Fourth Edition

CHAPTER

MECHANICS OF MATERIALS

Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf

Lecture Notes: J. Walt Oler Texas Tech University Analysis and Design of Beams for Bending

MECHANICS OF MATERIALS Beer • Johnston • DeWolf Analysis and Design of Beams for Bending

Introduction

Shear and Bending Moment Diagrams

Sample Problem 5.1

Sample Problem 5.2

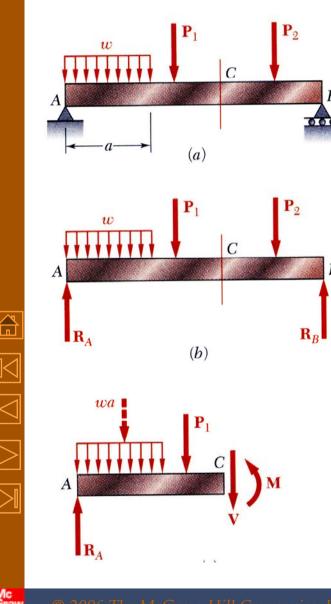
Relations Among Load, Shear, and Bending Moment

Sample Problem 5.3

Sample Problem 5.5

Design of Prismatic Beams for Bending

Sample Problem 5.8



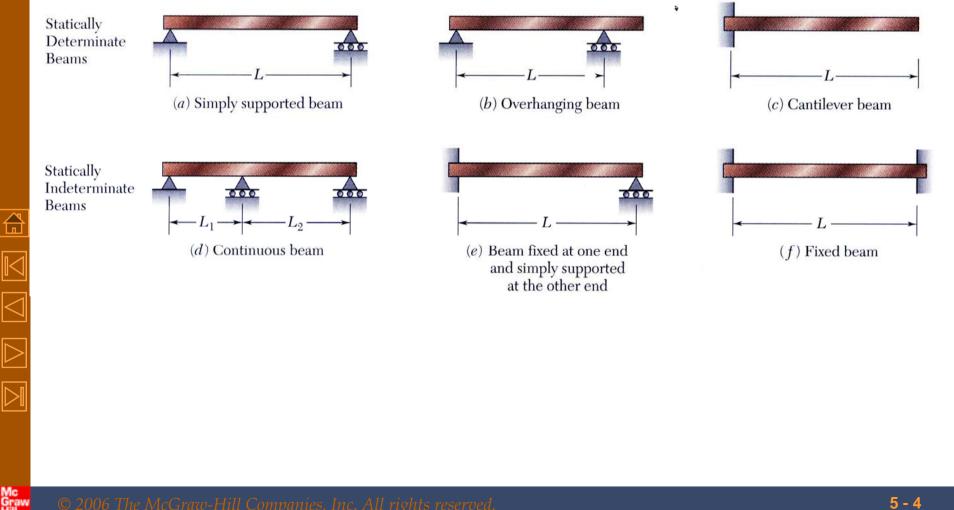
- Objective Analysis and design of beams
- *Beams* structural members supporting loads at various points along the member
- Transverse loadings of beams are classified as *concentrated* loads or *distributed* loads
- Applied loads result in internal forces consisting of a shear force (from the shear stress distribution) and a bending couple (from the normal stress distribution)
- Normal stress is often the critical design criteria

$$\sigma_x = -\frac{My}{I}$$
 $\sigma_m = \frac{|M|c}{I} = \frac{|M|}{S}$

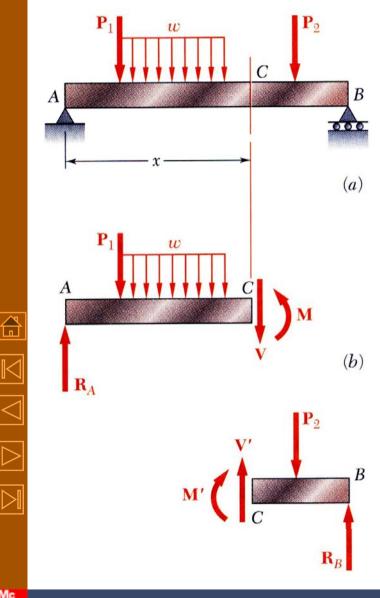
Requires determination of the location and magnitude of largest bending moment

Introduction

Classification of Beam Supports

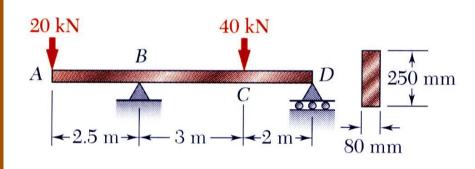


MECHANICS OF MATERIALS Shear and Bending Moment Diagrams



- Determination of maximum normal and shearing stresses requires identification of maximum internal shear force and bending couple.
- Shear force and bending couple at a point are determined by passing a section through the beam and applying an equilibrium analysis on the beam portions on either side of the section.
- Sign conventions for shear forces V and V' and bending couples M and M'

(*a*) Internal forces (positive shear and positive bending moment)

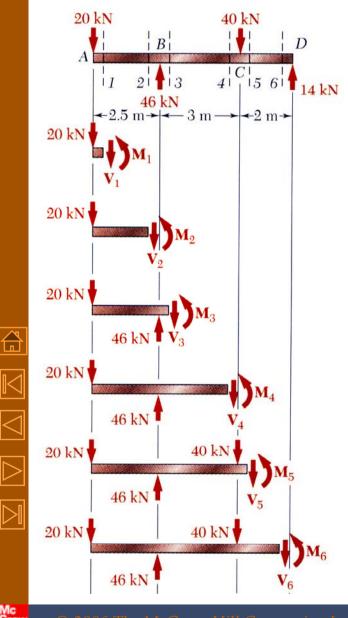


For the timber beam and loading shown, draw the shear and bendmoment diagrams and determine the maximum normal stress due to bending.

п

- Treating the entire beam as a rigid body, determine the reaction forces
- Section the beam at points near ٠ supports and load application points. Apply equilibrium analyses on resulting free-bodies to determine internal shear forces and bending couples
- Identify the maximum shear and • bending-moment from plots of their distributions.
- Apply the elastic flexure formulas to determine the corresponding maximum normal stress.

Sample Problem 5.1



SOLUTION:

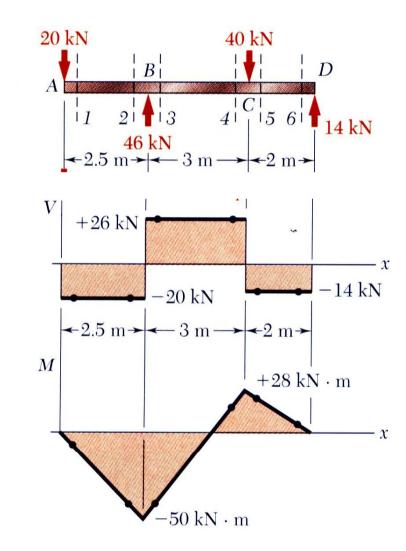
• Treating the entire beam as a rigid body, determine the reaction forces

from $\sum F_y = 0 = \sum M_B$: $R_B = 46$ kN $R_D = 14$ kN

• Section the beam and apply equilibrium analyses on resulting free-bodies $\Sigma F_y = 0 -20 \text{ kN} - V_1 = 0 \qquad V_1 = -20 \text{ kN}$ $\Sigma M_1 = 0 \quad (20 \text{ kN})(0 \text{ m}) + M_1 = 0 \qquad M_1 = 0$ $\Sigma F_y = 0 -20 \text{ kN} - V_2 = 0 \qquad V_2 = -20 \text{ kN}$ $\Sigma M_2 = 0 \quad (20 \text{ kN})(2.5 \text{ m}) + M_2 = 0 \qquad M_2 = -50 \text{ kN} \cdot \text{m}$ $V_3 = +26 \text{ kN} \qquad M_3 = -50 \text{ kN} \cdot \text{m}$ $V_4 = +26 \text{ kN} \qquad M_4 = +28 \text{ kN} \cdot \text{m}$ $V_5 = -14 \text{ kN} \qquad M_5 = +28 \text{ kN} \cdot \text{m}$

$$V_5 = -14 \text{ kin}$$
 $M_5 = +28 \text{ kin} \cdot$

$$V_6 = -14 \,\mathrm{kN}$$
 $M_6 = 0$



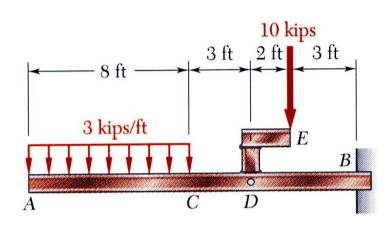
• Identify the maximum shear and bendingmoment from plots of their distributions.

$$V_m = 26 \,\mathrm{kN}$$
 $M_m = |M_B| = 50 \,\mathrm{kN} \cdot \mathrm{m}$

• Apply the elastic flexure formulas to determine the corresponding maximum normal stress.

$$S = \frac{1}{6}b h^2 = \frac{1}{6}(0.080 \,\mathrm{m})(0.250 \,\mathrm{m})^2$$
$$= 833.33 \times 10^{-6} \,\mathrm{m}^3$$

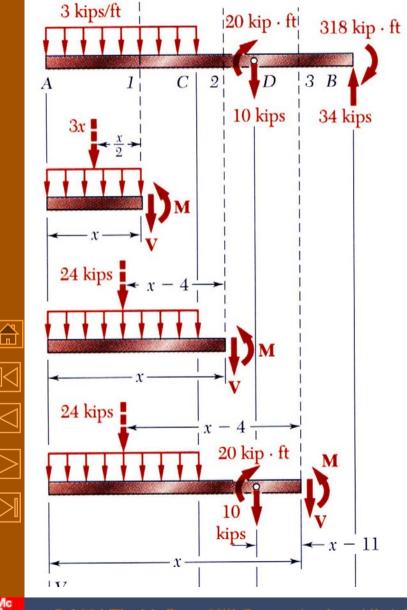
$$\sigma_m = \frac{|M_B|}{S} = \frac{50 \times 10^3 \,\mathrm{N} \cdot \mathrm{m}}{833.33 \times 10^{-6} \,\mathrm{m}^3}$$
$$\sigma_m = 60.0 \times 10^6 \,\mathrm{Pa}$$



The structure shown is constructed of a W10x112 rolled-steel beam. (a) Draw the shear and bending-moment diagrams for the beam and the given loading. (b) determine normal stress in sections just to the right and left of point D.

- Replace the 10 kip load with an equivalent force-couple system at *D*. Find the reactions at *B* by considering the beam as a rigid body.
- Section the beam at points near the support and load application points. Apply equilibrium analyses on resulting free-bodies to determine internal shear forces and bending couples.
- Apply the elastic flexure formulas to determine the maximum normal stress to the left and right of point *D*.

Sample Problem 5.2



SOLUTION:

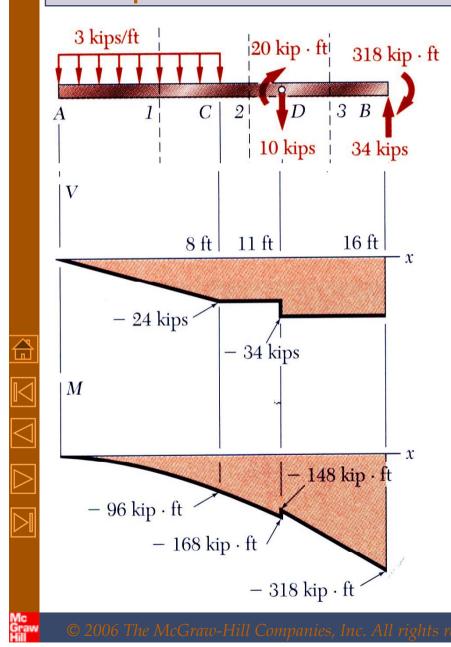
- Replace the 10 kip load with equivalent forcecouple system at *D*. Find reactions at *B*.
- Section the beam and apply equilibrium analyses on resulting free-bodies.

From A to C:

$$\Sigma F_y = 0$$
 $-3x - V = 0$ $V = -3x$ kips
 $\Sigma M_1 = 0$ $(3x)(\frac{1}{2}x) + M = 0$ $M = -1.5x^2$ kip \cdot ft

From C to D: $\sum F_y = 0 -24 - V = 0$ V = -24 kips $\sum M_2 = 0 24(x-4) + M = 0$ M = (96 - 24x) kip · ft From D to B:

$$V = -34$$
 kips $M = (226 - 34x)$ kip \cdot ft



• Apply the elastic flexure formulas to determine the maximum normal stress to the left and right of point *D*.

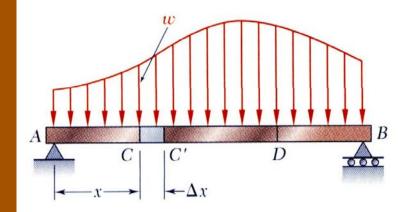
From Appendix C for a W10x112 rolled steel shape, S = 126 in³ about the *X*-*X* axis.

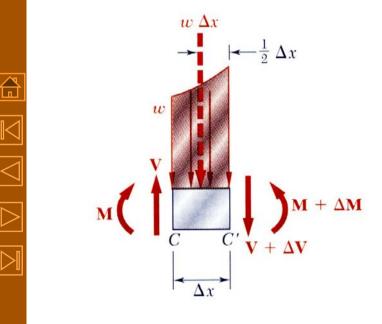
To the left of D:

$$\sigma_m = \frac{|M|}{S} = \frac{2016 \text{ kip} \cdot \text{in}}{126 \text{ in}^3} \qquad \sigma_m = 16.0 \text{ ksi}$$

To the right of D:
$$\sigma_m = \frac{|M|}{S} = \frac{1776 \text{ kip} \cdot \text{in}}{126 \text{ in}^3} \qquad \sigma_m = 14.1 \text{ ksi}$$

MECHANICS OF MATERIALSBeer • Johnston • DeWolf Relations Among Load, Shear, and Bending Moment

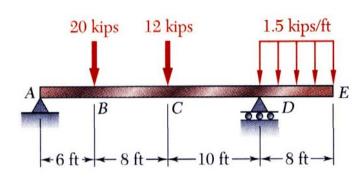




- Relationship between load and shear: $\sum F_y = 0: \quad V - (V + \Delta V) - w \Delta x = 0$ $\Delta V = -w \Delta x$ $\frac{dV}{dx} = -w$ $V_D - V_C = -\int_{x_C}^{x_D} w \, dx$
- Relationship between shear and bending moment:

$$\sum M_{C'} = 0: \quad (M + \Delta M) - M - V \Delta x + w \Delta x \frac{\Delta x}{2} = 0$$
$$\Delta M = V \Delta x - \frac{1}{2} w (\Delta x)^{2}$$
$$\frac{dM}{dx} = V$$
$$M_{D} - M_{C} = \int_{x_{C}}^{x_{D}} V dx$$

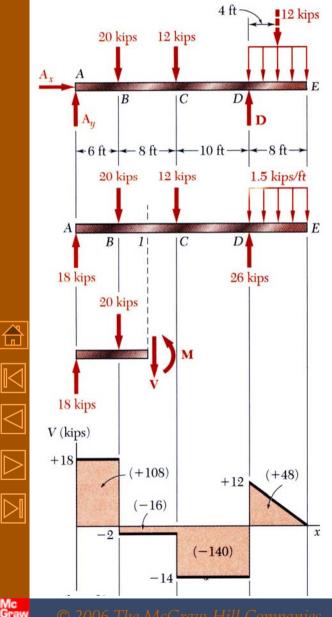
🖷 💿 2006 The McGraw-Hill Companies, Inc. All rights reserved.



Draw the shear and bending moment diagrams for the beam and loading shown.

- Taking the entire beam as a free body, determine the reactions at *A* and *D*.
- Apply the relationship between shear and load to develop the shear diagram.
- Apply the relationship between bending moment and shear to develop the bending moment diagram.

Sample Problem 5.3



SOLUTION:

• Taking the entire beam as a free body, determine the reactions at *A* and *D*.

 $\sum M_A = 0$ 0 = D(24 ft) - (20 kips)(6 ft) - (12 kips)(14 ft) - (12 kips)(28 ft) D = 26 kips

$$\sum F_y = 0$$

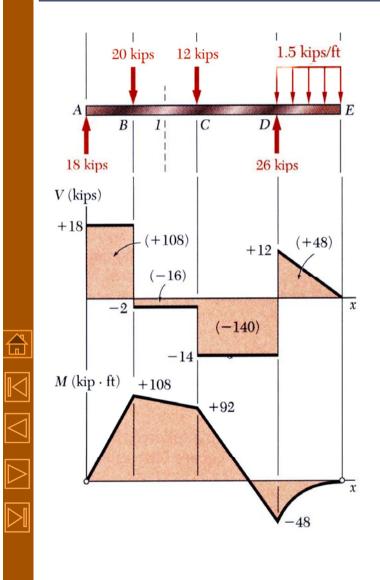
$$0 = A_y - 20 \text{ kips} - 12 \text{ kips} + 26 \text{ kips} - 12 \text{ kips}$$

$$A_y = 18 \text{ kips}$$

• Apply the relationship between shear and load to develop the shear diagram.

$$\frac{dV}{dx} = -w \qquad dV = -w \, dx$$

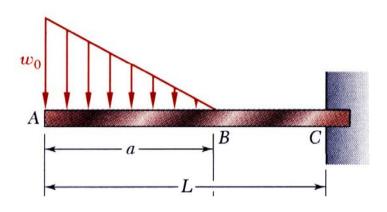
- zero slope between concentrated loads
- linear variation over uniform load segment



• Apply the relationship between bending moment and shear to develop the bending moment diagram.

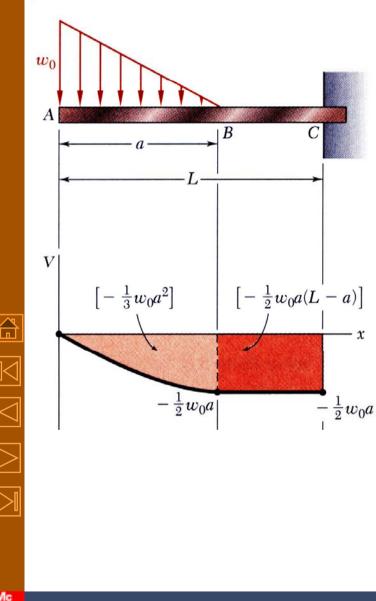
$$\frac{dM}{dx} = V \qquad dM = V \, dx$$

- bending moment at A and E is zero
- bending moment variation between *A*, *B*, *C* and *D* is linear
- bending moment variation between D and *E* is quadratic
- net change in bending moment is equal to areas under shear distribution segments
- total of all bending moment changes across the beam should be zero



Draw the shear and bending moment diagrams for the beam and loading shown.

- Taking the entire beam as a free body, determine the reactions at *C*.
- Apply the relationship between shear and load to develop the shear diagram.
- Apply the relationship between bending moment and shear to develop the bending moment diagram.



SOLUTION:

• Taking the entire beam as a free body, determine the reactions at *C*.

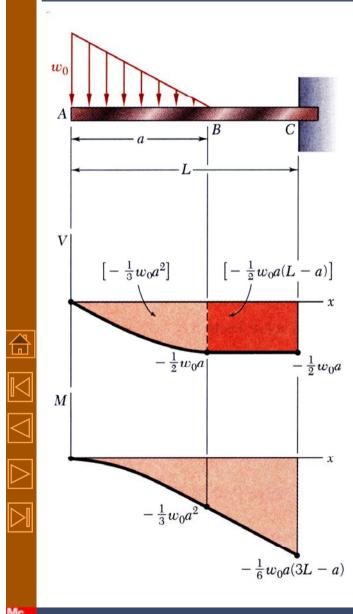
$$\sum F_{y} = 0 = -\frac{1}{2}w_{0}a + R_{C} \qquad R_{C} = \frac{1}{2}w_{0}a$$
$$\sum M_{C} = 0 = \frac{1}{2}w_{0}a \left(L - \frac{a}{3}\right) + M_{C} \qquad M_{C} = -\frac{1}{2}w_{0}a \left(L - \frac{a}{3}\right)$$

Results from integration of the load and shear distributions should be equivalent.

• Apply the relationship between shear and load to develop the shear diagram.

$$V_B - V_A = -\int_0^a w_0 \left(1 - \frac{x}{a}\right) dx = -\left[w_0 \left(x - \frac{x^2}{2a}\right)\right]_0^a$$
$$V_B = -\frac{1}{2}w_0 a = -\left(area \ under \ load \ curve\right)$$

- No change in shear between *B* and *C*.
- Compatible with free body analysis



• Apply the relationship between bending moment and shear to develop the bending moment diagram.

$$M_{B} - M_{A} = \int_{0}^{a} \left(-w_{0} \left(x - \frac{x^{2}}{2a} \right) \right) dx = \left[-w_{0} \left(\frac{x^{2}}{2} - \frac{x^{3}}{6a} \right) \right]_{0}^{a}$$
$$M_{B} = -\frac{1}{3} w_{0} a^{2}$$
$$M_{B} - M_{C} = \int_{a}^{L} \left(-\frac{1}{2} w_{0} a \right) dx = -\frac{1}{2} w_{0} a (L - a)$$
$$M_{C} = -\frac{1}{6} w_{0} a (3L - a) = \frac{a w_{0}}{2} \left(L - \frac{a}{3} \right)$$

Results at *C* are compatible with free-body analysis