating an Array

$\rightarrow>M=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right.$
456
$789]$
M =

$$
\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}
$$

>> \% or create it using semicolons to make new rows
>> $\mathrm{M}=[123$ 3; 45 6; 7 8 9]
$M=$

1	2	3
4	5	6
7	8	9

Matrix and Vector Operations

\gg \%Create a 3×3 matrix
$\gg A=[153 ;-24-3 ; 678] ; \quad \%$ Input 3×3 matrix
$\gg B=[4 ; 9 ; 0] ; \%$ Input column vector
$\gg \mathrm{A}$
$A=$
153
$\begin{array}{lll}-2 & 4 & -3\end{array}$
$6 \quad 7 \quad 8$
>> B
$B=$
4
9
0
$\gg C=A \mid B \quad$ \% Solve $A^{*} C=B$ by left division
$\mathrm{C}=$
-0.5775
1.3803
-0.7746

Elements of an Array

$$
\gg A 11=1 ; A 12=12 ; A 21=21 ; A 22=22 ;
$$

$$
\gg \mathrm{A}=[\mathrm{A} 11 \text { A12; A21 A22]; }
$$

$$
\gg A
$$

$$
\mathrm{A}=
$$

$$
112
$$

$21 \quad 22$
$\gg \%$ Section of this array can be extracted by use of colon notation $\gg \mathrm{A}(1,2) \%$ Element in row 1 , column 2
ans =
12
$\gg \mathrm{A}(:, 2)$ \% Elements in the second column
ans =
12
22
$\gg \mathrm{A}(1,: \mathrm{i})$ \% Elements in the first row
ans =
$1 \quad 12$

Arithmetics

$\gg \mathrm{C}=\mathrm{A} .{ }^{*} \mathrm{~B} \quad$ \% Element-wise multiplication
C =
$\begin{array}{lll}20 & 0 & 120\end{array}$
$\begin{array}{lll}-2 & 12 & 30\end{array}$
$>\mathrm{C}=\mathrm{A}^{*} \mathrm{~B} \quad$ \% Matrix multiplication fails
??? Error using $==>$ * \% due to incompatible dimensions Inner matrix dimensions must agree.

```
C=A*B
% Matrix multiplication
C=
    140}1
    400 40
```


Arithmetic operators

+	Addifition
-	Subtraction
*	Multiplication
^	Power
U	Transpose
I	Left division
/	Right division

In MATLABB

- if matrix sizes are incompatible for the matrix operation, an error message will result, except for scalar-matrix operations (for addition, subtraction, and division as well as for multiplication)
- In scalar-matrix operations each entry of the matrix is operated on by the scalar. The "matrix dijvision" operations have special cases.

Array operations:

Addition and subtraction operate entry-wise but others do not
${ }^{*}$, \wedge, I, and $/$, can operate entry-wise if preceded a period
ex: Both $[1,2,3,4]]^{*}[1,2,3,4]$ or $[1,2,3,4]$.^2 yield $[1,4,9,16]$

Matrix Division

If A is an invertible square matrix and
If b is a compatible column vector, then $X=A \backslash b$ is the solution of $A * X=b$ and

- If B is a compatible row vector, then $X=B / A$ is the solution of $X^{*} A=B$.
In left division,
- if \mathbf{A} is square, then it is factored using Gaussian elimination. The factors are used to solve $A * x=b$
- If \mathbf{A} is not square, it is factored using Householder orthogonalization with column pivoting and the factors are used to solve the under- or over-determined system in the least squares sense
Right division is defined in terms of left division by b $/ A=\left(A^{\prime} \backslash b^{\prime}\right)^{\prime}$

Matrix Division

Division is not a standard matrix operation !

To remember the notation for the operators: Backslash land Slash /

Backslash I solves systems of linear equations of the form $A x=b$
Sjash / solves systems of linear equations of the form $x A=b$

If A is an invertible square matrix and if b is a compatible vector:
Left multiplication by A^{-1} gives $A^{-1} A x=A^{-1} b \Rightarrow x=A^{-1} b \Rightarrow x=A \mid b$
Right multiplication by A^{-1} gives $\mathrm{xA} \mathrm{A}^{-1}=\mathrm{bA} \mathrm{A}^{-1} \rightarrow \mathrm{x}=\mathrm{bA}^{-1} \rightarrow \mathrm{x}=\mathrm{b} / \mathrm{A}$

Note: \and / apply to nonsquare and singular systems where the inverse of the coefficient matrix does not exist.

Matrix Building Functions

A is a square matrix n is an integer

eye(n)	Identity matrix
zeros(n)	Matrix of zeros
ones(n)	Matrix of ones
diag(A)	Diagonal matrix
triu(A)	Upper triangular part of a matrix
tril(A)	Lower triangular part of a matrix
rand(n)	Randomly generated matrix
hillo(n)	Hilloert matrix
Magic(n)	Magic square

Built-in Constants and Special Variables

\%The smallest difference
between two numbers
\gg eps $=2.2204 \mathrm{e}-016$
$\gg \mathrm{pi}=3.1416$
\%Limits of floating numbers
shown as a* 10^{6} where
$0 \leq a<10$ and $-308 \leq b \leq 308$
>> realmin $=2.2251 \mathrm{e}-308$
$\rightarrow>$ realmax $=1.7977 \mathrm{e}+308$
$\gg i=\quad 0+1.0000 i$
$\gg j=\quad 0+1.0000 i$
\%Undefined numbers (Not a number like 0/0)
$\gg \mathrm{NaN}=\mathrm{NaN}$
\gg inf $=\operatorname{lnf}$
\%Overflow when limit is exceeded:
$\gg(2.5 \mathrm{e} 100)^{\wedge} 2=6.2500 \mathrm{e}+200$
$\gg(2.5 e 200)^{\wedge} 2=\operatorname{lnf}$

Attention to some calculations

\%1-0.4-0.2-0.4 should be equal to 0, BUT in MATLAB®
$\gg 1-0.4-0.2-0.4=-5.5511 \mathrm{e}-017$

Reason:

In binary computer representation 0.2 has continuous digjits after the decimal point
$(0.2)_{10}=(0.0011001100110011 \ldots)_{2}$
So the result will never be equal to 0

Format function

Affects only how numbers are displayed, not how MATLAB computes or saves them

Type	Result	Example
short	Scaled fixed point format, with 5 digits	3.1416
long	Scaled fixed point format, with 15 digits for double; 7 digits for single	3.14159265358979
short e	Floating point format, with 5 digits	$3.1416 e+000$
long e	Floating point format, with 15 digits for double; 7 digits for single	$3.141592653589793 e+000$
short 9	Best of fixed or floating point, with 5 digits	3.1416
long g	Best of fixed or floating point, with 15 digits for double; 7 diligits for single	3.14159265358979
short eng	Engineering format that has exactly 6 significant digits and a power that is a multiple of three	$3.1416 e+000$
long eng	Engineering format that has exacily 16 significant digits and a power that is a multiple of three	$3.14159265358979 e+000$

Special Commands

- Clear removes all variables from the workspace
- Cle clears the command window and homes the cursor
- Clf deletes all children of the current figure with visible handles
- More Control paged output in command window:
- More on / More off enables/disables paging of the output in the MATLAB command window
- More(n) specifies the size of the page to be n lines
- Who lists the variables in the current workspace
- Whos lists more information about the variables and the function to which each variable belongs in the current workspace
- Who -file filename lists the variables in the specified .mat file
- Date returns current date as date string
$S=$ Date returns a string containing the date in dd-mmm-yyyy format
- Clock = [year month day hour minute seconds]

Simple Mathematical Functions

- abs(x): Absolute value of x

Ex: abs $(-20.0560)=20.0560$

- $\operatorname{sign}(x)$: Signum function

For each element of x, it returns 1 if the element is greater than zero, 0 if it equals zero and -1 if it is less than zero. For the nonzero elements of complex $x, \operatorname{sign}(x)=x . / a b s(x)$
Ex: $\operatorname{sign}(-20.0560)=-1$

- fix (x) : rounds the elements of x to the nearest integers towards zero Ex: fix (20.0560) $=20$
- round (x) : rounds the elements of x to the nearest integers

Ex: round $(20.0560)=20$

- rem (x, y) : remainder after division
rem (x, y) is $x-n .{ }^{*} y$ where $n=$ fix $(x . / y)$ if $y \sim=0$. If y is not an integer and the quotient x./y is within roundoff error of an integer, then n is that integer The inputs x and y must be real arrays of the same size, or real scalars
Ex: $\operatorname{rem}(20.056,5)=0.0560$

Simple Mathematical Functions

- $\exp (x)$: Exponential of the elements of x, e to the x

For complex $z=x+i^{*} y, \exp (z)=\exp (x)^{*}\left(\cos (y)+i^{*} \sin (y)\right)$
Ex: $\exp (100)=2.6881 e+043, \exp (-100)=3.7201 \mathrm{e}-044$
$\exp \left(100+j^{*} 100\right)=2.3180 e+043-1.3612 e+043 i$

- $\log (x)$: natural logarithm of the elements of x.

Ex: $\log (100)=4.6052, \quad \log (-100)=4.6052+3.1416 i$

- $\log 10(x)$: Common base 10 logarithm of the elements of x Ex: $\log 10(100)=2, \quad \log 10(-100)=2.0000+1.3644 i$
- $\operatorname{sqrt}(x)$: square root of the elements of x Ex: $\operatorname{sqrt}(100)=10, \quad \operatorname{sqrt}(-100)=0+10.0000 \mathrm{i}$

Complex results are produced if x is not positive in $\log (x), \log 10(x), \operatorname{sqrt}(x)$

Comparison Operators and Logic Operators

< Less than
 $>$ Greater than
 <= Less than or equal to
 >= Greater than or equal to
 $==$ Equal to
 ~= Not equal to

Comparison Operators and Logic Operators

$\gg A=\left[\begin{array}{llllllll}1 & 0 & 3 & 2 & 4 & 6\end{array}\right] ; B=[203040 ;-133] ;$
$\gg(A>B) \mid(B>=5)$ ans =

$$
\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}
$$

$\gg(A<=5) \&(B<=5)$ ans =
$0 \quad 0$
0
$1 \quad 1$
0

Flow Control

Conditionals: If, else, elseif
Switch: case
Loops: while, for,
break, continue,
return, error

Flow Control

\%This exercise uses if, else, elseif conditionals
$a=5 ; b=50 ; c=5^{\star} 10^{\wedge} 4$;
$d=a * b ;$
if $d<c$
$\mathrm{d}=\mathrm{d}$;
elseif $\mathrm{d}==\mathrm{c}$
$d=c$;
else
$d=0 ;$
end
d

Flow Contirol

Compare the results for the following

Try both cases

\% This exercise uses \% This exercise uses \% the while loop
\% the while loop agemax=100; age=0; agemax=100; age=0;
while age<agemax
age=age+1
end
age
while age<agemax
age=age +1 ;
end
age

Flow Control

Compare the results for the following

Try both cases

\% This exercise uses \% This exercise uses
\% the for loop
for $n=0: 1: 10$;
$y(n+1)=2^{\wedge}(n) ;$
end
y
\% the for loop
for $n=0: 1: 10$;
$y(n+1)=2^{\wedge}(n)$
end
y

A MATLAB

Comand X
8or create it using semicol
$\mathrm{M}=\left[\begin{array}{lllllllll}1 & 2 & 3 ; & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right]$
A.11=1; $\mathrm{A} 12=12$; $\mathrm{A} 21=21$; $\mathrm{A} 22=22$;
$\mathrm{A}=[\mathrm{A} 11 \mathrm{~A} 12 ;$ A.21 A22];
A
\% Section of this array can be extracted by use
A $(1,2)$ \& Element in row 1, column 2
$\mathrm{A}(:, 2)$ \& Elements in the second column
$\mathrm{A}(1,:)$ \& Elements in the first row
$\mathrm{A}=\left[\begin{array}{lllll}1 & 0 & 3 ; & 2 & 4\end{array}\right] ; \mathrm{B}=\left[\begin{array}{llllll}20 & 30 & 40 & -1 & 3 & 5\end{array}\right]$
$C=A . * B$
C=A.*B \& Matrix mutltiplication
$C=A * B$ \& Matrix mutltiplication
C=A*B'
$A=\left[\begin{array}{lllll}1 & 0 & 3 ; & 4 & 6\end{array}\right] ; B=\left[\begin{array}{lllll}20 & 30 & 40 ; & -1 & 3\end{array}\right]$
($\mathrm{A}>\mathrm{B}) \mid(\mathrm{B}>=5)$
$(\mathrm{A}<=5) \&(\mathrm{~B}<=5$
signum a
signum (a)
signum (5)
function sgn=signum (a)
$a=5$;
function sgn=signum (a)
function sign=sign1 (a)
function sion=sion1 (b)

Ready

Working with m-Files: Functions

Write this in a new m-file and save it as ExConditionalsFunc, le, the exact name of the function, and run it

\%This exercise uses

\%if, else, elseif conditionals
\% in a function you create function $\mathrm{d}=$ ExConditionalsFunc(a,b,c) $\mathrm{d}=\mathrm{a}^{*} \mathrm{~b}$;
if d<c $\mathrm{d}=\mathrm{d}$;
elseif $\mathrm{d}==\mathrm{c}$ $d=c ;$
else $\mathrm{d}=0$;
end
d

Use the Command Window (or a new mfile) to assign values to a, b, c and call the function to calculate d

```
>> a=1;b=3;c=8;
>> ExConditionalsFunc(a,b,c)
d =

\section*{Finding Roots Using Built-in Functions 'roots' and 'fzero'}
\% x = fzero(f,x0)
\% tries to find a zero of f near x0 \% Write an anonymous function f :
\(\mathrm{f}=\) @ \((\mathrm{x}) \mathrm{x}\). \(\mathrm{A}^{\wedge}-3^{*} \mathrm{x}-4\);
\% Then find the zero near \(\mathrm{x} 0=-2\) :
\(\mathrm{x} 0=-2\);
z = fzero( \(\mathrm{f}, \mathrm{x} 0\) )
\% To find all the roots of a polynomial f
\% use roots([c1 c2 c3 ...])
f_root=roots([1 00 -3 -4])

When you run this script in an m-file, here is what you will see in the Command Window
\(Z=\)
\(-1\)
f_root =
1.7430
\(-0.3715+1.4687 i\)
\(-0.3715-1.4687 i\)
-1.0000

\section*{MATLAB variables are ...}

Case sensitive
- MyNumber and mynumber represent different variables
- Length of the name is unlimited, but the first \(N\) characters are significant
- To find \(N\) for the MATLAB installed on your computer type: namelengithsnax
- Applies to: Variable names, Function and subfunction names, Structure fieldnames, Object names, M-fille names, MEX-fille names, MDL-file names

\section*{Displaying numbers and values on the command window}
- Omit the ; at the end of the line \(\gg\) cost=500;
>> cost=500
cost \(=500\)
- Use the disp command >> disp(cost), disp('dollars')
500
dollars
>> disp([num2str(cost), ' dollars'])
1000 dollars
- Use the forintfi command
\(\gg\) fprintf(' 11. cost \(=\% 3.2 f \ln 2\). cost \(=\% 3.2 \mathrm{e} \ln 3\). cost \(=\% 3.2 \mathrm{~g} \ln { }^{\prime}\), cost, cost, cost)
1. cost \(=500.00\)
2. cost \(=5.00 \mathrm{e}+002\)
3. cost \(=5 \mathrm{e}+002\)

\section*{Command fprintf}
\(x=0: .5: 5 ; y=[x ; \exp (x)]\);
fid = fopen(fprintfex.txt', 'wt');
fprintf(fid, '\%6.2f \%12.8fln', y); fclose(fiid);
\% Now examine the contents of fprintfex.txt:
>> type fprintfex.txt
\(0.00 \quad 1.00000000\)
\(0.50 \quad 1.64872127\)
\(1.00 \quad 2.71828183\)
\(1.50 \quad 4.48168907\)
\(2.00 \quad 7.38905610\)
\(2.50 \quad 12.18249396\)
\(3.00 \quad 20.08553692\)
\(3.50 \quad 33.11545196\)
\(4.00 \quad 54.59815003\)
\(4.50 \quad 90.01713130\)
5.00148 .41315910

\section*{Plotting in MATLAB®}

\section*{Write and run the following script in an m-file or in the command window}
\% This program draws a graph of \(\sin (x)\) and \(\cos (x)\)
\% where \(0<=x<=3.14\)
ang=-pi:0.1 pi; - \% Create array
xcomp=cos(ang); \% Create array plot(ang,xcomp,'r:'); \% Plot using dots(:) with red (r) hold on \% Add another plot \% on the same graph
ycomp=sin(ang); \% Create array plot(ang,ycomp,'b-x');\% Plot using lines(-)
\% and the symbol \(x\) at each \% data point with blue (b)
grid on
\% Display coordinate grids
 xlabel('Angle in degrees'); \%Display label for x-axis ylabel('x and y components'); \%Display label for \(y\)-axis gtext('cos(ang)'); \% Display mouse-movable text gtext('sin(ang)'); \% Display mouse-movable text

\section*{Plotting}
\% This program draws multiple graphs a=0.652; \(\quad\) \% Assign constant parameter a \(x=10:-0.5: 0.5\); \% Create x-array
\(\mathrm{y}=\exp (\mathrm{x}) ; \quad\) \% Create y -array
\(z=\log \left(2^{*} x\right) ; \quad \%\) Create \(z\)-array zz=a*x.^2; \% Create zz-array
figure(1) \% Create a figure
semilogy(x,y,'k-.', x, z, 'g-*');
\% Use logarithmic plot on y axis
xlabel('x'); \% Display label for \(x\)-axis ylabel('y and z');\% Display label for \(y\)-axis title('Figure 1'); \% Insert title for figure figure(2) \% Create new figure plot(x,zz,-'); \% Plot using lines(-) xlabel('x'); \% Display label for x-axis ylabel('zz'); \% Display label for y -axis title('Figure 2'); \% Insert title for figure grid on \(\quad\) \% Display coordinate grids

\% Using polyfit to fit an \(n\) order curve to data y and
\% drawing multiple figures in one page \(\mathrm{x}=0: 0.1: 1\);

\section*{Plotting:}
\(y=[-1.51 .23 .56 .87 .37 .8\) 8.6 9.5 9.1 8.8 10.5]; \% Data points
\% Coefficients for the 2nd degree polynomial curve fit: Subplots coef2 = polyfit(x,y,2);
\% Coefficients for the 4th degree polynomial curve fit:
coef4 = polyfit(x,y,4);
\% Generate 101 points between 0 and 1:
xi = linspace(0,1,101);
\% Get the values of the polynomials at xi:
yi2 = polyval(coef2,xi);
yi4 = polyval(coef4,xi);
figure(1) \% Create a figure page
subplot(1,2,1) \% First plot on the first row plot(x,y,'o',xi,yi2,'b-'); xlabel('x'); ylabel('y');
title('2nd Degree Polynomial Curve Fit'); subplot( \(1,2,2\) ) \% Second plot plot(x,y,'o', xi,yi4,'r-'); xlabel('x'); ylabel('y');
 title('4th Degree Polynomial Curve Fit');

\section*{Using 'fsolve' in Solving Parameterized Functions}
\(\mathrm{x} 0=[-11] ;\)
\(\mathrm{k}=0 ; \mathrm{C}=-5 ;\)
while \(\mathrm{C}<100\),
\(\mathrm{C}=\mathrm{C}+5 ; \mathrm{k}=\mathrm{k}+1 ;\)
\(\%\) Call optimizer:
\% This is a function for a nonlinear
\% system of algebraic equations
function \(F=\) flinsys \((x, C)\)
\(F=\left[5^{*} x(1)+3^{*}(x(2))^{\wedge} 2\right.\); \(\left.8^{*}(x(1))^{\wedge} 3-2^{*} x(2)+C\right] ;\)
end
[x,fval] = fsolve(@(x) flinsys(x,C),x0);


\section*{MATLAB® Study Sources}
- Go to Mathworks web site OR
- Just type the following in Google Search
- MATLAB introduction
- MATLAB tutorial to find various very useful sources in personal and university web sites```

