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Abstract

In this study, we present the visualization and clustering capabilities of self-organizing maps (SOM) for analyzing high-

dimensional data. We used SOM because they implement an orderly mapping of a high-dimensional distribution onto a

regular low-dimensional grid. We used surface texture parameters of volcanic ash that arose from different fragmentation

mechanisms as input data. We found that SOM cluster 13-dimensional data more accurately than conventional statistical

classifiers. The component planes constructed by SOM are more successful than statistical tests in determining the

distinctive parameters.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fragmentation of magma may occur due to
exsolution of gas phases as a result of decompression
(magmatic) or by an interaction between external
water and magma (phreatomagmatic) (Cashman
et al., 2000). These two fragmentation processes
produce ash particles with end-members displaying
characteristic morphology and surface features
(Wohletz, 1983; Heiken and Wohletz, 1985). Scan-
ning electron microscopy (SEM) provides a suitable
e front matter r 2007 Elsevier Ltd. All rights reserved
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method for classifying volcanic ash based on surface
morphology and texture (Wohletz and Krinsley,
1982; Büttner et al., 1999; Ersoy et al., 2006), with
the most extensive SEM studies of pyroclast shapes
having been presented by Heiken (1972, 1974),
Wohletz (1983) and Heiken and Wohletz (1985).
A study of explosive fragmentation dynamics
by examination of the morphological features of
natural and experimental ash particles has demon-
strated the significance of morphological micro-
features on ash grains (Wohletz, 1983). However,
the lack of analogue particles produced by scaled
experiments at that time allowed only a qualitative
assessment. Although a study of natural pyroc-
lastic sequences combined with scaled laboratory
experiments identified the different fragmentation
.
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mechanisms related to the water/magma mass ratios
during their interaction (Büttner et al., 1999), the
surface features of the ash were not quantified.
Classification of volcanic ash surfaces is still limited
to descriptive terms such as stepped, planar, crack
patterns, and hydration skin. The qualitative data of
volcanic ash need to be expressed in quantitative
ways, supported by supplementary methods such as
statistical analysis and artificial intelligence.

Ersoy et al. (2006) introduced a new method of
ash particle characterization based on a quadtree
decomposition approach and gradient analysis of
SEM micrographs of volcanic ash particles from
Mount Nemrut, eastern Turkey. They calculated 13
different surface parameters for volcanic ash parti-
cles to assess the fragmentation mechanisms oper-
ating during eruption. The calculated quadtree
variables, such as the number of blocks (nQT),
mean block size (mQT), and standard deviation of
block sizes (sQT), as well as surface descriptors
derived from gradient analysis, are suitable for
quantifying structural changes of the ash surface
associated with variable explosion conditions. Ersoy
et al. (2006) presented these parameters in volcanol-
ogy as key parameters for identifying different
eruption types. In the present paper, we use the
data of the 13 surface parameters with 10 replicates
from each of three different samples analyzed by
Ersoy et al. (2006).

Visualizing multi-dimensional data are critical to
understanding complex relationships in natural sys-
tems; consequently, earth scientists are faced with
increasingly large amounts of data. As the dimension-
ality of the data increases, the complexity of visualiz-
ing relationships also increases. To understand natural
systems, data from diverse sources must be integrated
in a manner that is comprehensible to human
interpretation (Penn, 2005). Several approaches have
been presented to convey high-dimensional data
(e.g., Tukey, 1977; Levoy, 1988; Wegman and Solka,
2002). Methods, which preserve certain properties
of the structure of the data set as faithfully as possible,
are called ‘projection methods’ (Ripley, 1996).

A projection method that categorizes or groups
similar data items is termed ‘clustering’. Clustering
methods (Anderberg, 1973; Hartigan, 1975; Jain
and Dubes, 1988; Jardine and Sibson, 1971; Sneath
and Sokal, 1973; Tryon and Bailey, 1973) can be
divided into two basic types: hierarchical and
partitional clustering (Kaski, 1997).

Ersoy et al. (2006) performed the data reduction
method (linear projection method) factor analysis
(principal component analysis) on their data to
visualize different types volcanic ash. The utility of
factor analysis is plotting the singular samples on a
factor diagram as factor scores ([Fr]). In this case,
two factors explained 98% of the variance. The
authors used the three most suitable parameters for
differentiating between samples, with resulting
p-values well below 0.05 at a 95% confidence
interval (CI) in analysis of variance (ANOVA).

For the present paper, we used the data of Ersoy
et al. (2006) to cluster the different types of volcanic
ash particles via self-organizing maps (SOM), which
classify data more accurately than conventional
statistical classifiers (Moline and Bahr, 1995;
Dolmatova et al., 1997; Kocjancic and Zupan,
1997). Although the data-mining tools described
above are divided into two categories, projection
and clustering methods, SOM are special cases
where data are simultaneously reduced and pro-
jected onto a lower-dimension.
2. Artificial neural networks

Artificial neural networks (ANN) are relatively
crude electronic models based on the neural
structure of the brain. ANN attempt to mirror the
brain functions in a computerized way by resorting
to the learning mechanism as the basis of human
behavior (Lipman, 1987; Anderson and McNeil,
1992; Hagan et al., 1996; Kartalopoulos, 1995).

ANN can generally be defined as a structure
composed of a number of interconnected units
(Skapura, 1996). Each unit has an input/output
(I/O) characteristic and implements a local compu-
tation or function. The output of each unit is
determined by its I/O characteristic, its interconnec-
tion to other units and (possibly) external inputs,
and its internal function. The network usually
develops an overall functionality through one or
more forms of training. The fundamental unit or
building block of the ANN is the artificial neuron
(termed neuron from here on). The neuron has a set
of inputs ðX iÞ weighted before reaching the main
body of the processing element. In addition, it has a
bias term, a threshold value that has to be reached
or exceeded for the neuron to produce a signal, a
non-linearity function ðf iÞ that acts on the produced
signal ðRiÞ, and an output ðOiÞ (Lipman, 1987;
Haykin, 1994; Hagan et al., 1996; Kartalopoulos,
1995). The basic model of a neuron is illustrated in
Fig. 1.
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ANN are classified into two major types on the
basis of learning modes: supervised and unsuper-
vised. In supervised mode, the actual output of a
neural network is compared to the desired output.
The network then adjusts weights, which are usually
initially randomly set, so that the next iteration or
cycle produces a closer match between the desired
and actual output. The learning method seeks to
minimize the current errors of all processing
elements. This global error reduction is created over
time by continuously modifying the input weights
until acceptable network accuracy is achieved. With
supervised learning, someone should train the
network before it becomes useful. Training consists
of presenting input and output data to the network.
This training is considered complete when the
neural network reaches a user-defined performance
level. This level signifies that the network has
achieved the desired statistical accuracy as it
produces the required outputs for a given sequence
of inputs. When no further learning is necessary, the
weights are typically frozen for the application.
Some network types allow continual training while
in operation, although at a much slower rate. This
helps the network to adapt to gradually changing
conditions.

Unsupervised learning holds great promise for
the future, with the possibility that computers could
some day learn by themselves. These networks use
no external influences to adjust their weights;
instead, they monitor their performance internally.
These networks search for regularities or trends in
the input signals and make adaptations according to
the function of the network. Even without being
told whether it is right or wrong, the network still
requires some information concerning how to
organize itself. This information is built into the
network topology and learning rules. An unsuper-
vised learning algorithm might emphasize coopera-
tion among clusters of processing elements; in such
a scheme, the clusters work together. If an external
input activated any node in the cluster, the cluster’s
Fig. 1. Basic model of
activity as a whole is increased. Likewise, a decrease
in the external input to nodes in the cluster has an
inhibitory effect on the entire cluster. Competition
between processing elements also forms a basis for
learning. Training of competitive clusters amplifies
the responses of specific groups to specific stimuli.
As such, it associates these groups with each other
and with a specific appropriate response. Generally,
when competition for learning is in effect, only the
weights belonging to the winning processing ele-
ment are updated.

Because all ANN are based on the concept of
neurons, connections, and transfer functions, there
is a similarity between the different structures or
architectures of neural networks. The majority of
the variations stem from the various learning rules
and the way in which these rules modify a network’s
typical topology (Aleksander and Morton, 1990;
Anderson and McNeil, 1992; Fausett, 1994; Schalk-
off, 1997). Because of the advantages and accuracy
of Kohonen SOM for clustering problems of
geological materials (Chang et al., 2002), in the
present study we used SOM for our clustering
problem.

2.1. Kohonen SOM

Kohonen SOM are unsupervised ANN developed
by Kohonen (1982). They represent the result of a
vector quantization algorithm that places a number
of reference or codebook vectors into a high-
dimensional input data space to approximate its
data sets in an ordered fashion. When local-order
relations are defined between the reference vectors,
the relative values of the latter are made to depend
on each other as if their neighboring values lie along
an ‘elastic surface’. By means of the self-organizing
algorithm, this ‘surface’ becomes defined as a kind
of nonlinear regression of the reference vectors
through the data points. Mapping from a high-
dimensional data space Rn onto, for example, a two-
dimensional lattice of points, is thereby also defined.
artificial neuron.
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Fig. 2. Locations of units in hexagonal topological structure. The

distance between two units in map is computed as a Euclidean

distance in (two-dimensional) map topology. Reproduced from

Kohonen et al. (1996a).
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Such mapping can be used to effectively visualize
metric ordering relations of input samples. In
practice, mapping is obtained as an asymptotic
state in a learning process (Kohonen et al., 1996a).

3. Source of data

The data include calculated quadtree variables
such as the number of blocks (nQT), the mean block
size (mQT), the standard deviation of block sizes
(sQT), and the surface descriptors derived from
gradient analysis of SEM micrographs of volcanic
ash particles. Ten replicates were acquired from
three samples: N1, N2, and N3. These three samples
are volcanic ash particles derived from different
fragmentation mechanisms (for details, see Ersoy
et al., 2006). ANOVA was performed on the data to
test hypotheses concerning differences between
means. ANOVA is used to test the significance of
differences among several means without increasing
the Type I error rate. The successful parameters for
discrimination were determined previously by Ersoy
et al. (2006); however, here all parameters are
considered to document the limits of SOM in
visualizing and clustering high-dimensional data.
The number of variables is 13, which is also the
codebook vector dimension. All values in the input
data are numeric and stored in ASCII form.

4. Architecture and learning algorithm of SOM

4.1. Map construction

There are many versions of the SOM. Here SOM
define mapping from the input data space Rn onto a
regular two-dimensional array of nodes, which can
be visualized as a sheet-like neural-network array.
We preferred a hexagonal lattice. The x-coordinates
of the map (column numbers) range from 0 to n� 1
where n is the x-dimension of the map, while the y-
coordinates (row numbers) vary from 0 to m� 1,
where m is the y-dimension of the map (Fig. 2). Our
map dimension is 30� 20 in the x- and y-directions,
respectively. We used the Self-Organizing Map
Program Package (SOM_PAK) (Kohonen et al.,
1996a) for the correct application of the SOM
algorithm.

A parametric reference vector mi 2 Rn is asso-
ciated with every node i. An input vector x 2 Rn is
compared with the mi, and the best match is defined
as ‘response’; the input is thus mapped onto this
location. SOM is a nonlinear projection of the
probability density function of the high-dimensional
input data onto the two-dimensional display
(Kohonen, 1989). The smallest of the Euclidean
distances kx�mik usually define the best-matching
node ðcÞ:

kx�mck ¼ minifkx�mikg or,

c ¼ argmin
i

fkx�mikg. ð1Þ

Thus, x is mapped on the c relative to the
parameter values mi. During learning, the nodes
that are topographically close in the array, up to a
certain distance, activate each other to learn from
the same input. The useful values of mi can be found
as convergence limits of the following learning
process, whereby the initial values of the mi(0) are
random in our map:

miðtþ 1Þ ¼ miðtÞ þ hciðtÞ½xðtÞ �miðtÞ�, (2)

where t is an integer, the discrete-time coordinate,
and hciðtÞ is the so-called neighborhood kernel,
which is a function defined over the lattice points.
Usually, hciðtÞ ¼ hðkrc � rik; tÞ, where rc 2 R2 and
ri 2 R2are the radius vectors of the nodes c and i,
respectively, within the array. With increasing
krc � rik; hci ! 0. The average width and form of
hci define the ‘stiffness’ of the ‘elastic surface’ to be
fitted to the data points. For the definition of hci, we
used a neighborhood set of array points around
node c. When we denote this set as Nc, hci ¼ aðtÞ if
i Nc and hci ¼ 0 if ieNc, where aðtÞ is some
monotonically decreasing function of time ð0o
aðtÞ41Þ. This type of kernel is nicknamed ‘bubble’
because it relates to certain activity ‘bubbles’ in
laterally connected neural networks (Kohonen,
1989; Kohonen et al., 1996a).
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Fig. 3. Best-matching units in map for each data sample. The

diagram is constructed from the parameters sGL, nQT, and FF,

which were determined as most successful distinctive parameters

from statistical analysis (e.g., ANOVA). A, B, C, and D

correspond to ash particles with similar surface textures to those

of other groups.
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4.2. Training of the map

We trained the map in two phases. In the first
phase, we ordered the reference vectors of the map
units. It was a rough training for ordering with a
large neighborhood radius. The neighborhood
radius was five for this phase, and it decreased to
one during training. Therefore, in the end only the
nearest neighbors were trained. The learning rate
for the first phase was 0.07, decreasing to zero, while
the training time was 200 000. The learning rate, aðtÞ
is some monotonically decreasing function of time
as described above. The training time is the number
of steps in training. During the second phase, the
reference vectors were fine-tuned and for each unit
they converged to their ‘correct’ values. For the
second phase, the training time was longer and the
learning rate and neighborhood radius smaller, as
described in Kohonen et al. (1996a). Values used for
training time, learning rate, and neighborhood
radius in the last phase were 400 000, 0.02, and 2,
respectively. Therefore, in the beginning the units
up to a distance of two were covered. In our map,
the training time of the second phase was 2 times
longer than in the first phase.

4.3. Quality of learning

Strongly contrasting learning processes can be
defined by starting with different initial values mið0Þ
and applying different sequences of the training
vectors xðtÞ and different learning parameters. It is
clear that an optimal map must exist for certain
input data (Kohonen et al., 1996a), but the best map
must have a minimum quantization error. The
average quantization error (mean of kx�mck) is a
useful performance index because it defines the
map that best fits the data. In our map, 500 random
initializations of the mið0Þ were undertaken, and
the map with the minimum quantization error
(0.003956) was selected.

5. Results and discussion

We generated a list of coordinates that corre-
spond to the best-matching unit in the map for each
data sample. The SOM successfully discriminated
the N1 sample from others (Fig. 3). There are two
ash particles from each sample, N2 and N3, which
fall into the other sample’s fields. These ash particles
appear to be negatively affecting the success of the
clustering. ‘A’ and ‘B’ in particular are almost
members of other groups. The positioning of ‘C’
and ‘D’ may reflect the effect of transition between
groups, and consequently fragmentation mechan-
isms; however, this scattering is not the fault of
clustering. These ash particles have similar surface
textures to other samples. In addition, they are in
other sample fields on the discrimination diagram
(Fig. 4) of Ersoy et al. (2006).

We also constructed the component planes of our
map. These planes visualize the values of the
components using gray levels. Each component
plane shows the values of one variable in each map
unit. From component planes, we can observe the
discriminate performance of each variable, namely
parameters. Planes of the gray-level standard
deviation (sGL), the number of quadtree blocks
(nQT), and the mean block size (mQT) appear to
be most suitable for visualizing the discrimination
(Fig. 5). The gray-level standard deviation (sGL)
and the number of quadtree blocks (nQT) were also
the most successful parameters for distinguishing
fragmentation process in Ersoy et al. (2006),
however, the form factor (FF) is not as suitable
for discrimination (Fig. 6). We propose the mean
block size (mQT) instead of the FF as a parameter
for distinguishing fragmentation process by keeping
with the component planes of ANN.

We construct the discrimination diagram from
factor analysis of three variables: sGL, nQT, and
mQT (Fig. 7). The factors are the diagram axes, and
the single analyzed surfaces are data points on the
diagram. In this case, two factors explain 97% of
the variance. We achieve a better-organized dia-
gram by sticking to component planes. Only the ash
particle labeled ‘A’ plotted in the field of a different
group.
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Fig. 4. Discrimination diagram from Ersoy et al. (2006). The diagram is constructed from parameters sGL, nQT, and FF, which were

determined as most successful distinctive parameters from statistical analysis (e.g., ANOVA). A, B, C, and D correspond to particles

shown in Fig. 3. The inset figure details sample numbers and different fragmentation mechanisms related to amount of water that

interacted with magma.

Fig. 5. Component planes of gray-level standard deviation

(sGL), number of quadtree blocks (nQT), and mean block size

(mQT). The mQT parameter appears as a distinctive parameter

instead of form factor parameter, as determined from component

planes of self-organizing maps.

Fig. 6. Component plane of form factor (FF). Form factor

parameter is unsatisfactory as a distinctive parameter.
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We constructed a new map with the new three-
dimensional data, using sGL, nQT, and mQT
parameters as variables; the size of the new map
was 20� 10. We used the settings of the first map
for training. After 500 trials, we used the map with
the smallest quantization error (0.004572) for
visualization. The new distinctive parameters deter-
mined by the component planes optimized the new
discrimination (Fig. 8).

6. Conclusions

In this study, we present the visualization and
clustering capabilities of self-organizing maps
(SOM) for analyzing high-dimensional data. SOM
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Fig. 7. Discrimination diagram using new parameters derived from component planes of SOM. Scattering of particles is tidier and well

organized than that in Fig. 4. Ash particle labeled ‘A’ is only point that plotted in another group’s field.

Fig. 8. Best-matching units in new map for each data set.

Diagram is constructed from parameters sGL, nQT, and mQT,

which were determined as most successful distinctive parameters

from component planes of SOM. Only ash particle labeled ‘A’ is

positioned in wrong field, due to its similarity in surface texture

with this group. Note optimization as compared with that in

Fig. 3.
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were used because they implement the orderly
mapping of a high-dimensional distribution onto a
regular low-dimensional grid and are thereby able
to convert complex nonlinear statistical relation-
ships between high-dimensional data items into
simple geometric relationships on a low-dimen-
sional display.

We used surface texture parameters of volcanic
ash that arose from different fragmentation me-
chanisms as input data. The component planes
constructed by SOM were more successful than
statistical tests in determining parameters for
distinguishing the different fragmentation mechan-
isms. Component planes helped to determine the
discriminate performance of each variable. Based
on these planes, we modified the parameters to
attain the absolute discrimination.

The SOM solves difficult high-dimensional and
nonlinear problems such as feature extraction and
classification of images and acoustic patterns,
adaptive control of robots, and the equalization,
demodulation, and error-tolerant transmission of sig-
nals in telecommunications. A new area of application
is the organization of very large document collections
(Kohonen, 2001).

In many applications, sensor failures, recording
errors, and resource limitations may prevent data
collection from completing each input vector; how-
ever, such incomplete training examples still contain
useful information. For example, partial data can
still be used to determine the distribution statistics of
the available vector components. For incomplete
input data vectors, the distance calculations and
reference vector modification steps using the avail-
able data components would be undertaken by a
supervised learning algorithm; for example, the
learning vector quantization (LVQ), which is related
to the SOM (Kohonen et al., 1996b). Finally, we note
that the SOM are one of the most realistic models of
biological brain function (Kohonen, 2001).
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