Solution of Systems of Linear Equations and
 Applications with MATLAB® :

II - Indirect Methods

Selis Önel, PhD

Solution methods for linear systems

 $A \mathrm{x}=\mathrm{y}$

Iterative Solution

- Good for large systems of equations when Gauss elimination is NOT good,
i.e., if $n \gg m$ for $\left|A_{m, n}\right|\left|x_{n, 1}\right|=\left|y_{m, 1}\right|$
(\# unknowns is very large compared to \# equations)
- Simple programming
- Applicable to nonlinear coefficients
- Requires an initial guess to start the iteration
- The goal is to:
- Choose a good initial guess x0 for x
- Substitute x 0 in the equations and check if the right hand side of equations is equal to the left hand side or if $\mathrm{x}-\mathrm{x} 0<\varepsilon$
- Increment/decrement $x 0$ until all equations are satisfied

Iterative Solution

- Popular technique for finding roots of equations
- Applied to systems of linear equations to produce accurate results (Generalized fixed point iteration)
- Jacobi iteration: Carl Jacobi (1804-1851)
- Gauss-Seidel iteration: Johann Carl Friedrich Gauss (1777-1855) and Philipp Ludwig von Seidel (18211896)

Quotations

- It is true that Fourier had the opinion that the principal aim of mathematics was public utility and explanation of natural phenomena; but a philosopher like him should have known that the sole end of science is the honor of the human mind, and that under this title a question about numbers is worth as much as a question about the system of the world.
Quoted in N Rose Mathematical Maxims and Minims (Raleigh N C 1988). Carl Jacobi
- There are problems to whose solution I would attach an infinitely greater importance than to those of mathematics, for example touching ethics, or our relation to God, or concerning our destiny and our future; but their solution lies wholly beyond us and completely outside the province of science. Quoted in J R Newman, The W orld of Mathematics (New York 1956). Carl Friedrich Gauss

Ax $=\mathrm{y}$ Solution by Iteration

$\mathrm{A}_{\mathrm{x}}=\mathrm{y}$ Solution by Iteration: Convergence

Sufficient condition for iteration to converge:

- Matrix A should be diagonally dominant, for all i: $\left|a_{i, i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i, j}\right|$ or $\left|a_{i, i}\right|>\sum_{j=1}^{i-1}\left|a_{i, j}\right|+\sum_{j=i+1}^{n}\left|a_{i, j}\right|$
i.e. diagonal elements are larger in absolute value than the sum of the absolute value of other coefficients
- If A is irreducible (no part of the equation can be solved independently of the rest) for all i

Is it diagonally dominant?

$$
\left[\begin{array}{ccc}
-2 & 1 & 6 \\
4 & 7 & 1 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
15 \\
-10 \\
5
\end{array}\right]
$$

- The matrix is NOT diagonally dominant

$$
\left[\begin{array}{ccc}
3 & -1 & 1 \\
4 & 7 & 1 \\
-2 & 1 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10 \\
15
\end{array}\right]
$$

- The matrix is diagonally dominant

Ax = y Solution by Iteration: Convergence

The iterative solution described here converges unconditionally if

- for a nonsingular matitix, applied after premultiplying the equation $A x=y$ by A^{t}.

$$
A^{t} A x=A^{t} y
$$

Ex: Diagonally Dominant Matrix

Set of equations given by:
(1) $10 x_{1}-2 x_{2}+5 x_{3}=8$
(2) $x_{1}+7 x_{2}-3 x_{3}=10$
(3) $-4 x_{1}-2 x_{2}-8 x_{3}=-20$
is predominantly diagonal as:
$|10|>|-2|+|5|$
$|7|>|1|+|-3|$
$|-8|>|-4|+|-2|$
$A x=y$
$\left(\begin{array}{ccc}10 & -2 & 5 \\ 1 & 7 & -3 \\ -4 & -2 & -8\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}8 \\ 10 \\ -20\end{array}\right)$

Unknown variables on the diagonal are given by:

$$
\begin{aligned}
& x_{1}=\frac{8-\left(-2 x_{2}+5 x_{3}\right)}{10} \\
& x_{2}=\frac{10-\left(x_{1}-3 x_{3}\right)}{7} \\
& x_{3}=\frac{-20-\left(-4 x_{1}-2 x_{2}\right)}{-8}
\end{aligned}
$$

Ax = y Solution by Iteration: Convergence

- Initial guess values are used to calculate new guess values
\square New estimates of x are calculated
- Iteration continues until convergence is satisfied, i.e. $f(x)<\varepsilon$ ε : convergence criteria (tolerance)

Jacobi (Simple) Iteration

(1) $a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n}=y_{1}$
(2) $a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n} x_{n}=y_{2}$
(n) $\quad a_{n, 1} x_{1}+a_{n, 2} x_{2}+\ldots+a_{n, n} x_{n}=y_{n}$
$\sum_{j=1}^{n} a_{i, j} x_{j}=y_{i}$, where $i=1,2, \ldots, n$. Extracting x_{i} yields $a_{i, i} x_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}=y_{i}$
Solving for x_{i} gives: $\quad x_{i}=\frac{1}{a_{i, i}}\left(y_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}\right)$
Consequently, the iterative scheme should be $x_{i} \leftarrow \frac{1}{a_{i, i}}\left(y_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}\right)$

Jacobi (Simple) Iteration

Iteration cycle:

- Choose a starting vector x0 (Initial guesses)
- If a good guess for solution is not available, choose x randomly
- Use $x_{x_{i} \leftarrow \frac{1}{a_{i, i}}}\left(y_{i}-\sum_{\substack{j=1 \\ j=i}}^{n} a_{i, j} x_{j}\right)$ with $\mathrm{x}_{\mathrm{j}}=\mathrm{x} 0$
to recompute each value of x

4. Check if $|x-x 0|<\varepsilon$ (tolerance), if so $x=x 0$
5. If $|x-x 0|>\varepsilon$, assign new values to $x 0$

Repeat this cycle until changes in $x(x-x 0)$ between successive iteration cycles become sufficiently small, i.e, $|\mathrm{x}-\mathrm{x} 0|<\varepsilon$

Jacobi (Simple) Iteration

$x_{i}^{(t)}=\frac{1}{a_{i, i}}\left(y_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}^{(t-1)}\right)$, where t is the iteration count
for $\mathrm{t}=1$
$x_{i}^{(1)}=\frac{1}{a_{i, i}}\left(y_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}^{(0)}\right)$, where $x_{j}^{(0)}$ is the initial guess x 0
if $\left|x_{\mathrm{i}}^{(1)}-x_{i}^{(0)}\right|>\varepsilon$,
$x_{i}^{(2)}=\frac{1}{a_{i, i}}\left(y_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}^{(1)}\right)$
continue iteration until $\left|x_{\mathrm{i}}^{(t)}-x_{i}^{(t-1)}\right| \leq \varepsilon$ or $\left|y_{\mathrm{i}}-\left(a_{i, i} x_{i}^{(t)}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i, j} x_{j}^{(t)}\right)\right| \leq \delta$

Ex: Jacobi (Simple) Iteration

$$
\begin{aligned}
& \text { (1) } 4 \mathrm{x}_{1}-2 \mathrm{x}_{2}+\mathrm{x}_{3}=3 \\
& \text { (2) } 3 \mathrm{x}_{1}-7 \mathrm{x}_{2}+3 \mathrm{x}_{3}=-2 \\
& \text { (3) } \mathrm{x}_{1}+3 \mathrm{x}_{2}-5 \mathrm{x}_{3}=-8
\end{aligned} \rightarrow\left(\begin{array}{ccc}
4 & -2 & 1 \\
3 & -7 & 3 \\
1 & 3 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
3 \\
-2 \\
-8
\end{array}\right) \rightarrow a x=y
$$

$$
\begin{aligned}
& \gg x 0=z \operatorname{cros}(\mathrm{n}, 1) \\
& \mathrm{x} 0= \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{t}= & 2 \\
\mathrm{x}= & 0.49285714285714 \\
0.28571428571429 \\
1.60000000000000 \\
\mathrm{t}= & 2 \\
\mathrm{x}= & 0.49285714285714 \\
1.29285714285714 \\
1.60000000000000 \\
\mathrm{t}= & 2 \\
\mathrm{x}= & 0.49285714285714 \\
1.29285714285714 \\
1.92142857142857
\end{array}
$$

Ex: Jacobi (Simple) Iteration

\%Solve 3 strictly diagonally dominant linear equations for 3 unknowns: Jacobi iteration $a=\left[\begin{array}{llll}4 & -2 & 1 ; 3 & -7 \\ 3 & 1 & 3 & -5\end{array}\right] ; \quad \%$ Coefficient matrix
$y=[3 ;-2 ;-8]$; \quad \%Vector for values of $f(x)=a x$
$\mathrm{n}=$ length (y);
$\mathrm{x}=\mathrm{zeros}(\mathrm{n}, 1) ; \quad$ \%Create an empty matrix for x
$\mathrm{x} 0=\mathrm{x}$; \quad \%Initial guess values for x
$\operatorname{tmax}=50$; \quad \%Set max iteration no to stop iteration if system does not converge
tol $=10^{\wedge}-3$; \quad \%Set the tolerance to end iteration before $t=t m a x ~$
for $\mathrm{t}=1$:tmax, \quad oStart iteration

$$
\text { for } j=1: n,
$$

$$
x(j)=(y(j)-a(j,[1: j-1, j+1: n]) * x 0([1: j-1, j+1: n])) / a(j, j) ;
$$

end
error $=a b s(x-x 0) ; x 0=x$;
if error<=tol
' Convergence is good. Iteration ended before tmax '
break
end
end
display('Iteration no='); display(t-1);
x

Ex: Jacobi (Simple) Iteration

Results of the Jacobi iteration

in the command window:
ans $=$
Convergence is good. Iteration ended before tmax Iteration no=
ans $=$
18
$x=$
1.00011187524906
1.99949883459545
2.99983186316654

Direct solution by
Gauss elimination
in the command
window:
$\gg x=a \backslash y$
$\mathrm{x}=$
1
2
3

Gauss-Siedel Iteration

Iteration cycle:

- Choose a starting vector x0 (Initial guesses)
- If a good guess for solution is not available, choose x randomly
\square Use $x_{i}^{(t)} \leftarrow \frac{1}{a_{i, i}}\left(y_{i}-\sum_{j=1}^{i-1} a_{i, j} x_{j}^{(t)}-\sum_{j=i+1}^{n} a_{i, j} j_{j}^{(t-1)}\right)$
to compute each
element of x , always using the latest available values ox x_{j}
- Helps accelerate convergence
- Simplifies programming as the new values can be written over the old ones

Gauss-Siedel Iteration

$x_{i}^{(t)}=\frac{1}{a_{i, i}}\left(y_{i}-\sum_{j=1}^{i-1} a_{i, j} x_{j}^{(t)}-\sum_{j=i+1}^{n} a_{i, j} x_{j}^{(t-1)}\right)$, where t is the iteration count
for $t=1$
$x_{i}^{(1)}=\frac{1}{a_{i, i}}\left(y_{i}-\sum_{j=1}^{i-1} a_{i, j} x_{j}^{(1)}-\sum_{j=i+1}^{n} a_{i, j} x_{j}^{(0)}\right)$, where $x_{j}^{(0)}$ is the initial guess x 0
and $x_{j}^{(1)}$ is the updated value calculated using $x_{j}^{(0)}$
if $\left|x_{\mathrm{i}}^{(1)}-x_{i}^{(0)}\right|>\varepsilon$,
$x_{i}^{(2)}=\frac{1}{a_{i, i}}\left(y_{i}-\sum_{j=1}^{i-1} a_{i, j} x_{j}^{(2)}-\sum_{j=i+1}^{n} a_{i, j} x_{j}^{(1)}\right)$
continue iteration until $\left|x_{\mathrm{i}}^{(t)}-x_{i}^{(t-1)}\right| \leq \varepsilon$ or $\left|\mathrm{y}_{\mathrm{i}}-\left(a_{i, i} x_{i}^{(t)}-\sum_{j=1}^{i-1} a_{i, j} x_{j}^{(t)}-\sum_{j=i+1}^{n} a_{i, j} x_{j}^{(t-1)}\right)\right| \leq \delta$

Gauss-Siedel Iteration with Relaxation:

Successive Over Relaxation

To improve the convergence of Gauss-Siedel method using relaxation:

- Take the new value of x_{i} as a weighted average of its previous value and the predicted/calculated value

$$
x_{i}^{(t)}=\omega \frac{1}{a_{i, i}}\left(y_{i}-\sum_{j=1}^{i-1} a_{i, j} x_{j}^{(t)}-\sum_{j=i+1}^{n} a_{i, j}\left(x_{j}^{(t-1)}\right)+(1-\omega) x_{i}^{(t-1)},\right.
$$

where
t : iteration count
ω : over-relaxation parameter satisfying $1 \leq \omega<2$

If $\omega=1$, the SOR reduces to the Gauss-Siedel method

Successive Over-Relaxation: SOR

- If $\omega=1$, no relaxation
- If $\omega<1$, under-relaxation, i.e. interpolation between the old x_{i} and the calculated x_{i}
- If $\omega>1$, over-relaxation, i.e. extrapolation
- A good estimate for an optimal value of ω can be computed during run time:

Let $\Delta x^{(k)}=\left|x^{(k-1)}-x^{(k)}\right|$ be the magnitude of the change in x during the $\mathrm{k}^{\text {th }}$ iteration for $\omega=1$ (without relaxation)
If k is sufficiently large, say $k \geq 5$

Ex: Gauss-Siedel with Relaxation (SOR)

\%Solve 3 linear equations that are strictly diagonally dominant \%for 3 unknowns using SOR iteration
$a=\left[\begin{array}{llll}4 & -2 & 1 ; 3 & -7 \\ 3 ; 1 & 3 & -5\end{array}\right] ; \quad \%$ Vector for values of $f(x)=a x$
$y=[3 ;-2 ;-8] ; \quad \%$ Vector for values of $f(x)=a x$
$\mathrm{n}=$ length (y);
$\mathrm{x}=\mathrm{zeros}(1, \mathrm{n}) ; \quad \quad$ \%Create an empty matrix for x
$\mathrm{w}=1.2$;
\%Relaxation constant
for $\mathrm{t}=1: 50$,
error $=0$;
for $\mathrm{i}=1$: n ,

$$
\mathrm{s}=0 ; \quad \mathrm{xb}=\mathrm{x}(\mathrm{i}) ;
$$

for $j=1: n$,
if $\mathrm{i} \sim=\mathrm{j}, \quad \mathrm{s}=\mathrm{s}+\mathrm{a}(\mathrm{i}, \mathrm{j}) * \mathrm{x}(\mathrm{j}) ; \quad$ end,
end
$\mathrm{x}(\mathrm{i})=\mathrm{w}^{*}(\mathrm{y}(\mathrm{i})-\mathrm{s}) / \mathrm{a}(\mathrm{i}, \mathrm{i})+(1-\mathrm{w}) * \mathrm{x}(\mathrm{i}) ;$
error=error + abs $(x(i)-x b)$;
end
fprintf(Iteration no $=\% 3.0 f$, error $=\% 7.2 \mathrm{e} \backslash \mathrm{n}^{\prime}$, t , error)
if error $/ \mathrm{n}<10^{\wedge}-4$, break; end
end,
x

Ex Cont ${ }^{\text {d}}$: Successive Over-Relaxation

```
Iteration no = 1, error = 4.42e+000
Iteration no =2, error = 1.52e+000
Iteration no = 3, error = 1.12e+000
Iteration no = 4, error = 2.13e-001
Iteration no = 5, error = 9.29e-002
Iteration no = 6, error =3.20e-002
Iteration no = 7, error = 1.21e-002
Iteration no = 8, error = 4.42e-003
Iteration no = 9, error = 1.63e-003
Iteration no = 10, error = 5.99e-004
Iteration no = 11, error = 2.20e-004
x =
    1.00004015934601 1.999996668943987 3.00001586803950
```

