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Solution methods for linear systems
Ax=y

II-Indirect Methods

Iterative Methods
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Iterative Solution

Good for large systems of equations when Gauss
elimination 1s NOT good,

ie., if n>>m for A | [X.1|= [Vm1|

(# unknowns is very large compared to # equations)
Simple programming

Applicable to nonlinear coefficients

Requires an initial guess to start the iteration

The goal is to:
® Choose a good initial guess x0 for x

= Substitute x0 in the equations and check if the right hand side of
equations 1s equal to the left hand side or if x-x0<e

® [ncrement/decrement x0 until all equations are satisfied
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Iterative Solution

= Popular technique for finding roots of equations

= Applied to systems of linear equations to produce
accurate results (Generalized fuxed point iteration)

® Jacobit iteration: Carl [acobi (1804-1851)

m Gauss-Seidel iteration: Johann Carl Friedrich Gauss
(1777-1855) and Philipp [Ludwig von Seidel (1821-
18906)
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http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Jacobi.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Gauss.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Seidel.html

Quotations

It 1s true that Fourier had the opinion that the principal aim of
mathematics was public utility and explanation of natural
phenomena; but a philosopher like him should have known that
the sole end of science is the honor of the human mind, and that
under this title a question about numbers is worth as much as a

question about the system of the world.
Quoted in N Rose Mathematical Maxims and Minims (Raleigh N C
1988).

There are problems to whose solution I would attach an
infinitely greater importance than to those of mathematics, for
example touching ethics, or our relation to God, or concerning
our destiny and our future; but their solution lies wholly beyond
us and completely outside the province of science.

Quoted in | R Newman, The World of Mathematies New Y ork
19506).
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A x =y Solution by Iteration

Input an initial guess for iteration to get started

= Can be any arbitrary vector x0

Ex: null vector xO0=zeros(m,1)

1nitial OUESS

Consecutive solution of similar problems: Use
the solution of previous problem as the initial
guess for the next

m [teration !
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A x =y Solution by Iteration:
Convergence

Sufficient condition for iteration to converge:
m Matrix A should be

i.e. diagonal elements are larger in absolute value than the
sum of the absolute value of other coefficients

= If A is irreducible (no part of the equation can be solved
independently of the rest) for all 1
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Is it diagonally dominant ?

®m The matrix 1s NOT

diagonally dominant

® The matrix 1s

diagonally dominant
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A x =y Solution by Iteration:
Convergence

The iterative solution described here converges
unconditionally it

= fora , applied after premultiplying

the equation Ax=y by A"
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Ex: Diagonally Dominant Matrix

Set of equations given by:
(1) 10x, - 2x, + 5%, = 8
2)  x+7x,- 3x; =10
B -4x,- 2x,- 8x;=-20

is predominantly diagonal

Unknown variables on the

as: diagonal are given by:
10|>|-2|+]5] .
7= 1] +]-3] 10
8> |-4|+]|-2] X _10-04=3%)

2
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A x =y Solution by Iteration:
Convergence

® Initial guess values are used to
calculate new guess values

® New estimates of x are calculated

® [teration continues until

convergence 1s satisfied, 1.e. f{x)<e

¢ : convergence criteria (tolerance)
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Jacobi (Simple) Iteration
(1) A Xy T 21Xy T ... T 2y X, =
(2) Ay X1 T Ap Xy T ... T 2y X, = )
(ﬂ) an,lxl_l_ an,ZXZ T an,an — Ya

Za,J i =Y, wherei=12,..,n. Extracting x; yields a; ;x; +Za., i =Y

j—l
j#i

Solving for x; gives:
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Jacobi (Simple) Iteration

Iteration cycle:
= Choose a starting vector x0 (Initial guesses)

= Ifa good guess for solution is not available, choose x
randomly

m Use with X =x(

to recompute each value of x

1. Check 1t | x-x0

5. If |x-x0|>e, assign new values to x0

<e (tolerance), if so x=x0

Repeat this cycle until changes in x (x-x0) between
successive iteration cycles become sufficiently small; 1.e,
| x-x0| <e
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Jacobi (Simple) Iteration

L,

x| where tis the iteration count

, Where x'” is the initial guess x0

continue iteration until |x —x®|<¢ or
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Ex: Jacobi (Simple) Iteration

(1) 4x,-2x,+ x;,=3
2) 3x,-7x,+ 3x, =2 =»
3 x+3x, - 5x; = -8

X =

>> x0=zeros(n,1)

x0 = t =
0 X =
0
0

0.75000000000000
0
0
1
0.75000000000000
0.28571428571429
0
1
0.75000000000000
0.28571428571429
1.60000000000000

SelisOnel©

0.49285714285714
0.28571428571429
1.60000000000000
2
0.49285714285714
1.29285714285714
1.60000000000000
2
0.49285714285714
1.29285714285714
1.92142857142857
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Ex: Jacobi (Simple) Iteration

%Solve 3 strictly diagonally dominant linear equations for 3 unknowns: Jacobi iteration
a=[4 -2 1;3 -7 3;1 3 -5]; %Coefficient matrix

y=[3;-2;-8]; %Vector for values of f(x)=ax

n=length(y);

x=zeros(n,1); %Create an empty matrix for x
x0=x; %lInitial guess values for x
tmax=50; %Set max iteration no to stop iteration if system does not converge
tol=10"-3; %Set the tolerance to end iteration before t=tmax
for t=1:tmax, %oStart iteration
for j=1:n,

X()=(5 (-2 [15- L+ Ll <0 15-1,+ ) /a(i
Slel
error=abs(x-x0); x0=x;
if error<=tol
' Convergence is good. Iteration ended before tmax '
break
Slel
Slel
display('Iteration no="); display(t-1);
X
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Ex: Jacobi (Simple) Iteration

ans =
Convergence is good. Iteration ended before tmax
Iteration no=

"
X —_
X — 1
1.000111875249006 5
1.99949883459545 3

2.99983186316654
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Gauss-Siedel Iteration

Iteration cycle:
m  Choose a starting vector x0 (Initial guesses)

= If a good guess for solution is not available, choose x
randomly

m Use 1 i1 n to compute each
) ) (t-1)
X; <—— (yi_ai,jxj » ai,jxj
i j=1

j=i+1

clement of x, always using the latest available values ox x;

N Helps accelerate convergence

= Simplifies programming as the new values can be
written over the old ones
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Gauss-Siedel Iteration

i = ( Za, X0 = Z a, X! 1’], where t is the iteration count
| |

j=i+1

for t=1

1 _— @) (0) (0) : ..
X, ( Za, XS — Z a; X! j where x'” is the initial guess x0
|

j=i+1

and x'” is the updated value calculated using x{”

if ‘xi‘l) = xi(o)‘ > g,

(2) _ (2) 1)
X [ ZaIJXJ ZaIJXJ j
|,

j=i+l

1,7 1,7

continue iteration until ‘Xi(t)—Xi(t_l)‘SE or i-( X — Za X\ — Za X" 1)]

j=i+1

SelisOnel©




Gauss-Siedel Iteration with Relaxation:
Successive Over Relaxation

To improve the convergence of Gauss-Siedel method
using relaxation:

* Take the new value of x; as a weighted average of its
previous value and the predicted/calculated value

(t) = a)_(yu Zan ijt) Z an ngt 1)J+(1_w)xi(tl),

|| j=i+1

where
t : iteration count
@ . over-relaxation parameter satisfying 1< w < 2

If =1, the SOR reduces to the Gauss-Siedel method
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Successive Over-Relaxation: SOR

m If w=1, no relaxation

m If w<l, under-relaxation, i.e. interpolation between the old x;
and the calculated x.

» If w>1, over-relaxation, i.e. extrapolation

= A good estimate for an optimal value of w can be computed
during run time:

Let A" =[x — x(">‘ be the magnitude of the change in x

during the k™ iteration for =1 (without relaxation)
If k is sufficiently large, say k >5

2 : .
o, ~ ——————— Where p is a positive integer

opt 1
Ax&+P) \p
1+ 1—( A® j
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Ex: Gauss-Siedel with Relaxation (SOR)

%Solve 3 linear equations that are strictly diagonally dominant
%for 3 unknowns using SOR iteration
a=[4-213-73;13-5]; Y%Vector for values of f(x)=ax
y=[3;-2;-8]; % Vector for values of f(x)=ax
n=length(y);
x=zeros(1,n); %Create an empty matrix for x
w=1.2; %Relaxation constant
for t=1:50,
error=0;
for i=1:n,
s=0; xb=x(1);
for j=1:n,
iti~=j, s=s+a(i,))*x(j); end,
end
x(=wH(y(0)-9)/aL)+(1-w)x(0);
error=error+abs(x(i)-xb);
end
fprintf('[teration no = %3.0f, error = %7.2e \n', t, error)
if error/n<10™-4, break; end
end, X
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Ex Contd.: Successive Over-Relaxation

1, error = 4.42¢+000
2, error = 1.52e+000
3, error = 1.12e+000
4, error = 2.13e-001
5, error = 9.29¢-002
0, error = 3.20e-002
7, error = 1.21e-002
8, error = 4.42¢-003
Iteration no 9, error = 1.63e-003
Iteration no = 10, error = 5.99¢-004
Iteration no = 11, error = 2.20e-004

[teration no

[teration no

[teration no

[teration no

[teration no

[teration no

Iteration no

Iteration no

X:

1.00004015934601 1.99999668943987 3.00001586803950
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