

...

A Book on C
Programming in C

Fourth Edition

AI Kelley / Ira Pohl
University of Caljfornia
Santa Cruz

TT
ADDISON-WESLEY

Boston • San Francisco • New York· Toronto • jIy[ontreal
London • Munich • Paris • Madrid
Capetown • Sydney' Tokyo • Singapore • Mexico Cit:J1

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks, Where those designatious appear in this book, and we were aware of a trademark claim, the
designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more informa
tion, please contact:

Pearson Education Corporate Sales Division
201 W. 103rd Street
Indianapolis, IN 46290
(800) 428-5331
corpsales@pearsoned.com

Visit AW on the Web: www.awl.com/cseng/

Librmy of Congress Cataloging-in-Publication Data

Kelley,Al
A book on C: programming in C I Al Kelley, Ira Pohl. -4th ed.

p. cm.
Includes bibliographical references and index
ISBN 0-201-18399-4
1. C (Computer program language) 1. Poh!, Ira, II. Title.

QA76.73.C15K44 1997
005.13'3--dc21

Copyright © 1998 by Addison-Wesley

97-44551
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or other
wise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Text printed on recycled and acid-free paper.

ISBN 0201183994

9 1011121314 MA 04030201

9th Printing November 2001

For our Parents

Contents

Preface

Chapter 0
Starting from Zero
0.1 Why C?
0.2 ANSI C Standard
0.3 From C to C++
0.4 From C and C++ to Java

Chapter 1
An Overview of C
1.1 Programming and Preparation
1.2 Program Output
1.3 Variables, Expressions, and Assignment
1.4 The Use of #defi ne and #i ncl ude
1.5 The Use of pri ntfO and scanfO
1.6 Flow of Control
1.7 Functions

Call-by-Value
1.8 Arrays, Strings, and Pointers

Arrays
Strings
Pointers

1.9 Files

xvii

1
2
3
3
4

5
5
6

10
1 3
18
21
29
35
36
37
39
42
47

viii ., Contents

1.10 Operating System Considerations
Writing and Running a C Program
Interrupting a Program

Chapter 2

Typing an End-of-file Signal
Redirection of the Input and the Output

Summary
Exercises

lexical Elements, Operators, and the C System
2.1 Characters and lexical Elements
2.2 Syntax Rules
2.3 Comments
2.4 Keywords
2.5 Identifiers
2.6 Constants
2.7 String Constants
2.8 Operators and Punctuators
2.9 Precedence and Associativity of Operators
2.10 Increment and Decrement Operators
2.11 Assignment Operators
2.12 An Example: Computing Powers of 2
2.13 The C System

Chapter 3

The Preprocessor
The Standard library

Summary
Exercises

The Fundamental Data Types
3.1 Declarations, Expressions, and Assignment
3.2 The Fundamental Data Types
3.3 Characters and the Data Type char
3.4 The Data Type i nt
3.5 The Integral Types short, long, and unsi gned
3.6 The Floating Types
3.7 The Use of typedef
3.8 The si zeof Operator
3.9 The Use of getcharO and putcharO
3.10 Mathematical Functions

The Use of abs 0 and fabs 0
UNIX and the Mathematics library

53
53
56
56
56
58
60

69
70
73
75
77
78
79
80
81
83
85
87
89
91
91
92
96
98

107
107
110
111
116
11 7
119
122
122
124
127
130
130

., Contents ix

3.11 Conversions and Casts 131
The Integral Promotions 131
The Usual Arithmetic Conversions 131
Casts 133

3.12 Hexadecimal and Octal Constants 134
e13 Summary 137

Exercises 138

Chapter 4
Flow of Control 147
4.1 Relational, Equality, and logical Operators 147
4.2 Relational Operators and Expressions 149
4.3 Equality Operators and Expressions 152
4.4 logical Operators and Expressions 154

Short-circuit Evaluation 157
4.5 The Compound Statement 157
4.6 The Expression and Empty Statement 158
4.7 The if and the i f-el se Statements 159
4.8 The whi 1 e Statement 163
4.9 The for Statement 167
4.10 An Example: Boolean Variables 169
4.11 The Comma Operator 171
4.12 The do Statement 172
4.13 An Example: Fibonacci Numbers 174
4.14 The goto Statement 178
4.15 The break and conti nue Statements 179
4.16 The swi tch Statement 181
4.17 The Conditional Operator 182

Summary 184
Exercises 185

Chapter 5
Functions 197
5.1 Function Definition 197
5.2 The return Statement 200
5.3 Function Prototypes 201

Function Prototypes in C++ 202
5.4 An Example: Creating a Table of Powers 203
5.5 Function Declarations from the Compiler's Viewpoint 204

limitations 205
5.6 An Alternate Style for Function Definition Order 206
5.7 Function Invocation and Call-by-Value 207

x " Contents

5.8 Developing a Large Program
What Constitutes a Large Program?

5.9 Using Assertions
5.10 Scope Rules

Parallel and Nested Blocks
Using a Block for Debugging

5.11 Storage Classes
The Storage Class auto
The Storage Class extern
The Storage Class reg; ster
The Storage Class stat; c

5.12 Static External Variables
5.13 Default Initialization
5.14 Recursion

Efficiency Considerations
5.15 An Example: The Towers of Hanoi

Summary
Exercises

Chapter 6
Arrays, Pointers, and Strings
6.1 One-dimensional Arrays

6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9
6.10
6.11
6.12

Initialization
Subscripting

Pointers
Call-by-Reference
The Relationship Between Arrays and Pointers
Pointer Arithmetic and Element Size
Arrays as Function Arguments
An Example: Bubble Sort
Dynamic Memory Allocation With call oc 0 and mall oc 0

Offsetting the Pointer
An Example: Merge and Merge Sort
Strings
String-Handling Functions in the Standard Library
Multidimensional Arrays

Two-dimensional Arrays
The Storage Mapping Function
Formal Parameter Declarations
Three-dimensional Arrays
Initialization
The Use of typedef

6.13 Arrays of Pointers

209
212
212
213
215
216
216
216
217
219
220
221
223
223
227
228
233
235

245
245
246
247
248
252
253
255
256
257
259
262
263
270
272
277
278
279
279
280
281
282
284

6.14 Arguments to ma; nO
6.15 Ragged Arrays
6.16 Functions as Arguments

" Contents

Functions as Formal Parameters in Function Prototypes
6.17 An Example: Using Bisection to Find the Root of a Function

The Kepler Equation
6.18 Arrays of Pointers to Function
6.19 The Type Qualifiers const and vol at; 1 e

Summary
Exercises

Chapter 7
Bitwise Operators and Enumeration Types
7.1 Bitwise Operators and Expressions

Bitwise Complement
Two's Complement
Bitwise Binary Logical Operators
Left and Right Shift Operators

7.2 Masks
7.3 Software Tools: Printing an ; nt Bitwise
7.4 Packing and Unpacking

Multibyte Character Constants
7.5 Enumeration Types
7.6 An Example: The Game of Paper, Rock, Scissors

Summary
Exercises

Chapter 8
The Preprocessor
8.1 The Use of #i ncl ude
8.2 The Use of #def; ne

8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

Syntactic Sugar
Macros with Arguments
The Type Definitions and Macros in stddef.h
An Example: Sorting with qsortO
An Example: Macros with Arguments
The Macros in stdio.h and ctype.h
Conditional Compilation
The Predefined Macros
The Operators # and ##
The assertO Macro
The Use of #error and #pragma
Line Numbers

xi

290
292
293
296
296
300
302
307
309
311

331
331
333
333
334
335
337
338
341
344
345
348
356
357

365
365
366
367
368
371
372
377
382
384
387
387
388
389
390

xii ., Contents

8.14 Corresponding Functions
8.1 5 An Example: Quicksort

Summary
Exercises

Chapter 9
Structures and Unions
9.1 Structures
9.2 Accessing Members of a Structure
9.3 Operator Precedence and Associativity: A Final Look
9.4 Using Structures with Functions
9.5 Initialization of Structures
9.6 An Example: Playing Poker
9.7 Unions
9.8 Bit Fields
9.9 An Example: Accessing Bits and Bytes
9.10 The ADT Stack

Chapter 10

Summary
Exercises

Structures and List Processing
10.1 Self-referential Structures
10.2 Linear Linked Lists

Storage Allocation
10.3 List Operations
10.4 Some List Processing Functions

Insertion
Deletion

10.5 Stacks

10.6 An Example: Polish Notation and Stack Evaluation
10.7 Queues
10.8 Binary Trees

Binary Tree Traversal
Creating Trees

10.9 General Linked Lists
Traversal
The Use of callocO and Building Trees

Summary
Exercises

390
391
394
396

407
407
411
415
416
418
419
424
427
429
430
435
437

447
447
449
450
451
455
458
459
460
464
471
475
477
478
479
482
482
484
485

., Contents xiii

Chapter 11
Input/Output and the Operating System 493
11.1 The Output Function pri ntfO 493
11.2 The Input Function scanfO 499
11.3 The Functions fpri ntfO, fscanfO, spri ntfO,

and sscanfO 503
11.4 The Functions fopenO and fcloseO 505
11. 5 An Example: Double Spacing a File 507
11.6 Using Temporary Files and Graceful Functions 510
11.7 Accessing a File Randomly 513
11.8 File Descriptor Input/Output 514
11.9 File Access Permissions 517
11.10 Executing Commands from Within a C Program 518
11. 11 Using Pipes from Within a C Program 520
11.12 Environment Variables 521
11.13 The C Compiler 522
11.14 Using the Profiler 524
11.15 Libraries 526
11.16 How to Time C Code 528
11.17 The Use of make 532
11.18 The Use of touch 538
11.19 Other Useful Tools 539

Summary 541
Exercises 542

Chapter 12
Advanced Applications 555
12.1 Creating a Concurrent Process with forkO 555
12.2 Overlaying a Process: the exec ... 0 Family 558

Using the spawn ... 0 Family 560
12.3 Interprocess Communication Using pi peO 561
12.4 Signals 564
12.5 An Example: The Dining Philosophers 567
12.6 Dynamic Allocation of Matrices 571

Why Arrays of Arrays Are Inadequate 571
Building Matrices with Arrays of Pointers 572
Adjusting the Subscript Range 575
Allocating All the Memory at Once 577

12.7 Returning the Status 579
Summary 585
Exercises 586

xiv ... Contents

Chapter 13
Moving from C to C++
13.1 Output
13.2 Input
13.3 Functions
13.4 Classes and Abstract Data Types
13.5 Overloading
13.6 Constructors and Destructors
13.7 Object-oriented Programming and Inheritance
13.8 Polymorphism
13.9 Templates
13.10 C++ Exceptions
13.11 Benefits of Object-oriented Programming

Summary
ExerCises

Chapter 14
Moving from C to Java
14.1 Output
14.2 Variables and Types
14.3 Classes and Abstract Data Types
14.4 Overloading
14.5 Construction and Destruction of Class Types
14.6 Object-oriented Programming and Inheritance
14.7 Polymorphism and Overriding Methods
14.8 Applets
14.9 Java Exceptions
14.1 0 Benefits of Java and OOP

Summary
Exercises

Appendix A
The Standard Library
A.1 Diagnostics: <assert. h>
A.2 Character Handling: <ctype. h>

Testing a Character
Mapping a Character

A.3 Errors: <errno.h>
A.4 Floating Limits: <float. h>
A.S Integral Limits: <limits.h>
A.6 Localization: <locale.h>
A. 7 Mathematics: <math. h>

593
594
595
599
601
603
606
608
610
612
614
615
617
619

625
626
627
629
631
631
632
633
635
636
638
639
640

641
641
642
642
643
643
644
645
645
646

... Contents xv

A.8 NonlocalJumps: <setjmp. h> 649
A.9 Signal Handling: <signal. h> 650
A.10 Variable Arguments: <stdarg. h> 651
A.ll Common Definitions: <stddef. h> 652

653 A.12 Input/Output: <stdi o. h>
655 Opening, Closing, and. ~ondltl?nlng a File
656 Accessing the File Position Indicator

Error Handling 658
Character Input/Output 658
Formatted Input/Output 660
Direct Input/Output 662
Removing or Renaming a File 662

A.13 General Utilities: <stdl i b. h> 663
Dynamic Allocation of Memory 663
Searching and Sorting 664
Pseudo Random-Number Generator 665
Communicating with the Environment 665
Integer Arithmetic 666
String Conversion 666
Multibyte Character Functions 668
Multibyte String Functions 669

670 Leaving the Program .
670 A.14 Memory and String Handling: <stn ng. h>

Memory-Handling Functions 671
String-Handling Functions 671

A.15 Date and Time: <time.h> 675
Accessing the Clock 676
Accessing the Time 676

A.16 Miscellaneous 680
File Access 680
Using File Descriptors 681
Creating a Concurrent Process 681
Overlaying a Process 682
Interprocess Communication 683
Suspending Program Execution 683

Appendix B
Language Syntax 685
B.l Program 685
B.2 Function Definition 686
B.3 Declaration 686
B.4 Statement 688
B.5 Expression 689

7

x~ • Con~n~

B.6
B.7
B.8

Constant
String literal
Preprocessor

Appendix C

ANSI C Compared to Traditional C
e.l Types
e.2 Constants
e.3 Declarations
CA Initializations
e.5 ExpresSions
e.6 Functions
e.7 Conversions
e.8 Array Pointers
e.9 Structures and Unions
e.l0 Preprocessor
e.l1 Header Files
e. 12 Miscellaneous

Appendix 0
ASCII Character Codes

Appendix E

Operator Precedence and Associativity

Index

690
691
692

693
693
694
695
695
696
696
698
698
699
700
701
701

703

705

707

Preface

A Book on C conveys an appreciation for both the elegant simplicity and the power of
this general-purpose programming language. By presenting interactive running pro
grams from many application areas, this book describes the ANSI version of the C lan
guage. The complete language is presented in a step-by-step manner, along with many
complete working programs.

Where appropriate, we discuss the differences between traditional C and ANSI e.
(Traditional C still remains in wide use.) Dozens of example programs are available to
illustrate each important language feature, and many tables summarize key informa
tion and provide easy access for later reference. Each chapter ends with a summary and
exercises. The summary reviews key elements presented in the chapter, and the exer
cises augment and extend the text.

This book assumes a general-purpose knowledge of the C language. It is intended for
use in either a first or second programming course. However, it can be readily used in
conjunction with courses on topics such as comparative programming languages, com
putationallinguistics, data structures, database systems, fractal geometry, graphicS,
numerical analysis, operating systems, programming methodology, and scientific appli
cations. C is suitable for applications from each of these domains, and all features of C
needed to code such applications are explained. This book is appropriate for a data
structures course because advanced data structuring features such as enumeration
types, unions, self-referential structures, and ragged arrays are discussed. For operat
ing systems courses concerned with UNIX or Windows 95/NT, the book explores the file
structure and systems routines that enable the C programmer to add to existing sys
tems libraries and understand the C code underlying the operating system. For applica
tions programming and scientific programming, there is discussion of how to write
sample function libraries. Statistics, root finding, sorting, text manipulation, file han
dling, and game playing are all represented with working code.

xviii l' Preface

New Java Section. In Chapter 14, "Moving from C to Java," we discuss how the C pro
grammer can very naturally and easily begin programming in Java, a language of inter
est for work on the Internet. The Java programming language borrows ideas from both
C and c++ and is designed to run in a machine- and system-independent manner. This
makes it suitable for Internet work, such as writing applets for Web pages that get used
by browsers. Because Java is an extension of C and C++, it is readily learned by the C programmer.

Complete ANSI C Language. Computer profesSionals will have access to a complete
treatment of the language, including enumeration types, list processing, and the operat
ing system interface. Chapter 1, "An Overview of C," presents an overview of the lan
guage. After reading this chapter, the professional will already be able to write C code.
Since the chapters are self-contained, the knowledgeable reader can skip to particular
sections as needed. Chapter 11, "Input/Output and the Operating System," gives a thor
ough introduction to the connections to the operating system. This information will
benefit the professional systems programmer needing to use C to work 'vi thin an MS
DOS or UNIX environment.

Interactive Environment. This book is written entirely with the modern interactive
environment in mind. Experimentation is encouraged throughout. Keyboard and screen
input/output is taken as the norm, and its attendant concerns are explained. Thus, the
book is appropriate for users of small home and business computers as well as to users
of large interactive systems. We assume that the reader will have access to an interac
tive ANSI C system. During the writing of this book, we used a number of different C
systems: various Borland and Microsoft compilers running on IBM-compatible Pentium
machines, the GNU gee compiler and native compilers running on various workstations
from DEC, SGI, and Sun, and the C compiler that runs on the Cray supercomputer in San Diego.

Working Code. Our approach to describing the language is to use examples, explana
tion, and syntax. Working code is employed throughout. Small but useful examples are
provided to describe important technical points. Small because small is comprehensi
ble. Useful because programming is based on a hierarchy of building blocks and ulti
mately is pragmatic. The programs and functions deSCribed in the book can be used in
actual systems. The authors' philosophy is that one should experiment and enjoy.

Dissections. We use highlighted "dissections" on many programs and functions
throughout the book Dissection is a unique pedagogical tool first developed by the
authors in 1984 to illUminate key features of working code. A dissection is similar to a
structured walk-through of the code. Its jntention is to explain to the reader newly
encountered programming elements and idioms found in working code.

'f Preface xix

.. . b k is constructed to be very flexible in its use. Chapte: I,
Flexible Orgamzatl~~. :his 00 rts The first part explains the crucial programmmg
"An Overview of C, Is:n two ~a " / t ut material that must be understood by
techniques needed for mteractIve I~~~~ ~~ s~rv~y the entire language and will be com
alL The second part ?f Chapter 1 goe. f 'liar with comparable features from other
prehensible to expenenced programmers amJ

d
, a first programming course. Caution:

s This second part can be postpone 111
language . ld ost one the second part of Chapter 1.
Beginning programmers shou p p . d the C S stem" describes the lexical level

Chapter 2, "Lexical Eleme~ts, ~perat~~~h :~e SeleCti~elY e~ployed to illustrate C lan
of the language and sy.ntact!c ru es, ~decide to teach Backus-Naur-Form (BNF) notation
guage constructs. The mstructor ma\ 't 'thout any loss of continuity. The book uses
as described in Chapter 2 ,or ,may onn 1 t v~e student can learn this standard form of
BNF-style syntactic descnptl?n~ so :ha dd'tion language components are thoroughly programming language descnptIOn. n a I, '
described by example and ordinary explanatIOn.

. . d si ned to be a valuable reference to the C language.
Reference Work. ThIS book IS e ~oncisell illustrate key areas of the language. The
Throughout the book, many tables 1 wit~ its associated header files, is described in
complete AN.S1 C s,;anda~d h~ar~, ti~~:ry." Sections in the appendix are devoted to
the AppendIX A, The Stan ar eader files such as etype.h, stdio.h, and string.h. Where
explaining each of the stand~~d ~ to illustrate the use of a particular construct or appropriate, example code IS gIven

function. "'de the complete syntax of the C language . ..:l~" B "L nguage Syntax we proVl .
In AppenLUll. , a 'd. T d't' I C " we list the major dIfferences . C "ANSI C Compare to ra 1 IOna , . d ~t~~~~N~I C and traditional C. Finally, special care has been taken to make the m ex

easy to use and suitable for a reference work.

hers 3 through 10 cover the C language feature
The Complete ANSI C Lan9ua~e. C a~~Scussed that may be omitted on first reading
by feature. Many advanced ~oPI7 ar~ . d For example enumeration types are rela
without loss of comprehensIOn, I h

SO
, esrre. be omI'tted' in a first course. Machine-

h I ge and t elf use can _.
tively new to t e angua, . 'd tions and floating-point representatIOn d l' atures such as word SIze consl era
depen ehnt . e d but many of the details need not concern the beginner. are emp aSIze ,

" Processor" is devoted entirely to the preproces-
The Preprocessor. Chapter 8, The rep d t 't'on of the C language. Macros can be ,. d t nd the power an no a 1
sor, WhIch IS use to ex elf a function call. Their use can reduce
used to generat~ inli~e code that takes t~:s~n~~eaOdetailed discussion of the preproces
program executIOn tlme. The chap~er ~ ANSI committee. In traditional C, the prepro
sor, including ne",: features added y e iler to another. In ANSI C, the functionality of cessor varies conSIderably from one comp , .
the preprocessor has been completely speCIfIed.

t

xx l' Preface

Recursion and List Processing. Chapter S, "Functions," has a careful discuSSion of
recursion, which is often a mystifying topic for the beginner. The Use of recursion is
illustrated again in Chapter 8, "The Preprocessor," With the quicksort algOrithm and in
Chapter 10, "Structures and List ProCessing," With basic list prOceSSing techniques. A
thorough knowledge of list processing techniques is necessary in advanced program. ming and data structure courses.

Operating System Connection. Chapter II, "Input/Ou tpu t and the Opera ting Sys tern,"
makes the operating system conneCtion. In this chapter, we explain how to do file pro.
cessing and discuss at length the various input/output functions in the standard
library. We also explain how to execute a system command from Within a C program
and how to set file permissions and USe of environment variables. We give explicit
examples shoWing the Use of the proftler, the librarian, and the make facility.

Advanced ApPlications. We discuss a number of advanced applications in Chapter 12,
"Advanced Applications." We present topics such as creating concurrent processes,
overlaying a process, interprocess communication, and Signals, along With Working
COde. Also, We discuss the dYllamic allocation of vectors and matrices for eng;neers and
sdentists. These advanced tOPles can be used selectively according to the needs of the
audience. They could form the basis for an excellent second course in programming
practlee. lbis book can be used, too, as an aUXiliary text in adVanced cOlllPuter sdence
courses that employ C as their implementation language.

TabIes, Summaries, and exercises. Throughout Ihe book are many tables and lists that
SUCCinctly sununanze key ideas. These tables aid and test language comprehension. For
example, C is very rich in operators and allows almost any useful combination of Opel'.
ator mix. It is eSSential to understand order of evaluation and association of each of
these operators separately and in combination. These points are llIustrated in tables
throughout the text. As a reference tool, the tables and code ill'e easily lOoked up.

The exerdses test elementary features of the lilllguage and discuss advanced and sys.
tem'dependent features. Mony exercisos are oriented to problem solVing, others test
the reader's SYlltactic or Semantic understanding of C. Some exerdses include a tutorial
diSCUSSion that is tangential to the text but may be of special interest to certain readers.
lbe exercises offer the instructor all leVels of question, so as to allow aSSignments sUitable to the audience.

l' Preface xxi

Acknowledgments the chief technical editor for

to Debra Dolsberry, who acted as I er to create PostSCrIpt ~lles
Our spedal thanks go I responsible for using FrameMa {kS also go to Robert FIeld,
this book She was large Yn of this book. Our speetal than

he
chief technical reviewer

suitable for the typesettt i~ View California, who acted as t d su gestions extremely P
arcPlace Systems, Moufntht~s boole' We found his expertise a~ns "gand the "Dining Phi-d

.,. n 0 I. 5 "Funcno , d
f
or the first e 1 10 f H' 01'" picture in Chapter , . g" are due to John e h

"T wer 0 an d List Processm , valuable. Teo . Chapter 10, "Structures an. h nks go to him, too.
losophers" Plctur~ ~l1fornia, Riverside. Our speml t ~ 'th helpful suggestions: Mur.
Pillis, UruverSlty 0 k other people who prOVIded ~s WI hae! Beeson, San Jose State

We also want to th~:rsity of California, Santa Cruz, 1~;~dO State University, Ft. Col
ray Baumgarten, Urn C]"f rnia' Randolph Bentson, Co B ie Hewlett-Packard Co.:
University, San Jose: a '.,0 of California, Berkeley; JOhn.;w ofuY Budd, University of
lins; Jim Bloom, Umve.'" Yil of California, Santa Bru:bara, 1Ul ta Cruz; Jim Chrislock,
inc.; Skona Bnttam, umv~; ~yne, University of Cabforma, szan effDonnelly, UniversIty
Arizona, Tucson; Nl::d Jniversity of California, Santa ie': G1ntenbein, University of
Minderaft, inc.; AI Co. I F 'tz AT&T Bell Laboratones, '. L onard Garrett, Temple
of IllinOis, Urbana; DIC <: rG

I

"v'er SRl International, GeOr~la, ,ety San Jose California;
. e' Harry a , St te UrnversI, ., l'f' Wyoming, Lararm , h' . William Giles, Sao Jose a nl<amer University of Ca lor-

University, Plnladdp l~~ of California, Berkeley; Jorge ~af 'a' Mike Johnson, Oregon
Susan Graham, Umversl H 0 Auspex, inc., San Jose, CLOT" 'dro California; Carole
nia, Santa Cruz; RObertlrsaxK~ith Jolly, Chabot College, san

R
e:,s St~te University; Dar.

State University, Corva 1 , tos California; Clifford Layton, og II University of Califor
Kelley, Cabrillo COlleg~, ~ifO;nia, Santa Cruz; Ch~~e M~~o;~uider: Geoffrey Pullum:
rell Long, Uruverstty 0 Pleszkun, University of Co ora 'Santa Cruz Operation, Inc.,
nia, Santa Cruz; Anmew ta Cruz; Peter Rosenerantz, The sit of California, Santa
University of Caltf~ruaie~:;ackard Co., Inc.; Peter sco.~' ~:::::r uJversity of Califonna, Mike Schoonover, ~w. f Washington, Seattle; Tl y , Sh Urnverslty 0 h'
Cruz; Alan aw, n University of Denver. . Carter Shanklin for IS

Santa Cruz; Matt Sta~~li;{C to thank our sponsoring I~d~or to thank John Fuller for
In addition, we wou d ncouragement; and we wou <:e

enthusiasm, sup~ort, a~ e roduction of this book on C. his careful attentIOn to t e p

AI Kelley

g~~~~ity of California, Santa Cruz

Chapter 0

Starting from Zero

Zero is the natural starting point in the C programming language. C counts from O. C
uses 0 to mean false and not 0 to mean true. C array subscripts have 0 as a lower
bound. C strings use 0 as an end-of-string sentinel. C pointers use 0 to designate a null
value. C external and static variables are initialized to 0 by default. This book explains
these ideas and initiates you into the pleasures of programming in C.

C is a general-purpose programming language that was originally designed by Dennis
Ritchie of Bell Laboratories and implemented there on a PDP-ll in 1972. It was first
used as the systems language for the UNIX operating system. Ken Thompson, the devel
oper of UNIX, had been using both an assembler and a language named B to produce
initial versions of UNIX in 1970. C was invented to overcome the limitations of B.

B was a programming language based on BCPL, a language developed by Martin Rich
ards in 1967 as a typeless systems programming language. Its basic data type was the
machine word, and it made heavy use of pointers and address arithmetic. This is con
trary to the spirit of structured programming, which is characterized by the use of
strongly typed languages, such as the ALGOL-like languages. C evolved from Band
BCPL, and it incorporated typing.

By the early 1980s, the original C language had evolved into what is now known as
traditional C by adding the vo; d type, enumeration types, and some other improve
ments. In the late 1980s, the American National Standards Institute (ANSI) Committee
X3]11 created draft standards for what is known as ANSI C or standard C. The commit
tee added the vo; d i< type, function prototypes, a new function definition syntax, and
more functionality for the preprocessor, and in general made the language definition
more precise. Today. ANSI C is a mature, general-purpose language that is widely avail
able on many machines and in many operating systems. It is one of the chief industrial
programming languages of the world, and it is commonly found in colleges and univer
sities everywhere. Also, ANSI C is the foundation for C++, a programming language that
incorporates object-oriented constructs. This book describes the ANSI version of the C
language, along with some topics in C++ and Java.

2 Chapter 0 'f Starting from Zero

0.1 Why C?

C is a small language. And small is beautiful in programming. C has fewer keywords
than Pascal, where they are known as reserved words, yet it is arguably the more power
fullanguage. C gets its power by carefully including the right control structures and
data types and allowing their uses to be nearly unrestricted where meaningfully used.
The language is readily learned as a consequence of its functional minimality.

Cis th: native language of UNIX, and UNIX is a major interactive operating system on
workstatIOns, servers, and mainframes. Also, C is the standard development language
for personal computers. Much of MS-DOS and OS/2 is written in C. Many windowing
packa~es, d.atabase programs, graphics libraries, and other large-application packages
are wntten m C.

. C is portable. Code written on one machine can be easily moved to another. C pro
VIdes .the programmer with a standard library of functions that work the same on all
machmes. Also, C has a built-in preprocessor that helps the programmer isolate any
system-dependent code.

C is terse. C has a very powerful set of operators, and some of these operators allow
t~e programmer to access the machine at the bit level. The increment operator ++ has a
dIrect a~alo~ue in machine language on many machines, making this an efficient opera
to:. I~dlrectIOn and address arithmetic can be combined within expressions to accom
plIsh m one statement or expression what would require many statements in another
!anguag~. For many programmers this is both elegant and efficient. Software productiv:ty studIes show that programmers produce, on average, only a small amount of work
mg cOd.e .each day. A language that is terse explicitly magnifies the underlying
productIVIty of the programmer.

C is modular. C supports one style of routine, the external function, for which argu
ments are passed call-by-value. The nesting of functions is not allowed. A limited form
of priv~cy is provide.d by using the storage class static within files. These features,
along WIth tools prOVIded by the operating system, readily support user-defined librar
ies of functions and modular programming.

C ~s the baSis for c++ and Java. This means that many of the constructs and method
ologIes that are routinely used by the C programmer are also used by the c++ and Java
programmer. Thus, learning C can be considered a first step in learning c++ or Java.

C .i~. efficien: on most machines. Because certain constructs in the language are
expllCltly machine-dependent, C can be implemented in a manner that is natural with
respe~t to the machine's architecture. Because a machine can do what comes naturally,
compiled C code can be very efficient. Of course, the programmer must be aware of any
code that is machine-dependent.

0.2 'f ANSI C Standard 3

C is not without criticism. It has a complicated syntax. It has no automatic array
",V'CHUA" checldng. It makes multiple use of such symbols as 1, and ==. For example, a
common programming error is to use the operator in place of the operator ==. Never
theless, C is an elegant language. It places no straitjacket on the programmer's access
to the machine. Its imperfections are easier to live with than a perfected restrictiveness.

C is appealing because of its powerful operators and its unfettered nature. A C pro
grammer strives for functional modularity and effective minimalism. A C programmer
welcomes experimentation and interaction. Indeed, experimentation and interaction are
the hallmarks of this book

0.2 ANSI C Standard

The acronym ANSI stands for "American National Standards Institute." This institute is
involved in setting standards for many!dnds of systems, including programming lan
guages. In particular, ANSI Committee X3Jl1 is responsible for setting the standard for
the programming language C. In the late 1980s, the committee created draft standards
for what is known as ANSI C or standard C. By 1990, the committee had finished its
work, and the International Organization for Standardization (ISO) approved the stan
dard for ANSI C as well. Thus, ANSI C, or ANSI/ISO C, is an internationally recognized
standard.

The standard specifies the form of programs written in C and establishes how these
programs are to be interpreted. The purpose of the standard is to promote portability,
reliability, maintainability, and efficient execution of C language programs on a variety
of machines. Almost all C compilers now follow the ANSI C standard.

0.3 From C to C++

Today, C is widely available on PCs, workstations, and mainframes throughout the
world. At the same time, machines and operating systems continue to evolve. To
expand the C language or to restrain the use of its constructs in order to conform to a
particular discipline is not in the spirit of C.

Although the C language itself is not being expanded, it often serves as the kernel for
more advanced or more specialized languages. Concurrent C extends the language by

4 Chapter 0 .,.
Starting from Zero

incorpOrating concurrency primi .
Small talk style objects Oth f tlves. Objective C extends the language b . .
ta!; of ~ifferent forms 'of pa~:l1~~:.Of C are used on supercomputers to ia~~oav~~~:~

ost Important is C++ an ob' .
Because it is an exten" Ject-onented language alread' .
ware projects C++ . slO.n ~f C, it al10ws both C and C++ code t b m widespread use.
from C to C++' ") IS readIly learned by the C programmer (50 Cehused on large soft-

. . . ee apter 13 "M . , ovmg

0.4
From C and C++ to Java

Java was designed for w
and portabl . ark on the Internet. It allows th
machine T~;~og~ams that can be downloaded from the ~~rogrammer to write secure

deSigned to rune~n p:~~a~ming language borrows ideas fr~~e~~~ ~un ~n your local
defined in terms of a virtuCal

me
- a~d system-independent manner Its:

n
C++. and is

~~~s~::I~~~~diverse Sys:~~~~~:~c~i:~:~ ~~a;~:~ is inhe~'e~tly ~~:~~~s a~~ 
J' ng on workstations. mg on a PC and various fla-
ava IS often used to write applets on 

~~nd~~:, ~:~,:~e;e:~~~~hicaI ~se~ int::!~~~et~~~~::.tB~sC:~~: i~riowsers. Typ~cal1y, 
C to Java.") earne by the C programmer (5 Ch s an extensIOn of 

. ee apter 14, "MOving from 

Chapter 1 

An Overview of C 

This chapter gives an overview of the C programming language. A series of programs is 
presented, and the elements of each program are carefully explained. Experimentation 
and interaction are emphasized throughout the text. In this chapter, we emphasize how 
to use the basic input/output functions of C. Note carefully that all our C code also 
serves as C++ code and that all the ideas we discuss hold for C++ as well as for C. Of 
course, the C++ programmer has available a richer set of tools and techniques out of 
which programs can be constructed. (See Chapter 13, "Moving from C to CH.") 

Except for Section 1.8, "Arrays, Strings, and Pointers," on page 36, everyone should 
read all the material in this chapter. Any reader who has had experience with arrays, 
pointers, and files in some other language can read all the sections of this chapter to 
get a more complete overview of C. Others can come back to the material when they 
feel they are ready. Everyone should read this chapter with the understanding that tech
nical details and further explanations will come in later chapters. 

1.1 Programming and Preparation 

Resident on the machine is a collection of special programs called the operating system. 
Commonly available operating systems include MS-DOS, OS/2, and UNIX. An operating 
system manages machine resources, provides software for the user, and acts as an 
interface between the user and the hardware. Among the many software packages pro
vided by the operating system are the C compiler and various text editors. The principal 
text editor on the UNIX system is called vi. Some systems, such as Borland C++, inte
grate the text editor and the compiler. We assume that the reader is able to use some 
text editor to create files containing C code. Such files are called source files, and they 



6 Chapter 1 T An Overview of C 

are compiled on most UNIX systems with the cc command, which invokes the C com
piler. Because the cc command invokes the compiler, the name of the command is also 
the name of the compiler. Thus, C compiler and cc compiler are used interchangeably. 
Roughly speaking, a compiler translates source code to object code that is executable. 
On UND( systems, this compiled code is automatically created in a file named a.out. On 
MS-DOS systems, this compiled code is automatically created in a file with the same 
na~e as the .c file, but with the .exe extension replacing the .c extension. At the end of 
thIS cha.pter, i~ Section 1.10, "Operating System Considerations," on page 53, we 
present m detaIl the steps necessary to edit, compile, and execute a program. 

1.2 Program Output 

Programs must communicate to be useful. Our first example is a program that prints 
on the screen the phrase "from sea to shining c." The complete program is 

In file sea.c 

#include <stdio.h> 

i nt mai n(voi d) 
{ 

} 

printf("from sea to shining C\n"); 
return 0; 

Using a text editor, we type this into a file whose name ends in .c. The chOice of a file 
name should be mnemonic. Let us suppose the program has been written in the file 
sea.c. To compile the program, we give the command 

cc sea.c 

If there are no errors in the code, the executable file a.out is created by this command. 
Now the command 

a.out 

executes the program and prints on the screen 

from sea to shining C 

1.2 T Program Output 7 

• Dissection of the sea Program 

• #include <stdio.h> 

A preprocessor is built into the C compiler. When the command to compile a program 
is given, the code is first preprocessed and then compiled. Lines that begin with a # 
communicate with the preprocessor. This #i ncl ude line causes the preprocessor to 
include a copy of the header file stdio.h at this point in the code. This header file is pro
vided by the C system. The angle brackets around <stdi o. h> indicate that the file is to 
be found in the usual place, which is system-dependent. We have included this file 
because it contains information about the pri ntfO function. 

• int main(void) 

This is the first line of the function definition for mai nO. (We write parentheses after 
the name ma into remind the reader that main 0 is a function.) The two words i nt and 
vo; d are keywords, also called reserved words. They have special meaning to the com
piler. In Section 2.4, "Keywords," on page 77, we will see that there are 32 keywords in 
C, including i nt and vo; d. 

• int main(void) 
{ 

Every program has a function named main O. Program execution always starts with this 
function. The top line should be read as "main 0 is a function that takes no arguments 
and returns an i nt value." Here, the keyword i nt tells the compiler that this function 
returns a value of type i nt. The word i nt stands for integer, but the word integer itself 
cannot be used. The parentheses following ma; n indicate to the compiler that mai n is a 
function. This idea is confusing at first because what you see following main is (vo; d) , 
but only the parentheses 0 constitute an operator telling the compiler that ma; n is a 
function. The keyword voi d indicates to the compiler that this function takes no argu
ments. When we write about functions such as main 0 and p ri ntf 0, we usually follow 
the name in print with parentheses. This indicates to the reader that we are discussing 
a function. (Many programming books follow this practice.) 

.. { 

Braces surround the body ofet function definition. They are also used to group state
ments together. 



8 Chapter 1 'f An Overview of C 

III pri ntfO 

The C system contains a standard library of functions that can be used in programs. 
This is a function from the library that prints on the screen. We included the header file 
sldio.h because it provides certain information to the compiler about the function 
printfO. (See exercise 14, on page 63.) 

III "from sea to shining (\n" 

A string constant in C is a series of characters surrounded by double quotes. This string 
is an argument to the function pri ntfO, and it controls what gets printed. The two 
characters \n at the end of the string (read backs lash n) represent a single character 
called newline. It is a nonprinting character. It advances the cursor on the screen to the 
beginning of the next line. 

III printf("from sea to shining (\n") 

This is a call to the pri ntfO function. In a program, the name of a function followed 
by parentheses causes the function to be called, or invoked. If appropriate, the paren
theses may contain arguments. Here, when the pri ntfO function is invoked, it prints 
its argument, a string constant, on the screen. 

III printf("from sea to shining (\n"); 

This is a statement. Many statements in C end vvith a semicolon. 

III return 0; 

This is a retu rn statement. It causes the value zero to be returned to the operating sys
tem, which in turn may use the value in some way, but is not required to do so. (See Sec
tion 12.7, "Returning the Status," on page 579, for further discussion.) Our use of this 
return statement keeps the compiler happy. If we do not use it, the compiler will com
plain. (See exercise 4, on page 60.) One of the principal rnles of programming is "keep 
your compiler happy." 

III } 

The right brace matches the left brace above, ending the function definition for main O . 

• 

1.2 v Program Output 9 

The function pri ntfO acts to print continuously across the screen. It moves the 
cursor to the start of a new line when a newline character is read. The screen is a 
two-dimensional display that prints from left to right and top to bottom. To be read
able, output must appear properly spaced on the screen. 

We can rewrite our first program as follows: 

#include <stdio.h> 

i nt ma; n(voi d) 
{ 

printf("from sea to "); 
printf("shining C"); 
printfCII\n"); 
return 0; 

} 

Although it is different from the first version, it will produce the same o~tput. Each 
time pri ntfO is called, printing begins at the position w~ere the preVIOUS call, to 
pri ntfO left off. If we want to print our phrase on three hnes, we can use newlme 

characters. 

#include <stdio.h> 

int mainCvoid) 
{ 

pri ntf(,'from sea\n"); 
printf("to shining\n(\n"); 
return 0; 

} 

When executed, this program will print 

from sea 
to shining 
( 



10 Chapter 1" An Overview of C 

Let us write one additional variation on this program, one that will box the phrase in a 
rectangle of asterisks. It will show how each character, including blanks and newline 
characters, is Significant, and when it is executed, it will give some sense of the screen 
proportions. 

In file sea2.c 

1.3 

#include <stdio.h> 

int main(void) 
{ 

} 

printf("\n\n\n\n\n\n\n\n\n\n"); 
p r i n t f ( II ,~ * 'i<'1"h~ 'i"hh~ 'I, i, '{doh"", * ,', j, '/d, * \ nil) ; 
pri ntf(" ,~ from sea i'\n") ; 
pri ntf(" i, to shi ni ng C >"\n") ; 
p ri ntf (" "'***'~id'*i"hhh~"''''*i''~*1d''~j(\n'') ; 
printf("\n\n\n\n\n\n\n\n\n\n"); 
return 0; 

Variables, ExpreSSions, and Assignment 

We will write a program to convert the distance of a marathon in miles and yards to 
kilometers. In English units, a marathon is defined to be 26 miles and 385 yards. These 
numbers are integers. To convert miles to kilometers, we multiply by the conversion 
factor 1.609, a real number. In memory, computers represent integers differently from 
reals. To convert yards to miles, we divide by 1760.0, and, as we shall see, it is essential 
to represent this number as a real rather than as an integer. 

Our conversion program will use variables capable of storing integer values and real 
values, In C, aU variables must be declared, or named, at the beginning of the program. 
A variable name, also called an identifier, consists of a sequence of letters, digits, and 
underscores, but may not start with a digit. Identifiers should be chosen to reflect their 
use in the program. In this way, they serve as documentation, making the program more readable. 

1.3 " Variables, Expressions, and Assignment 

In file marathon.c 

Of a marathon in kilometers. *1 Ii' The di stance 

#include <stdio.h> 

int main(void) 
{ 

} 

i nt 
float 

miles, yards; 
kilometers; 

miles 26; 
yards 385; , 
kilometers = 1.609 R 

printf("\nA marathon 
return 0; 

(miles + yards I 1760.0); 
is %f kilometers.\n\n", kilometers); 

The output of the program is. 

A marathon is 42.185970 kilometers. 

• 
Dissection of the marathon Program 

,~ I • 1* The distance of a marathon in kilometers. 

11 

Ii' nd it I is a comment and is ignored by the Anyt~ing written betwe~nt~e ~~:~~~: star~ vvith a comment are listed in the index. compller. All programs m s , 

• int miles, yards; 

. d ts end with a semicolon. ; nt is a key-
This is a declaration. DeclaratIOns ~n ::a~~r:~~ language. It informs the compiler that 
word and is one of t~e f~ndamefnta ty?nt and are to take on integer values. Thus, the the variables followmg It are 0 type 1 . ' 

variables mi 1 es and yards in this program are of type 1 nt. 

• float kilometers; 

. . k word and is one of the fundamental types of the 
This is a de~la:atIOn~:~ ~~~~~l:r ~at the variables following it are of type f.loat and 
language. It m arms I Th the variable ki 1 ometers in this program IS of type are to take on real va ues. us, 
float. 



12 Chapter 1 'V An Overview of C 

II miles 26; 
yards 385; 

These are assignment statements. The equal sign is an assignment operator. The two 
numbers 26 and 385 are integer constants. The value 26 is assigned to the variable 
mi 1 es. The value 385 is assigned to the variable yards. 

II kilometers 1.609 * (miles + yards / 1760.0); 

This is an assignment statement. The value of the expression on the right side of the 
equal sign is assigned to the variable ki 1 ometers. The operators ''<, +, and / stand for 
multiplication, addition, and division, respectively. Operations inside parentheses are 
performed first. Because division has higher precedence than addition, the value of the 

subexpression 

yards / 1760.0 

is calculated first. (See Appendix E, "Operator Precedence and Associativity.") That 
value is added to the value of the variable mi 1 es to produce a value that is then multi
plied by 1. 609. This final value is then assigned to the variable ki lometers. 

II printf("\nA marathon is %f kilometers.\n\n", kilometers); 

This is a statement that invokes, or calls, the pri ntfO function. The function 
pri ntfO can have a variable number of arguments. The first argument is always a 
string, called the control string. The control string in this example is 

"\nA marathon is %f kilometers.\n\n" 

It is the first argument to the function pri ntfO. Inside this string is the conversion 
specification, or format, %f. The formats in a control string, if any, are matched with 
the remaining arguments in the pri ntfO function. In this case, %f is matched '\vith the 
argument kilometers. Its effect is to print the value of the variable kilometers as a 
floating-point number and insert it into the print stream where the format %f occurs . 

• 
Certain words, called keywords are reserved and CalIDOt be used by the programmer 

as names of variables. For example, i nt, float, and double are keywords. A table of 
keywords appears in Section 2.4, "Keywords," on page 77. Other names are knowll to 
the C system and normally would not be redefined by the programmer. The name 
pri ntf is an example. Because pri ntf is the name of a function in the standard 
library, it usually is not used as the name of a variable. 

1.4 'V The Use of #defi ne and #i ncl ude 13 

~ decimal point in a number indicates that it is a floating-point constant rather than 
an mteger constant. Thus, the numbers 37 and 37.0 would be treated differently in a 
progran:. Although there are three floating types-float, double, and long doub 1 e
and varIables can be declared to be of any of these types, floating constants are auto
matically of type dou b 1 e. 

Expressions typi~ally are f~und on the right side of assignment operators and as 
arguments to functlOns. The SImplest expressions are just constants such as 385 d 
1760.0, which were used in the previous program. The name of a variable itself anb 

'd d . d can e 
conSI ere an expreSSlOn, an meaningful combinations of operators with variables 
and constants are also expressions. 

!he evalu.a:i~n of expr~ssions can involve conversion rules. This is an important 
pomt. The dlVIslOn of two mtegers results in an integer value, and any remainder is dis
carded. T~us, for exam~l~, the expre~sion 7/2 has i nt value 3. The expression 7.0/2, 
~owever, IS a doubl.e dlv~ded by an lnt. When the expression 7.0/2 is evaluated, the 
value of the expresslOn 2.1S automatically converted to a doubl e, causing 7.0/2 to have 
the value 3.5. In the prevlOus program, suppose that the statement 

kilometers 1.609 * (miles + yards / 1760.0); 

changed to 

= 1.609 * (miles + yards / 1760); 

lea~s to a progra~ bug. Because the variable yards is of type i nt and has value 
the mteger expresslOn 

s integer division, and the result is the i nt value O. This is not what is wanted. Use 
"0 constant 1760.0, which is of type double, corrects the bug. 

The Use of #defi ne and #i ncl ude 

C compi~er ~as a preprocessor built into it. Lines that begin '\vith a # are called pre
~eSSIYla dIrectIVes. If the lines 

LIIVJIT 100 
PI 3.14159 



14 Chapter 1 V An Overview of C 

occur in a file that is being compiled, the preprocessor first changes all occurrences of 
the identifier LIMIT to 100 and all occurrences of the identifier PI to 3.14159, except 
in quoted strings and in comments. The identifiers LIMIT and PI are called symbolic 
constants. A #defi ne line can occur anywhere in a program. It affects only the lines in 
the file that come after it. 

Normally, all #defi ne lines are placed at the beginning of the file. By convention, all 
identifiers that are to be changed by the preprocessor are '\tv-ritten in capital letters. The 
contents of quoted strings are never changed by the preprocessor. For example, in the 
statement 

pri ntf(" PI == %f\n ", PI); 

only the second PI will be changed by the above #defi ne directives to the preproces
sor. The use of symbolic constants in a program make it more readable. More impor
tantly, if a constant has been defined symbolically by means of the #defi ne facility and 
used throughout a program, it is easy to change it later, if necessary. For example, in 
physics the letter c is often used to designate the speed of light, which is apprOximately 
299792.458 lan/sec. If we write 

#define C 299792.458 /* speed of light in km/sec */ 

and then use C throughout thousands of lines of code to represent symbolically the 
constant 299792.458, it will be easy to change the code when a new phYSical experi
ment produces a better value for the speed of light. All the code is updated by simply 
changing the constant in the #defi ne line. 

In a program, a line such as 

#include "my_file.h" 

is a preprocessing directive that causes a copy of the file my_file.h to be included at this 
point in the file when compilation occurs. A #i ncl ude line can occur anywhere in a file, 
though it is typically at the head of the file. The quotes surrounding the name of the file 
are necessary. An include file, also called a header file, can contain #defi ne lines and 
other #i ncl ude lines. By convention, the names of header files end in .h. 

The C system provides a number of standard header files. Some examples are stdio.h, 
string.h, and math.h. These files contain the declarations of functions in the standard 
library, macros, structure templates, and other programming elements that are com
monly used. As we have already seen, the preprocessing directive 

#include <stdio.h> 

causes a copy of the standard header file stdio.h to be included in the code when compi
lation occurs. In ANSI C, whenever the functions pri ntfO or scanfO are used, the 

1.4 V The Use of #defi ne and #i ncl ude 1 5 

standard header file stdio.h should be included. This file contains the declarations, or 
more specifically, the function prototypes, of these functions. (See Section 1. 7, "Func
tions," on page 29, for further discussion.) 

The Santa Cruz campus of the University of California overlooks the Monterey Bay on 
the Pacific Ocean and some of the ocean just to the northwest of the bay. We like to call 
this part of the ocean that is visible from the campus the "Pacific Sea." To illustrate how 
the #i nc 1 ude facility works, we will 'write a program that prints the area of the Pacific 
Sea in various units of measure. First, we create a header file and put in the following 
lines: 

file pacificsea.h 

#include <stdio.h> 

#define 
#define 
#define 
#define 
#define 

AREA 
SO-MILES_PE~SO-KILOMETER 
SO-FEET_PE~SO-MILE 
SO-INCH ES_PER_SQ_FOOT 
ACRES_PER_SO-MILE 

we write the function main 0 in a .c file. 

/* Measuring the Pacific Sea. */ 

#include "pacificsea.h" 

int main(void) 
{ 

2337 
0.3861021585424458 
(5280 ,~ 5280) 
144 
640 

const int 
double 

pacific_sea AREA; t l ' in sq kilometers 1,/ 
acres, sq_miles, sq_feet, sq_inches; 

printf("\nThe Pacific Sea covers an area"); 
printf(" of %d square kilometers.\n", pacificsea); 
sq_miles == SO-MILES_PER_SO-KILOMETER * pacific_sea; 
sq_feet SO-FEET_PER_SO-MILE * sq_miles; 
sq_inches == SO-INCHES_PER_SO-FOOT * sq_feet; 
acres = ACRES_PER_SO-MILE -{, sq_mi 1 es; 
printf("In other units of measure this is:\n\n"); 
printf("%22.7e acres\n", acres); 
printf("%22.7e square miles\n", sq_miles); 
printf("%22.7e square feet\n", sq_feet); 
printf("%22.7e square inches\n\n", sq_inches); 
return 0; 



-----------~--~~~~~~ --~~-------

16 Chapter 1 T An Overview of C 

Now our program is written in two files, a .h file and a .c file. The output of this pro
gram is 

The Pacific Sea covers an area of 2337 square kilometers. 
In other units of measure this is: 

5.7748528e+05 acres 
9.0232074e+02 square miles 
2.515525ge+10 square feet 
3.6223572e+12 square inches 

The new programming ideas are described in the following dissection table. 

• 
Dissection of the pacific_sea Program 

III #include "pacific_sea.h" 

This #i ncl ude line is a preprocessing directive. It causes a copy of the filepacificsea.h 
to be included when the program is compiled. Because this file contains the line 

#include <stdio.h> 

the preprocessor expands the line in turn and includes a copy of the standard header 
file stdio.h in the code as well. We have included stdio.h because we are using pri ntfO. 
Five symbolic constants are defined in paci(icsea.h. 

III #define AREA 2337 

This #defi ne line is a preprocessing directive. It causes the preprocessor to replace all 
occurrences of the identifier AREA by 2337 in the rest of the file. By convention, capital 
letters are used for identifiers that will be changed by the preprocessor. If at some 
future time a new map is made and a new figure for the area of the Pacific Sea is com
puted, only this line needs to be changed to update the program. 

III #define 0.3861021585424458 

The floating constant 0.3861021585424458 is a conversion factor. The use of a sym
bolic name for the constant makes the program more readable. 

1.4 T The Use of #defi ne and #i ncl ude 17 

III #define (5280 t, 5280) 

The preprocessor changes occurrences of the first sequence of characters into the sec
ond. If a reader of this program knows that there are 5280 feet in a mile, then that 
reader will quickly recognize that this line of code is correct. Instead of (5280 ,', 
5280), we could have vVTitten 27878400; because C compilers expand constant expres
sions during compilation, run-time efficiency is not lost. Although the parentheses are 
not necessary, it is considered good programming practice to use them. For technical 
reasons parentheses are often needed around symbolic expressions. (See Section 8.3, 
"Macros with Arguments," on page 368.) 

l1li canst int pacific_sea = AREA; /* in sq kilometers */ 

When compiled, the preprocessor first changes AREA to 2337. The compiler then inter
prets this line as a declaration of the identifier paci fi c_sea. The variable is declared 
as type i nt and initialized to the value 2337. The keyword canst is a type qualifier that 
has been newly introduced by ANSI C. It means that the associated variable can be ini
tialized, but cannot thereafter have its value changed. (See exercise 18, on page 65.) On 
some systems this means that the variable may be stored in ROM (read-only memory). 

III double acres, sq_miles, , sq_inches; 

These variables are defined to be of type double. In ANSI C, floating types are float, 
doub 1 e, and long doub 1 e; long double does not exist in traditional C. Each of these 
types is used to store real values. Typically. a fl oa t vyill store 6 significant digits and a 
doub 1 e will store 15 significant digits. Along double will store at least as many signif
icant digits as a daub 1 e. (See Section 3.6, "The Floating Types," on page 119.) 

III printf("%22.7e acres\n", acres); 

This statement causes the line 

5.7748528e+05 acres 

to be printed. The number is vvritten in scientific notation and is interpreted to mean 
5.7748528 x 105. Numbers written this way are said to be written in an e-format. The 
conversion specification %e causes the system to print a floating expression in an e-for
mat vvith default spacing. A format of the form %m.ne, where m and n are positive inte
gers, causes the system to print a floating expression in an e-format in m spaces total, 
with n digits to the right of the decimal paint. (See Section 11.1, "The Output Function 
pri ntfO," on page 493.) 

• 



18 Chapter 1." An Overview of C 

1.5 The Use of printf() and scanf() 

The function pri ntfO is used for output. In an analogous fashion, the function 
seanfO is used for input. (The fin pri ntf and seanf stands for formatted.) Techni
cally, these functions are not part of the C language, but rather are part of the C system. 
They exist in a library and are available for use wherever a C system resides. Although 
the object code for functions in the library is supplied by the C system, it is the respon
sibility of the programmer to declare the functions being used. ANSI C has introduced a 
new and improved kind of function declaration called a function prototype. This is one 
of the most important changes introduced into the language by ANSI C. The function 
prototypes of functions in the standard library are available in the standard header 
files. In particular, the function prototypes for pri ntfO and seanfO are in stdio.h. 
Thus, this header file should be included whenever the function pri ntfO or scanfO 
is used. (See Section 1.7, "Functions," on page 29.) 

Both pri ntfO and seanfO are passed a list of arguments that can be thought of as 

controLstrtng and other_arguments 

where controLstring is a string and may contain conversion specifications, or formats. 
A conversion specification begins with a % character and ends vvith a conversion charac
ter. For example, in the format %d the letter d is the conversion character. As we have 
already seen, this format is used to print the value of an integer expression as a decimal 
integer. To print the letters on the screen, we could use the statement 

printf(lfabe lf ); 

Another way to do this is with the statement 

pri ntf("%slf I "abc"); 

The format %s causes the argument If abc If to be printed in the format of a string. Yet 
another way to do this is with the statement 

printf("%c%c%e lf , 'a', 'b', 'e'); 

Single quotes are used to designate character constants. Thus, 'a' is the character con
stant corresponding to the lowercase letter a. The format %e prints the value of an 
expression as a character. Notice that a constant by itself is considered an expression. 

Conversion 
character 

1.5 ." The Use of pri ntfO and seanfO 

printfO conversion characters 

How the corresponding argument is printed 

c as a character 

d as a decimal integer 

e as a floating-point number in scientific notation 

f as a floating-paint number 

9 in the e-format or f-format, whichever is shorter 

5 as a string 

19 

When an argument is printed, the place where it is printed is called its field and the 
number of characters in its field is called its field width. The field width can be speCified 
in a format as an integer occurring between the % and the conversion character. Thus, 
the statement 

pri ntf("%c%3e%5c\n", I A I, 'B', • C'); 

vvill print 

ABC 

The function scanfO is analogous to the function pri ntfO but is used for input 
rather than output. Its first argument is a control string having formats that corre
spond to the various ways the characters in the input stream are to be interpreted. The 
other arguments are addresses. ConSider, for example, the statement 

scanf("%d", &x); 

The format %d is matched with the expression &x, causing seanfO to interpret charac
ters in the input stream as a decimal integer and store the result at the address of x. 
Read the expression &x as "the address of x" because & is the address operator. 

When the keyboard is used to input values into a program, a sequence of characters 
is typed, and it is this sequence of characters, called the input stream, that is received 
by the program. If 1337 is typed, the person typing it may think of it as a decimal inte
ger, but the program receives it as a sequence of characters. The scanfO function can 
be used to convert a string of decimal digits into an integer value and to store the value 
at an appropriate place in memory. 



20 Chapter 1" An Overview of C 

. The functio~l scanfO returns an int value that is the number of successful conver
SlO~s accomphshe~ or the system defined end-of-value. The function pri ntfO returns 
an 1 nt value that IS the number of characters printed or a negative value in case of an 
error. 

scanfO conversion 

Conversion 
character How characters in the input stream are converted 

c character 
d decimal integer 
f floating-point number (float) 
If or LF floating-point number (double) 
5 string 

~he d.etails ~oncer~~g pri ntfO and scanfO are found in Section 11.1, "The Output 
;unctlOn p rl ntf 0, _ on page 493, and in Section 11.2, "The Input Function scanfO," 

n page 499. Here, we only want to present enough information to get data into and out 
of the mach" .. 

me m a mImmally acceptable way. The following program reads in three 
chharacters and some numbers and then prints them out. Notice that variables of type 
c ar are used to store character values. 

In file echo.c 

#include <stdio.h> 

int main(void) 
{ 

} 

char 
int 
float 
double 

c1, c2, c3; 
i ; 
X' , 
y; 

pri~tf(':\n%s\n%s", "Input three characters, II 
an lnt, a float and a double' "). 

sC~nf(II:c%c%c%d~f%lf", &c1, &c2, &c3, &ti, &x, &y); 
pr:ntf(II\nHere 1S the data that you typed in:\n"); 
pn ntf( %3c%3c%3c%5d%17e%17e\n\n" c1 c2 c3 . return 0; , , , ,1, X, y) ; 

1.6 " Flow of Control 21 

If we compile the program, run it, and type in ABC 3 55 77.7, then this is what 
appears on the screen: 

Input three characters, 
an int, a float, and a double: ABC 3 55 77.7 
Here is the data that you typed in: 

ABC 3 5.S00000e+01 7. 770000e+01 

When reading in numbers, scanfO will skip white space (blanks, newlines, and tabs), 
but when reading in a character, white space is not skipped. Thus, the program will not 
run correctly with the input AB C 3 55 77. l. The third character read is a blank, 
which is a perfectly good character; but then scanfO attempts to read C as a decimal 
integer, which causes difficulties. 

1.6 Flow of Control 

Statements in a program are normally executed in sequence. However, most programs 
require alteration of the normal sequential flow of control. The if and i f-e 1 se state
ments provide alternative actions, and the whi 1 e and for statements provide looping 
mechanisms. These constructs typically require the evaluation of logical expressions, 
expressions that the programmer thinks of as being either true or false. In C, any non
zero value is considered to represent true, and any zero value is considered to repre
sent false. 

The general form of an if statement is 

if (expr) 
statement 

If expr is nonzero (true), then statement is executed; otherwise, it is skipped. It is impor
tant to recognize that an if statement, even though it contains a statement part, is 
itself a single statement. Consider as an example the code 

a = 1; 
if (b == 3) 

a = 5; 
pri ntf("%d", a); 

The symbols == represent the is equal to operator. In the code above, a test is made to 
see if the value of b is equal to 3. If it is, then a is assigned the value 5 and control 



22 Chapter 1 T An Overview of C 

passes to the pri ntfO statement, causing 5 to be printed. If, however, the value of b is 
not 3, then the statement 

a = 5; 

is skipped and control passes directly to the pri ntfO statement, causing 1 to be 
printed. In C, logical expressions have either the i nt value 1 or the i nt value O. Con
sider the logical expression 

b == 3 

This expression has the i nt value 1 (true) if b has the value 3; otherwise, it has the i nt 
value 0 (f'alse). 

A group of statements surrounded by braces constitutes a compound statement. Syn
tactically, a compound statement is itSelf a statement; a compound statement can be 
used anywhere that a statement can be used. The next example uses a compound state
ment in place of a simple statement to control more than one action: 

if Ca == 3) { 
b 5; 
e = 7; 

} 

Here, if a has value 3, then two aSSignment statements are executed; if a does not have 
value 3, then the two statements are skipped. 

An i f-e 1 se statement is of the form 

if Cexpr) 
statement] 

else 
statement2 

It is important to recognize that the whole construct, even though it contains state
ments, is itself a single statement. If expr is nonzero (true), then statement] is executed; 
otherwise statement2 is executed. As an example, consider the code 

1.6 T Flow of Control 23 

if (ent 0) { 
a == 2 ; 
b == 3; 
e 5 ; 

} 
else { 

a -1; 
b -2; 
e -3; 

} 

printf(lf%d", a + b + e); 

This causes 10 to be printed if ent has value 0, and causes -6 to be printed otherwise. 
Looping mechanisms are very important because they allow repetitive actions. The 

following program illustrates the use of a whi 1 e loop: 

In file consecutive_sums.c 

#include <stdio.h> 

int mainCvoid) 
{ 

i nt i = 1, sum 

while Ci <= 5) { 
sum += i; 
++i; 

} 

0; 

printfC"sum %d\n", sum); 
return 0; 

} 

• • 
Dissection of the consecutive_sum Program 

• while C; <= 5) { 
sum += i; 
++i; 

} 

This construct is a whi 1 e statement, or whi 1 e loop. The symbols <= represent the less 
than or equal to operator. A test is made to see if i is less than or equal to 5. If it is, the 
group of statements enclosed by the braces { and} is executed, and control is passed 



, 

24 Chapter 1 T An Overview of C 

back to the beginning of the whi 1 e loop for the process to start over again. The whi 1 e 
loop is repeatedly executed until the test fails-that is, until i is not less than or equal 
to 5. When the test fails, control passes to the statement immediately following the 
whi 1 e statement, which in this program is a pri ntfO statement. 

III sum += i; 

This is a new kind of assignment statement. It causes the stored value of sum to be 
incremented by the value of i. An equivalent statement is 

sum sum + i; 

The variable sum is assigned the old value of sum plus the value of i. A construct of the 
form 

variable op= expr 

where op is an operator such as +, -, 1<, or / is equivalent to 

variable variable op (expr) 

II ++i; 

C uses ++ and to increment and decrement, respectively, the stored values of vari-
ables. The statement 

++i ; is equivalent to i = i + 1; 

In a similar fashion, --i will cause the stored value of i to be decremented. (See Section 
2.10, "Increment and Decrement Operators," on page 85, for further discussion of these 
operators.) 

• 
A hand simulation of the program shows that the whi 1 e loop is executed five times 

with i taking on the values 1, 2, 3, 4, 5 successively. When control passes beyond th~ 
whi 1 e statement, the value of i is 6, and the value of sum is 

1+2+3+4+5 which is equal to 15 

This is the value printed by the pri ntfO statement. 
The general form of a whi 1 e statement is 

whil e (expr) 
statement 

1.6 'f Flow of Control 25 

where statement is either a simple statement or a compound statement. When the 
whi 1 e statement is executed, expr is evaluated. If it is nonzero (true), then statement is 
executed and control passes back to the beginning of the whi 1 e loop. This process con
tinues until expr has value 0 (false). At this paint, control passes on to the next state
ment. In C, a logical expression such as i <= 5 has i nt value 1 (true) if i is less than or 
equal to 5, and has i nt value 0 (false) otherwise. 

Another looping construct is the for statement. (See Section 4.9, "The for State
ment," on page 167, for a more complete discussion.) It has the form 

for (exprl; expr2; expr3) 
statement 

If all three expressions are present, then this is equivalent to 

exprl; 
whi 1 e (expr2) { 

statement 
expr3; 

} 

Typically, exprl performs an initial assignment, expr2 performs a test, and expr3 incre
ments a stored value. Note that expr3 is the last thing done in the body of the loop. The 
for loop is repeatedly executed as long as expr2 is nonzero (true). For example, 

for (i = 1; i <= 5; ++i) 
sum += i; 

This for loop is equivalent to the whi 1 e loop used in the last program. 
Our next program illustrates the use of an i f-e 1 se statement within a fo r loop . 

Numbers are read in one after another. On each line of the output we print the count 
and the number, along with the minimum, maximum, sum, and average of all the num
bers seen up to that point. (See exercise 16, on page 65, through exercise 18, on page 
65, for further discussion concerning the computation of the average.) 



26 Chapter 1 V An Overview of C 

/* Compute the minimum, maximum, sum, and average. 

#include <stdio.h> 
#include <stdlib.h> 

i nt mai n(voi d) 
{ 

} 

int 
double 

i . , 
x, min, max, sum, avg; 

if (scanf("%lf", &x) 1= 1) { 
printf("No data found bye!\n"); 
exit(1); 

} 

min = max = sum = avg = x; 
printf("%5s%9s%9s%9s%12s%12s\n%5s%9s%9s%9s%12s%12s\n\n", 

"Count", "Item", "Min", "Max", "Sum", "Average", 
" n, II lI, 11 II, If If, II B, n ") ; 

printf("%5d%9.lf%9.lf%9.1f%12.3f%12.3f\n", 
1, x, min, max, sum, avg); 

for (i = 2; scanf("%lf", &x) 
if (x < mi n) 

min = x; 
else if (x > max) 

max = x; 
sum += x; 
avg = sum / i; 

1; ++i) { 

pri ntf("%5d%9.lf%9.lf%9.1f%12.3f%12. 3f\n" , 
i, x, min, max, sum, avg); 

} 
return 0; 

This program has been designed to read numbers from a file. We can type them in from 
the keyboard, but if we do this, then what appears on the screen will not be formatted 
correctly. To test this program, we compile it and put the executable code in 
running_sum. Then we create a file called data and put the following numbers in it: 

3 -5 7 -9 11 -13 15 -17 19 -21 

Now, when we give the command 

running_sum < data 

the t'ollovving appears on the screen: 

Count Item Min Max 

1 3.0 3.0 3.0 
2 -5.0 5.0 3.0 
3 7.0 5.0 7.0 

The use of the symbol < in the command 

running_sum < data 

1.6 V Flow of Control 

Sum 

3.000 
-2.000 

5.000 

Average 

3.000 
-1.000 

1.667 

27 

causes the input to be redirected. The program running_sum takes its input from the 
standard input file, which is normally connected to the keyboard. The operating sys
tem, however, has redirected the input to the file data. In this context, the symbol < is 
thought of as a left pointing arrow. (See Section 1.10, "Operating System Consider
ations," on page 53, for further discussion.) 

• 
Dissection of the running_sum Program 

III if (scanf("%lf", &x) 1 1) { 
printf("No data found byel\ntl); 
exit(1); 

} 

Recall that scanf 0 returns as an i nt the number of successful conversions per
formed. If scanfO is unable to make a conversion, then we print a message and exit 
the program. The function exi to is in the standard library, and its function prototype 
is in stdlib.h. When ex itO is invoked, certain housekeeping tasks are performed and 
the program is terminated. This function takes a single argument of type i nt that, by 
convention, is zero if the programmer considers the exit to be normal, and is nonzero 
otherwise. 

III printf("%5s%9s%9s%9s%12s%12s\n%5s%9s%9s%9s%12s%12s\n\n", 
"Count", "Item", "Min", "Max", "Sum", "Average", 
II 11 If II II II tI f1 it H 11 

This statement prints headings. The field widths in the formats have been chosen to 
put headings over columns. 



--

28 Chapter 1 'f An Overview of C 

III printfCI%5d%9.lf%9.lf%9.lf%12.3f%12.3f\n", 
1, x, min, max, sum, avg); 

After the headings, this is the first line to be printed. Notice that the field widths here 
match the field widths in the previous pri ntfO statement. 

III for Ci = 2; scanfCI%lf", &x) == 1; ++i) { 

The variable i is initially assigned the value 2. Then a test is made to see if the logical 
expression 

scanfCI%lf", &x) == 1 

is true. If scanfO can read characters from the standard input stream, interpret them 
as a doub 1 e (read 1 f as "long float"), and place the value at the address of x, then a suc
cessful conversion has been made. This causes scanfO to return the i nt value 1, 
which in turn makes the logical expression true. As long as scanfO can continue to 
read characters and convert them, the body of the fo r loop will be executed repeatedly. 
The variable i is incremented at the end of the body of the loop. 

III if Cx < min) 
min = x; 

else if Cx > max) 
max = x; 

This construct is a single i f-e 1 se statement. Notice that the statement part following 
the else is itself an if statement. Each time through the loop this i f-e 1 se statement 
causes the values for mi n and max to be updated, if necessary. 

• 

1.7'f Functions 29 

1.7 Functions 

The heart and soul of C programming is the function. A function represents a piece of 
code that is a building block in the problem-solving process. All functions are on the 
same external level; they cannot be nested one inside another. A C program consists of 
one or more functions in one or more files. (See Section 5.8, "Developing a Large Pro
gram," on page 209.) Precisely one of the functions is a mai nO function, where execu
tion of the program begins. Other functions are called from within mai nO and from 
within each other. 

Functions should be declared before they are used. Suppose, for example, that we 
want to use the function powO, called the power function, one of many functions in the 
mathematics library available for use by the programmer. A function call such as 
powCx, y) returns the value of x raised to the y power. To give an explicit example, 
powC2. 0, 3.0) yields the value 8.0. The declaration of the function is given by 

double powCdouble x, double y); 

Function declarations of this type are called function prototypes. An equivalent function 
prototype is given by 

double powCdouble, double); 

Identifiers such as x and y that occur in parameter type lists in function prototypes are 
not used by the compiler. Their purpose is to provide documentation to the program
mer and other readers of the code . 

A function prototype tells the compiler the number and type of arguments to be 
passed to the function and the type of the value that is to be returned by the function. 

ANSI C has added the concept of function prototype to the C language. This is an 
important change. In traditional C, the function declaration of powO is given by 

double powO; /* traditional style */ 

Parameter type lists are not allowed. ANSI C compilers will still accept this style, but 
function prototypes, because they greatly reduce the chance for errors, are much pre
ferred. (See exercise 5, on page 236, in Chapter 5, "Functions.") 

A function prototype has the following general form: 

type function_nameCparameter type list) ; 



i 
j 

L 

30 Chapter 1" An Overview of C 

The parameter type list is typically a list of types separated by commas. Identifiers are 
optional; they do not affect the prototype. The keyword voi d is used if a function takes 
no arguments. Also, the keyword voi d is used if no value is returned by the function. If 
a function takes a variable number of arguments, then ellipses ... are used. For exam
ple, the function prototype 

i nt pri ntfCconst char ~'format, ... ); 

can be found in stdio.h. (See exercise 14, on page 63.) This information allows the com
piler to enforce type compatibility. Arguments are converted to these types as if they 
were follOwing rules of assignment. 

To illustrate the use of functions, we set for ourselves the following task: 

Creating maxmin Program 

1 Print information about the program (this list). 

2 Read an integer value for n. 

3 Read in n real numbers. 

4 Find minimum and maximum values. 

Let us write a program called maxmin that accomplishes the task. It consists of three 
functions written in the file maxmin.c. 

In file maxmin.c 

#include <stdio.h> 

float 
float 
void 

maximumCfloat x, float y); 
minimumCfloat x, float y); 
prn_infoCvoid); 

int mainCvoid) 
{ 

i nt 
float 

i, n; 
max, min, x; 

prn_infoO; 
pri ntfC"Input n: "); 
scanfC"%d", &n); 
printfC"\nlnput %d real numbers: 
scanfC"%f" , &x); 
max = min = x; 

" n) ; 

} 

for Ci = 2; i <= n; ++i) { 
scanfC"%f", &x); 
max = maximumCmax, x); 
min = minimumCmin, x); 

} 
printfC"\n%s%l1.3f\n%s%11.3f\n\n", 

"Maximum value:", max, 
"Minimum value:", min); 

return 0; 

float maximumCfloat x, float y) 
{ 

} 

if Cx > y) 
return x; 

else 
return y; 

float minimumCfloat x, float y) 
{ 

} 

if Cx < y) 
return x; 

else 
return y; 

void prn_infoCvoid) 
{ 

printfC"\n%s\n%s\n\n", 

1.7 " Functions 

} 

"This program reads an integer value for n, and then", 
"processes n real numbers to find max and min values."); 

To test the program, we give the command 

maxmin 

Suppose, when prompted, we type in 5 followed by the line 

737.7799 -11.2e+3 -777 0.001 3.14159 

31 



32 Chapter 1.. An Overview of C 

Here is what appears on the screen: 

• 

This program reads an integer value for n, and then 
processes n real numbers to find max and min values. 

Input n: 5 

Input 5 real numbers: 737.7799 -11.2e+3 -777 0.001 3.14159 

Maximum value: 737.780 
Minimum value: -11200.000 

Dissection of the maxmin Program 

• #include <stdio.h> 

float 
float 
void 

maximum(float x, float y); 
minimum(float x, float y); 
prn_info(void); 

i nt mai n (voi d) 
{ 

The function prototypes for the functions maxi mumO, mi ni mumO, and prn_ i nfoO 
occur at the top of the file after any #i ncl ude lines and #defi ne lines. The first two 
function prototypes tell the compiler that the functions maxi mum 0 and mi ni mum 0 
ea::h take t,wo arguments of type float and each return a value of type float. The 
thlrd functIOn prototype tells the compiler that prn_ i nfoO takes no arguments and 
returns no value. Note that for the first two function prototypes we could just as well 
have written 

float 
float 

maximum(float, float)· . . , 
mlnlmum(float, float); 

The co:upiler does not make any use of parameters such as x and y in function proto
types. rhe parameters serve only as documentation for the reader of the code. 

• int main(void) 
{ 

i nt 
float 

i, n; 
max, min, x; 

prn_infoO; 
pri ntfC'Input n: "); 
scanf("%d", &n); 

1.7 .. Functions 33 

Variables are declared at the beginning of ma in O. The first executable statement in 
mainO is 

This statement invokes the function prn_infoO. The function contains a single 
pri ntfO statement that prints information about the program on the screen. The user 
responds to the prompt by typing characters on the keyboard. We use scanfO to inter
pret these characters as a decimal integer and to place the value of this integer at the 
address of n. 

• printf("\nInput %d real numbers: ", n); 
scanf("%f", &x); 
max = min = x; 

The user is asked to input n real numbers. The first real number is read and its value 
is placed at the address of x. Because the assignment operator associates from right to 
left 

max min = x; is equivalent to max = (mi n = x); 

Thus, the value x is assigned first to mi n and then to max. (See Section 2.9, "Precedence 
and Associativity of Operators," on page 83.) 

• for (i = 2; i <= n; ++i) { 

} 

scanf("%f", &x); 
max max;mum(max, x); 
min = minimum(min, x); 

Each time through the loop a new value for x is read in. Then the current values of max 
and x are passed as arguments to the function maxi mum 0, and the larger of the two 
values is returned and assigned to max. Similarly, the current values of mi n and x are 
passed as arguments to the function mi ni mumO, and the smaller of the two values is 
returned and assigned to mi n. In C, arguments to functions are always passed by value. 



34 Chapter 1 'Y An Overview of C 

This means that a copy of the value of each argument is made, and it is these copies 
that are processed by the function. The effect is that variables passed as arguments to 
functions are not changed in the calling environment. 

.. float maximum(float x, float y) 
{ 

} 

if (x > y) 
return x; 

else 
return y; 

This is the function definition for the function maxi mum O. It specifies explicitly how 
the function will act when it is called, or invoked. A function definition consists of a 
header and a body. The header is the code that occurs before the first left brace {. The 
body consists of the declarations and statements between the braces { and}. For this 
function definition the header is the line 

float maximum(float x, float y) 

The first keyword float in the header tells the compiler that this function is to return a 
value of type float. The parameter list consists of the comma-separated list of identi
fier declarations within the parentheses e and) that occur in the header to the function 
definition. Here, the parameter list is given by 

float x, float y 

The identifiers x and yare formal parameters. Although we have used the identifiers x 
and y both here and in the function ma in 0, there is no need to do so. There is no rela
tionship, other than a mnemonic one, between the x and y used in maxi mum 0 and the x 
and y used in ma in O. Parameters in a function definition can be thought of as place
holders. When expressions are passed as arguments to a function, the values of the 
expressions are associated with these parameters. The values are then manipulated 
according to the code in the body of the function definition. Here, the body of the func
tion definition consists of a single i f-el se statement. The effect of this statement is to 
return the larger of the two values x and y that are passed in as arguments. 

.. return x; 

This is a retu rn statement. The general form of a retu rn statement is 

return; or retu rn expr; 

1.7'Y Functions 35 

A retu rn statement causes control to be passed back to the calling environment. If an 
expression follows the keyword return, then the value of the expression is passed 
back as well. 

.. float minimumefloat x, float y) 
{ 

} 

if ex < y) 
return x; 

else 
return y; 

The function definition for mi n i mum 0 comes next. Note that the header to the function 
definition matches the function prototype that occurs at the top of the file. This is a 
common programming style. 

.. void prn_infoevoid) 
{ 

This is the function definition for prn_ i nfoO. The first voi d tells the compiler that 
this function returns no value, the second that this function takes no arguments. 

• • 
Call-by-Value 

In C, arguments to functions are always passed by value. This means that when an 
expression is passed as an argument to a function, the expression is evaluated, and it is 
this value that is passed to the function. The variables passed as arguments to func
tions are not changed in the calling environment. Here is a program that illustrates this: 



36 Chapter 1... An Overview of C 

In file no_change.c 

#include <stdio.h> 

int main(void) 
{ 

int a = 1; 
void try_to_change_it(;nt); 

pri ntf("%d\n" , a); 
try_to_change_;t(a); 
pri ntf("%d\n" , 
return 0; 

} 

void 
{ 

a = 777; 
} 

a); 

/* 1 ;5 

/* 1 is 

printed */ 

printed again! */ 

When a is passed as an argument, the expression a is evaluated to produce a value that 
we can think of as a copy of a. It is this copy, rather than a itself, that is passed to the 
function. Hence, in the calling environment the variable a does not get changed. 

Tbis argument-passing convention is known as call-by-value. To change the value of a 
variable in the calling environment, other languages provide call-by-reference. In C, to 
get the effect of call-by-reference, pointers must be used. (See Section 6.3, "Call-by-Ref
erence," on page 252.) 

1.8 Arrays, Strings, and Pointers 

In C, a string is an array of characters, and an array name by itself is a pointer. Because 
of tbis, the concepts of arrays, strings, and pointers are intimately related. A pointer is 
just an address of an object in memory. C, unlike most languages, provides for pointer 
arithmetic. Because pointer expressions of great utility are possible, pointer arithmetic 
is one of the strong points of the language. 

1.8 ... Arrays, Strings, and Pointers 37 

Arrays 

Arrays are used when many variables, all of the same type, are desired. For example, 
the declaration 

int a[3]; 

allocates space for the three-element array a. The elements of the array are of type i nt 
and are accessed as a [0], a [1], and a [2]. The index, or subscript, of an array always 
starts at O. The next program illustrates the use of an array. The program reads in five 
scores, sorts them, and prints them out in order. 

In file scores.c 

#include <stdio.h> 
#define CLASS_SIZE 5 

int main(void) 
{ 

} 

int i, j, score[CLASS_SIZEJ. sum = 0, tmp; 

pri ntf("Input %d scores: ", CLASS_SIZE); 
for (i = 0; i < CLASS_SIZE; ++i) { 

scanf("%d", &score[i]); 
sum += scorer;]; 

} 

for (i 0; i < CLASS_SIZE - 1; ++i) 
for (j = CLASS_SIZE - 1; j > i; 

if (score[j-1J < score[jJ) { 
tmp = score[j-l]; 
score[j-1] = score[jJ; 
score[j] = tmp; 

} 
pr;ntf("\nOrdered scores:\n\n"); 
for (; = 0; i < CLASS_SIZE; ++i) 

/* bubble sort */ 
) 
/* check the order */ 

pr;ntf(" score[%d] =%5d\n", i, score[i]); 
printf("\n%18d%s\n%18.lf%s\n\n", 

sum, II ;5 the sum of all the scores", 
(double) sum / CLASS_SIZE, " ;5 the class average"); 

return 0; 

If we execute the program and enter the scores 63, 88, 97, 53, 77 when prompted, we 
will see on the screen 



38 Chapter 1 V An Overview of C 

Input 5 scores: 
Ordered scores: 

score [0J 
score [lJ 
score [2J 
score [3J 
score[4] 

63 

97 
88 
77 
63 
53 

378 
75.6 

88 97 53 77 

is the sum of all the scores 
is the class average 

A bubble sort is used in the program to sort the scores. This construction is typically 
done with nested for loops, with a test being made in the body of the inner loop to 
check on the order of a pair of elements. If the elements being compared are out of 
order, their values are interchanged. Here, this interchange is accomplished by the code 

tmp = score[j-lJ; 
score[j-lJ = score[jJ; 
score[j] =: tmp; 

In the first statement, the variable tmp is used to temporarily store the value of 
score [j-l]. In the next statement, the value of score [j-1J stored in memory is being 
ovemTitten with the value of score [jJ. In the last statement, the value of score [j] is 
being overwritten with the original value of score [i], which is now in tmp. Hand simu
lation of the program with the given data will show the reader why this bubble sort con
struct of two nested fa r loops achieves an array with sorted elements. The name 
bubble sort comes from the fact that at each step of the outer loop the desired value 
among those left to be worked over is bubbled into position. Although bubble sorts are 
easy to code, they are relatively inefficient. Other sorting techniques execute much 
faster. This is of no concern when sorting a small number of items infrequently, but if 
the number of items is large or the code is used repeatedly, then efficiency is, indeed, 
an important consideration. The expression 

(double) sum / CLASS_SIZE 

which occurs as an argument in the final pri ntfO statement, uses a cast operator. The 
effect of (double) sum is to cast, or convert, the i nt value of sum to a doub 1 e. Because 
the precedence of a cast operator is higher than that of the division operator, the cast is 
done before division occurs. (See Section 2.9, "Precedence and Associativity of Opera
tors," on page 83.) When a daub 1 e is divided by an i nt, we have what is called a mixed 
expression. Automatic conversion now takes place. The i nt is promoted to a doub 1 e, 
and the result to the operation is a doubl e. If a cast had not been used, then integer 
division would have occurred and any fractional part would have been discarded. More
over, the result would have been an i nt, which would have caused the format in the 
pri ntfO statement to be in error. 

1.8 V Arrays, Strings, and Pointers 39 

In C, ~ string is an arr~y of characters. In this section, in addition to illustrating the use 
of strmgs, we want to mtroduce the use of getcharO and putcharO. These are mac
ros defined in stdio.h. Although there are technical differences, a macro is used in the 
same way a function is used. (See Section 8.7, "The Macros in stdio.h and ctype.h," on 
page 382.) The macros getcharO and putcharO are used to read characters from the 
keyboard and to print characters on the screen, respectively. 

Our next ~rogram ~tores a line typed in by the user in an array of characters (a string) 
and then prmts the lme backwards on the screen. The program illustrates how charac
ters in C can be treated as small integers. 

} 

/* Have a nice day! */ 

#include <ctype.h> 
#include <stdio.h> 

#define MAXSTRING 100 

int main(void) 
{ 

char c, name[MAXSTRING]; 
i, sum = 0; int 

printf("\nHi! What is your name? "); 
for (i = 0; (c = getchar()) != '\n'; ++i) { 

name[iJ c; 
if Ci sal pha(c)) 

sum += Cj 
} 
name[i] = '\0'; 
printf("\n%s%s%s\n%s", 

"Nice to meet you ", name "," 
If ' , 

Your name spelled backwards is "); 
for (--i; i >= 0; --i) 

putchar(name[i])j 
printf("\n%s%d%s\n\n%s\n", 

"and the letters in your name sum to ", sum, 
"Have a nice day!"); 

return 0; 

" tf . , 



40 Chapter 1 'f An Overview of C 

If we run the program and enter the name Ali ce B. Carole when prompted, the fol
lowing appears on the screen: 

Hi! What is your name? Alice B. Carole 
Nice to meet you Alice B. Carole. 
Your name spelled backwards is eloraC .B ecilA 
and the letters in your name sum to 1142. 
Have a nice day! 

• • 
Dissection of the nice_day Program 

• #include <ctype.h> 
#include <stdio.h> 

The standard header file stdio.h contains the function prototype for pri ntfO. It also 
contains the macro definitions for getcharO and putcharO, which will be used to 
read characters from the keyboard and to write characters to the screen, respectively. 
The standard header file ctype.h contains the macro definition for i sal phaO, which 
will be used to determine if a character is alphabetic-that is, if it is a lower- or upper
case letter. 

• #define MAXSTRING 100 

The symbolic constant MAXSTRING will be used to set the size of the character array 
name. We are making the assumption that the user of this program will not type in more 
than 99 characters. Why 99 characters? Because the system will add the' \0' as one 
extra guard character terminating the string. 

• char 
i nt 

c, name[MAXSTRINGJ; 
i, sum 0; 

The variable c is of type char. The identifier name is of type array of char, and its size 
is MAXSTRING. In C, all array subscripts start at O. Thus, name [0J, name [1], ... , 
name [MAXSTRING - 1J are the elements of the array. The variables i and sum are of 
type i nt; sum is initialized to O. 

• printf("\nHi! What is your name? "); 

This is a prompt to the user. The program now expects a name to be typed in followed 
by a carriage return. 

1.8 'f Arrays, Strings, and Pointers 41 

• (c = getchar()) != '\n' 

ThiS expression consists of two parts. On the left we have 

(c getchar 0) 

Unlike other languages, assignment in C is an operator. (See Section 2.11, "Assignment 
Operators," on page 87.) Here, getcharO is being used to read a character from the 
keyboard and to assign it to c. The value of the expression as a whole is the value of 
whatever is assigned to c. Parentheses are necessary because the order of precedence 
of the operator is less than that of the ! = operator. Thus, 

c = getchar() != '\n' is equivalent to c = (getcharO != '\n') 

which is syntactically correct, but not what we want. In Section 2.9, "Precedence and 
Associativity of Operators," on page 83, we discuss in detail the precedence and asso
ciativity of operators. 

• for (i = 0; (c = getchar()) != '\n'; ++i) { 
name[iJ = c; 
if (i sal pha(c)) 

sum += c; 
} 

The variable i is initially assigned the value O. Then getcha r 0 gets a character from 
the keyboard, assigns it to c, and tests to see if it is a newline character. If it is not, the 
body of the for loop is executed. First, the value of c is assigned to the array element 
name[iJ. Next, the macro isalphaO is used to determine whether c is a lower- or 
uppercase letter. If it is, sum is incremented by the value of c. As we will see in Section 
3.3, "Characters and the Data Type char," on page 111, a character in C has the integer 
value corresponding to its ASCII encoding. For example, 'a' has value 97, 'b I has value 
98, and so forth. Finally, the variable i is incremented at the end of the for loop. The 
for loop is executed repeatedly until a newline character is received. 

• name[i] '\0' ; 

After the fa r loop is finished, the null character \0 is assigned to the element name [i ]. 
By convention, all strings end with a null character. Functions that process strings, such 
as pri ntfO, use the null character \0 as an end-of-string sentineL We now can think of 
the array name in memory as 



42 Chapter 1 T An Overview of C 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

III printf("\n%s%s%s\n%s" , 
"Nice to meet you ", name, ".", 
"Your name spelled backwards is H); 

99 

Notice that the format %s is used to print the character array name. The elements of the 
array are printed one after another until the end-of-string sentinel \0 is encountered. 

III for (--i; i >= 0; --i) 
putchar(name[i]); 

If we assume that Ali ce B. Carole followed by a carriage return was typed in, then i 
has value 15 at the beginning of this for loop. (Do not forget to count from 0, not 1.) 
After i has been decremented, the subscript corresponds to the last character of the 
name that was typed in. Thus, the effect of this fo r loop is to print the name on the 
screen backwards. 

III printf("\n%s%d%s\n\n%s\n", 
"and the letters in your name sum to ", sum, ".", 
"Have a ni ce day! ") ; 

We print the sum of the letters in the name typed in by the user, and then we print a 
final message. After the sum of the letters in the name is printed, a period is printed. 
Two newlines are used to create a blank line before the final message is printed. Notice 
that this pri ntfO style allows us to easily visualize what is to appear on the screen. 

• 
Pointers 

A pointer is an address of an object in memory. Because an array name is itself a 
pointer, the uses of arrays and pointers are intimately related. The following program is 
designed to illustrate some of these relationships: 

1.8 T Arrays, Strings, and Pointers 

#include <stdio.h> 
#include <string.h> 

#define MAXSTRING 100 

int main(void) 
{ 

} 

char c = 'a', 1,p, s [MAXSTRINGJ ; 

p = &c; 
pri ntf("%c%c%c ", 1,p, '~p + 1, >"p + 2); 
strcpy(s, "ABC"); 
pri ntf("%s %c%c%s\n", s, *s + 6, t,s + 7, s + 1); 
strcpy(s, "she sells sea shells by the seashore"); 
p s + 14; 
for ( ; *p != '\0'; ++p) { 

if ("'p == 'e') 
>"p = 'E'; 

if ("'p == ' ') 
i'p = '\n '; 

} 
printf("%s\n", s); 
return 0; 

The output of this program is 

• 

abc ABC GHBC 
she sells sea shElls 
by 
thE 
sEashorE 

Dissection of the abc Program 

III #include <string.h> 

43 

The standard library contains many string-handling functions. (See Section 6.11, 
"String-Handling Functions in the Standard library," on page 272.) The standard header 
file string.h contains the function prototypes for these functions. In this program we 
will use strcpy() to copy a string. 



44 Chapter 1 V An Overview of C 

II char c = 'a', *p, s[MAXSTRING]; 

The variable c is of type char. It is initialized with the value 'a'. The variable p is of 
type pointer to char. The string 5 has size MAXSTRING. 

II P = &c; 

The symbol & is the address operator. The value of the expression &c is the address in 
memory of the variable c. The address of c is assigned to p. We now think of p as point
ing to c. 

II pr;ntf("%c%c%c ", ~tp, >'<p + 1, 1<p + 2); 

The format %c is used to print the value of an expression as a character. The symbol ~< 
is the dereferencing, or indirection, operator. The expression ~'p has the value of what
ever p is pointing to. Because p is pOinting to c and c has the value 'a', this is the value 
of the expression ~'p and an a is printed. The value of the expression >"p + 1 is one 
more than the value of >"p, and this causes a b to be printed. The value of the expression 
"'p + 2 is two more than the value of *p, and this causes a c to be printed. 

II "ABC" 

A string constant is stored in memory as an array of characters, the last of which is the 
null character \0. Thus, the size of the string constant "ABC" is 4, not 3. Even the null 
string If II contains one character, namely \0. It is important to realize that string con
stants are of type array of char. An array name by itself is treated as a pointer, and this 
is true of string constants as well. 

III strcpy(s, "ABC"); 

The function strcpy() takes two arguments, both of type pointer to char, which we 
can think of as strings. The string pointed to by its second argument is copied into 
memory beginning at the location pointed to by its first argument. All characters up to 
and including a null character are copied. The effect is to copy one string into another. 
It is the responsibility of the programmer to ensure that the first argument points to 
enough space to hold all the characters being copied. After this statement has been exe
cuted, we can think of s in memory as 

3 4 99 

1.8 V Arrays, Strings, and Pointers 45 

II pri ntf("%s %c%c%s\n", 5, ''''5 + 6, ~'s + 7, 5 + 1); 

The array name 5 by itself is a pointer. We can think of 5 as pointing to 5 [0], or we can 
think of 5 as being the base address of the array, which is the address of 5 [0]. Printing 
5 in the format of a string causes ABC to be printed. The expression "'5 has the value of 
what 5 is pointing to, which is 5 [0]. This is the character A. Because six letters more 
than A is G and seven letters more than A is H, the expressions "'5 + 6 and "'5 + 7, 
printed in the format of a character, cause G and H to be printed, respective!y. ~he 
expression s + 1 is an example of pointer arithmetic. The value of the exp~esslO.n IS a 
pointer that points to 5 [lJ, the next character in the array. Thus,s + 1 pl'lnted III the 
format of a string causes BC to be printed. 

II strcpy(s, "she sells sea shells by the seashore"); 

This copies a new string into s. Whatever was in 5 before gets overwritten. 

II P = s + 14; 

The pointer value s + 14 is assigned to p. An equivalent statement is 

p &s[14J; 

If you count carefully, you will see that p now points to the first letter in the word 
"she 11 s." Note carefully that even though 5 is a pointer, it is not a pointer variable, but 
rather a pointer constant. A statement such as 

p = s; 

is legal because p is a pointer variable, but the statement 

s = p; 

would result in a syntax error. Although the value of what s points to may be changed, 
the value of 5 itself may not be changed. 

II for ( ; *p != '\0'; ++p) { 
if (*p == 'e') 

*p = 'E'; 
if ("'p == ' ') 

'~p = '\n'; 
} 

As long as the value of what p is pointing to is not equal to the null character, the body 
of the fa r loop is executed. If the value of what p is pointing to is equal to 'e' I then 



46 Chapter 1 T An Overview of C 

that value in memory is changed to I E I • If the value of what p is pointing to is equal to 
I I, then that value in memory is changed to I \n '. The variable p is incremented at the 
end of the fo r loop. This causes p to point to the next character in the string. 

III printf("%s\n", s); 

The variable s is printed in the format of a string followed by a newline character. 
Because the previous for loop changed the values of some of the elements of s, the fol-
Imving is printed: 

III she sells sea shElls 
by 
thE 
sEashorE 

In C, arrays, strings, and painters are closely related. To illustrate consider the decla

ration 

char *p, s[100J; 

This creates the identifier p as a painter to char and the identifier s as an array of 100 
elements of type char. Because an array name by itself is a pointer, both p and s are 
pointers to char. However, p is a variable pointer, whereas s is a constant pointer that 
points to s [0J. Note that the expression ++p can be used to increment p, but because s 
is a constant pointer, the expression ++s is wrong. The value of s cannot be changed. Of 
fundamental importance is the fact that the two expressions 

s[iJ and '/«(s + i) 

are equivalent. The expression s [i ] has the value of the ith element of the array (count
ing from 0), whereas ~'(s + i) is the dereferencing of the expression s + i, a pointer 
expression that points i character positions past s. In a similar fashion, the two expres-

sions 

p [i ] and ~«(p + i) 

are equivalent. • • 

1.9 'f Files 47 

= 

1.9 Files 

Files are easy to use in C. To open the file named myJile, the following code can be 
used: 

In file read_it.c 

#include <stdio.h> 

int rnain(void) 
{ 

int 
FILE 

c; 
''<i fp; 

ifp = fopen("rny_file", "r"); 

The second line in the body of rna in () declares i fp (which stands for infile pointer) to 
be a pointer to FILE. The function fopen () is in the standard library, and its function 
prototype is in stdio.h. The type FILE is defined in stdio.h as a particular structure. To 
use the construct, a user need not know any details about it. However, the header file 
must be made available by means of a #i ncl ude directive before any reference to FILE 
is made. The function fopen 0 takes two strings as arguments, and it returns a pointer 
to FILE. The first argument is the name of the file, and the second argument is the 
mode in which the file is to be opened. 

Three modes for a file 

"r" for read 

"w" for "'Tite 
'''an for append 

When a file is opened for writing and it does not exist, it is created. If it already 
exists, its contents are destroyed and the writing starts at the beginning of the file. If 
for some reason a file cannot be accessed, the pointer value NULL is returned by 
fopenO. After a file has been opened, all references to it are via its file pointer. Upon 
the completion of a program, the C system automatically closes all open files. All C sys
tems put a limit on the number of files that can be open simultaneously. Typically, this 



48 Chapter 1 "f An Overview of C 

limit is either 20 or 64. When using many files, the programmer should explicitly close 
any files not currently in use. The library function fc lose 0 is used to close files. 

Let us now examine the use of files. With text, it is easy to make a frequency analysis 
of the occurrence of the characters and words making up the text. Such analyses have 
proven useful in many disciplines, from the study of hieroglyphics to the study of 
Shakespeare. To keep things simple, we ""ill write a program that counts the occur
rences of just uppercase letters. Among our files is one named chapter], which is the 
current version of this chapter. We will write a program called em_letters that will open 
files for reading and writing to do the analysis on this chapter. We give the command 

ent_'etters chapter 1 data 1 

to do this. However, before we present our program, let us describe how command line 
arguments can be accessed from within a program. The C language provides a connec
tion to the arguments on the command line. Typically, to use the connection one would 
code 

#include <stdio.h> 

int rnainCint argc, char *argv[]) 
{ 

Up until now we have always invoked rnai n 0 as a function with no arguments. In fact, 
it is a function that can have arguments. The parameter argc stands for argument 
count. Its value is the number of arguments in the command line that was used to exe
cute the program. The parameter argv stands for argument vector. It is an array of 
pOinters to char. Such an array can be thought of as an array of strings. The successive 
elements of the array point to successive words in the command line that was used to 
execute the program. Thus, argv [0] is a pointer to the name of the command itself. As 
an example of how this facility is used, suppose that we have written our program and 
have put the executable code in the file cnUetters. The intent of the command line 

ent_'etters chapterl data 1 

is to invoke the program ent_Ietters with the two file names chapter] and datal as com
mand line arguments. The program should read file chapter] and write to file datal. If 
we give a different command, say 

ent_'etters ehapter2 data2 

1.9 "f Files 49 

then the program should read file ehapter2 and 'write to file data2. In our program the 
three words on the command line will be accessible through the three pointers 
argv [0J, argv [1] I and argv [2]. 

Here is our program: 

In file cnLletters.c 

/* Count uppercase letters in a file. */ 

#include <stdio.h> 
#include <stdlib.h> 

int main(int argc, char *argv[]) 
{ 

int c, i, letter[26]; 
FILE *ifp, *ofp; 

if Cargc! 3) { 
printf("\n%s%s%s\n\n%s\n%s\n\n", 

"Usage: ", argv[0] , " infile outfile", 
"The uppercase letters in infile will be counted.", 
"The results will be written in outfile."); 

exit(l) ; 
} 
ifp fopenCargv[l] , "r"); 
ofp = fopen(argv[2] , "w"); 
for Ci 0; i < 26; ++i) 

letter[i] = 0; 
while CCc getcCifp))!= EOF) 

} 

if Cc >= 'A' && c <= 'Z') 
++letter[c - 'A']; 

for Ci 0; i < 26; ++i) { 

} 

if (i % 6 0) 
putc('\n', ofp); 

fprintf(ofp, "%c:%5d 

putcC'\n', ofp); 
return 0; 

After we have given the command 

enUetters chapterl data 1 

this is what we find in the file datal: 

" 

/* initialize array to zero */ 

/* find uppercase letters */ 

/* print results */ 

'A' + i, letter[i]); 



50 Chapter 1 ... An Overview of C 

A: 223 B: 62 C: 193 D: 31 E: 120 F: 89 
G: 21 H: 48 I: 304 J: 1 K: 7 L: 50 
M: 67 N: 77 0: 91 P: 71 Q: 19 R: 57 
s: 196 T: 439 U: 33 V: 4 W: 68 X: 29 
Y: 7 Z: 18 

Observe that the frequency of the letters in chapter1 is not what one expects in ordi
nary text. 

• 
Dissection of the cnCletters Program 

II int c, i, letter[26]; 
FILE *ifp, *ofp; 

The array 1 etter will be used to count the occurrences of the uppercase letters. The 
variables i fp and ofp are of type pointer to FILE. We often use the identifiers i fp and 
ofp, which stand for infiZe pointer and outfile pointer, respectively. 

II if (argc != 3) { 

} 

printf("\n%s%s%s\n\n%s\n%s\n\n", 
"Usage: ", argv[0] , " infile outfile", 
"The uppe rcase 1 ette rs in i nfi 1 e will be counted.", 
"The results will be written in outfile."); 

exit(I); 

If the number of words on the command line is not three, then the program is being 
used incorrectly. This causes a message to be printed and the program to be exited. 
Suppose the following command line is typed: 

ent_letters chapter 1 abc abc 

Because the line contains four words, argc will have value 4, and this will cause the fol
lowing message to appear on the screen: 

Usage: cnt_letters infile outfile 
The uppercase letters in infile will be counted. 
The results will be written in outfile. 

ifp = fopen(argv[l] , "r"); 
ofp = fopen(argv[2] , "w"); 

1.9 'f' Files Sl 

.... Ifwe assume that we have typed the command line 

cnt_letters chapterl data 1 

to execute this program, then argv[0] points to the string "cnt_l etters", argv[1] 
points to the string "chapter1", and argv[2] points to the string IIdatal". The C sys
otem does this automatically. Thus, the file chapter1 is opened for reading with file 
pointer i fp referring to it, and the file datal is opened for writing with file pointer ofp 
referring to it. 

for (i = 0; i < 26; ++i) 
letter[i] = 0; 

/* initialize array to zero */ 

In ANSI C, automatically allocated local array elements need not be initialized to zero. 
To be sure, the programmer must do it. 

II (c = getc(ifp)) != EOF 

The function getcO is a macro defined in stdio.h. It is similar to getcharO except 
that it takes as an argument a pointer to FILE. When getc(ifp) is invoked, it gets the 
next character from the file pointed to by i fp. The identifier EOF stands for end-of-file. 
It is a symbolic constant defined in stdio.11, typically by the line 

#define EOF (-1) 

The value EOF is returned by getcO when there are no more characters in the file. In C, 
characters have the integer value corresponding to their ASCII encoding. (See Section 
3.3, "Characters and the Data Type char," on page 111.) For example, 'a' has value 97, 
, b' has value 98, and so forth. A char is stored in 1 byte, and an i nt is typically stored 

'in either 2 or 4 bytes. Thus, a char can be considered a small integer type. Conversely, 
an i nt can be considered a large character type. In particular, an i nt can hold all the 
values of a char and other values as well, such as EOF, which is not an ordinary charac
ter value. The variable c was declared to be an i nt rather than a char because it even
tually would be assigned the value EOF. 

II while ((c = getc(ifp)) != EOF) 
if (c >= 'A' && c <= 'z') 

++letter[c 'A']; 
/* find uppercase letters */ 

A character is read and assigned to c. If the value of the character is not EOF, then the 
body of the whi 1 e loop is executed. 



52 Chapter 1 T An Overview of C 

• C >= 'A' && c <= 'z' 

The expression c >= 'A' is true if c is greater than or equal to 'A'. Similarly, the 
expression c <= 'z' is true if c is less than or equal to • Z ' . The symbols && represent 
the logical and operator. An expression of the form 

exprl && expr2 

is true if and only if both exprl and expr2 are true. Because of operator precedence 

C >= 'A' && c <= • Z' is equivalent to (c >= 'A') && (c <= 'Z') 

Thus, the expression c >= 'A' && c <= 'z' is true if and only if c has the value of an 
uppercase letter. 

• ++letter[c - 'A']; 

If c has the value 'A I, then c - I A' has the value 0. Thus, the array element 1 et
ter [0] gets incremented when c has the value' A' . Similarly, if c has the value' B' , 
then c - 'A' has the value 1. Thus, the array element 1 ette r [ gets incremented 
when c has the value 'B'. In this way a count of the uppercase letters is kept in the ele
ments of the array letter with letter[0] corresponding to the letter A, letter[l] 
corresponding to the letter B, and so forth. 

• for (i = 0; i < 26; ++i) { /* print results */ 
if (i % 6 == 0) 

putc('\n', ofp); 

The symbol % is the modulus operator. An expression such as a % b yields the remain
der of a divided by b. For example, 5 % 3 has the value 2. In the body of the for loop 
we have used the expression i % 6, which has the value 0 whenever the value of i is a 
multiple of 6. Because of operator precedence, the expression 

i % 6 == 0 is equivalent to (i % 6) o 

Thus, the expression i % 6 == 0 is true every sixth time through the loop; at these 
times a newline character is printed. If you look at the output of the program, you will 
see that it is printed in six columns. The macro putcO is defined in stdio.h. It is similar 
to putchar 0 except that its second argument is a pointer to FILE. The value of its first 
argument is written to the indicated file in the format of a character. 

• fprintf(ofp, "%c:%5d ", 'A' + i, letter[i]); 

The function fpri ntfO is similar to pri ntfO except that it takes as its first argu-

1.10 T Operating System Considerations 53 

ment a pointer to FILE. When the function is invoked, it writes to the indicated file 
rather than to the screen. Observe that 'A' + i is being printed in the format of a char
acter. When i is 0, the expression' A' + i has the value' A', causing the letter A to be 
printed; when i is 1, the expression 'A' + i has the value 'B', causing the letter B to 
be printed; and so forth. 

• 
Although we did not do so, we could have explicitly closed the open files just before we 
exited from mainO. Instead, we relied on the C system to close the files. We would use 
the following code to expliCitly close the files: 

fclose(ifp) ; 
fclose(ofp); 

1.10 Operating System Considerations 

In this section, we discuss a number of topics that are system-dependent. We begin 
with the mechanics of writing and running a C program. 

Writing and Running a C Program 

The precise steps that have to be followed to create a file containing C code and to com
pile and execute it depend on three things: the operating system, the text editor, and 
the compiler. However, in all cases the general procedure is the same. We first describe 
in some detail how it is done in a UNIX environment. Then we discuss how it is done in 
an MS-DOS environment. 

In the discussion that follows, we will be using the ee command to invoke the C com
piler. In reality, however, the command depends on the compiler that is being used. For 
example, if we were using the command line version of the Turbo C compiler from Bor
land, then we would use the command tee instead of ec. (For a list of C compilers, see 
the table in Section 11.13, "The C Compiler," on page 522.) 



54 Chapter 1" An Overview of C 

Steps to be followed in writing and running a C program 

1 Using an editor, create a text file, say pgm.c, that contains a C program. The 
name of the file must end with .c, indicating that the file contains C source code. 
For example, to use the vi editor on a UNIX system, we would give the command 

vi pgm.c 

To use an editor, the programmer must know the appropriate commands for 
inserting and modifying text. 

2 Compile the program. This can be done with the command 

cc pgm.c 

The cc command invokes in turn the preprocessor, the compiler, and the loader. 
The preprocessor modifies a copy of the source code according to the prepro
cessing directives and produces what is called a translation unit. The compiler 
translates the translation unit into object code. If there are errors, th~n the pro
grammer must start again at step 1 with the editing of the source file. Errors that 
occur at this stage are called syntax errors or compile-time errors. If there are no 
errors, then the loader uses the object code produced by the compiler, along with 
object code obtained from various libraries provided by the system, to create the 
executable file a.out. The program is now ready to be executed. 

3 Execute the program. This is done with the command 

a.out 

Typically, the program will complete execution, and a system prompt will reap
pear on the screen. Any errors that occur during execution are called run-time 
errors. If for some reason the program needs to be changed, the programmer 
must start again at step 1. 

If we compile a different program, then the file a.out will be overwritten, and its pre
vious contents lost. If the contents of the executable file a.out are to be saved, then the 
file must be moved, or renamed. Suppose that we give the command 

cc sea.c 

This causes executable code to be written automatically into a.out. To save this file, we 
can give the command 

mv a.out sea 

1.10 " Operating System Considerations 55 

causes a.out to be moved to sea. Now the program can be executed by giving the 

conunand 

sea 

UNIX, it is common practice to give the executable file the same name as the carre
,sponding source file, except to drop the .c suffix. If we wish, we can use the -0 option to 
direct the output of the cc command. For example, the command 

ce -0 sea sea.c 

causes the executable output from cc to be written directly into sea, leaving intact what
ever is in a.out. 

Different kinds of errors can occur in a program. Syntax errors are caught by the 
compiler, whereas run-time errors manifest themselves only during program execution. 

example, if an attempt to divide by zero is encoded into a program, a run-time error 
may occur when the program is executed. (See exercise 5, on page 61, and exercise 6, on 
page 61.) Usually, an error message produced by a run-time error is not very helpful in 
finding the trouble. 

Let us now consider an MS-DOS environment. Here, some other text editor would 
most likely be used. Some C systems, such as Turbo C, have both a command line envi
ronment and an integrated environment. The integrated environment includes both the 
text editor and the compiler. (Consult Turbo C manuals for details.) In both MS-DOS and 
UNIX, the command that invokes the C compiler depends on which C compiler is being 
used. In MS-DOS, the executable output produced by a C compiler is written to a file 
having the same name as the source file, but with the extension .exe instead of .c. Sup

. pose, for example, that we are using the command line environment in Turbo C. If we 
give the command 

tee sea.c 

then the executable code will be written to sea.exe. To execute the program, we give the 
command 

sea.exe or equivalently sea 

To invoke the program, we do not need to type the .exe extension. If we wish to rename 
this file, we can use the rename command. 



56 Chapter 1 v An Overview of C 

Interrupting a Program 

When running a program, the user may want to interrupt, or kill, the program. For 
example, the program may be in an infinite loop. (In an interactive environment it is not 
necessarily wrong to use an infinite loop in a program.) Throughout this text we 
assume that the user knows how to interrupt a program. In MS-DOS and in UNIX, a con
trol-c is commonly used to effect an interrupt. On some systems a special key, such as 
delete or rubout is used. Make sure that you know how to interrupt a program on your 
system. 

Typing an End-af-file Signal 

When a program is taking its input from the keyboard, it may be necessary to generate 
an end-of-file signal for the program to work properly. In UNIX, a carriage return fol
lowed by a control-d is the typical way to effect an end-of-file signal. (See exercise 26, 
on page 68, for further discussion.) 

Redirection af the Input and the Output 

Many operating systems, including MS-DOS and UNIX, can redirect the input and the 
output. To understand how this works, first consider the UNIX command 

Is 

This command causes a list of files and directories to be written to the screen. (The 
comparable command in MS-DOS is dir.) Now consider the command 

Is > tmp 

The symbol> causes the operating system to redirect the output of the command to 
the file tmp. What was written to the screen before is now written to the file tmp. 

Our next program is called dbLout. It can be used with redirection of both the input 
and the output. The program reads characters from the standard input file, which is 
normally connected to the keyboard, and writes each character twice to the standard 
output file, which is normally connected to the screen. 

file dbLout.c 

#include <stdio.h> 

int main(void) 
{ 

} 

char Cj 

while (scanf("%c", &c) __ 
pri ntf("%c", c) j 

} 
pri ntf("%c", c); 

return 0; 

1.10 V Operating System Considerations 57 

1) { 

we compile the program and put the executable code in the file dbl out th . 
d· t' . I h - , en, usmg re Irec lOn, we can mvo <e t e program in four ways: 

dbLout 
dbLout < 
dbLout > 
dbLout < 

infile 
outfile 
infile > outfile 

Used in this context, the ~ymb~ls < and> can be thought of as arrows. (See exercise 26 
on page 68, for further dIscussIOn.) , 

Some commands are not meant to be used with redirection. For example, the Is com
mand do~s not read characters from the keyboard. Therefore, it mal<es no sense to redi-
rect :he mput to the ls command; because it does not take keyboard input th . 
nothing to redirect. I ere IS 



58 Chapter 1 V An Overview of C 

Summary 

1 Programming is the art of communicating algorithms to computers. An algorithm is 
a computational procedure whose steps are completely specified and elementary. 

2 The C system provides a standard library of functions that can be used by the pro
grammer. Two functions from the library are pri ntfO and scanfO. They are 
used for output and input, respectively. The function pri ntfO can print out 
explicit text and can use conversion specifications that begin with the character % 
to print the values of the arguments that follow the control string. The use of 
scanfO is somewhat analogous, but conversion specifications in the control string 
are matched with the other arguments, all of which must be addresses (pointers). 

3 The C compiler has a preprocessor built into it. Lines that begin with a # are prepro
cessing directives. A #defi ne directive can be used to define symbolic constants. A 
#i ncl ude directive can be used to copy the contents of a file into th~ code. 

4 Statements are ordinarily executed sequentially. Special statements such as if, 
i f-e 1 se, for, and whi 1 e statements can alter the sequential flow of control during 
execution of a program. 

5 A program consists of one or more functions written in one or more files. Execution 
begins with the function rna in O. Other functions may be called from within 
rna; nO and from within each other. 

6 A function definition is of the form 

type (unction_name(parameter type list) 
{ 

} 

declarations 
statements 

A function definition consists of two parts, a header and a body. The header con
sists of the code before the first left brace, and the body consists of the declara
tions and statements between the braces. 

7 In a function definition all declarations must occur before any statements. All vari
ables must be declared. Compound statements are surrounded by the braces 

v 5ummary 59 

{ and }. Syntactically, a compound statement is itself a statement. A compound 
statement can be used anywhere that a simple statement can be used. 

8 Although there are technical differences, macros are used like functions. The mac
ros getcharO and putcharO are defined in stdio.h. They are used to read a char
acter from the keyboard and to write a character to the screen, respectively. They 
are typically used by the programmer to manipulate character data. 

9 A program consists of one or more functions in one or more files. Execution begins 
with the function rna in O. The cc command followed by a list of files that consti
tutes a program creates an executable file. 

10 All arguments to functions are passed call-by-value. This means that when an 
expression is passed as an argument, the value of the expression is computed, and 
it is this value that is passed to the function. Thus, when a variable is passed as an 
argument to a function, the value of the variable is computed, which we may think 
of as a copy of the variable, and it is this copy that is passed to the function. Hence, 
the value of the variable is not changed in the calling environment. 

11 When a return statement is encountered in a function, control is passed back to the 
calling environment. If an expression is present, then its value is passed back as 
well. 

12 The use of many small functions as a programming style aids modularity and docu
mentation of programs. Moreover, programs composed of many small functions are 
easier to debug. 

13 Arrays, strings, and pointers are intimately related. A string is an array of charac
ters, and an array name by itself a pointer that points to its first element. By con
vention, the character \0 is used as an end-of-string sentinel. A constant string 
such as "abc" can be considered a pointer to type char. This string has four char
acters in it, the last one being \0. 



60 Chapter 1... An Overview of C 

Exercises 

1 On the screen write the words 

she sells sea shells by the seashore 

(a) all on one line, (b) on three lines, (c) inside a box. 

2 Use a hand calculator to verify that the output of the marathon program is correct. 
Create another version of the program by changing the floating constant 1760.0 to 
an integer constant 1760. Compile and execute the program and notice that the out
put is not the same as before. This is because integer division discards any frac-
tional part. 

3 Write a version of the marathon program in Section 1.3, "Variables, Expressions, 
and Assignment," on page 11, in which all constants and variables are of type dou
b 1 e. Is the output of the program exactly the same as that of the original program? 

4 Take one of your working programs and alter it by deleting the keyword voi d in the 

line 

int main(void) 

When you compile your program, does your compiler complain? ~robab~y not. (See 
Section 5.3, "Function Prototypes," on page 202, for further dIscussIOn.) .Next, 
remove the keyword vo; d and remove the following line from the body of mal nO: 

return 0; 

When you compile the program, does your compiler complain? This time it should. 
If your compiler does not complain, learn how to set a higher warnin~ level for y~ur 
compiler. Generally speaking, programmers should always use the highest warn:ng 

level possible. One of the principal rules of programming is keep your complIer 
happy, but not at the expense of turning off all the warnings. Programmers should 
rework their code repeatedly until all the warnings have vauished. 

The following program may have a run-time error in it: 

#include <stdio.h> 

int main(void) 
{ 

int x, y 0; 

x 1 I y; 
printf("x %d\n", x); 
return 0; 

} 

... Exercises 61 

Check to see that the program compiles without any error messages. Run the pro
gram to see the effect of integer division by zero. On most systems this program 
will exhibit a run-time error. If this happens on your system, try to rewrite the pro
gram without the variable y, but keep the error in the program. That is, divide by 
zero directly. Now what happens? 

6 Most C systems provide for logically infinite floating values. Modify the program 
given in the previous by changing i nt to doub 1 e and, in the p ri ntf 0 statement, 
%d to %f. Does the program still exhibit a run-time error? On most systems the 
answer is no. What happens on your system? 

7 Any #i ncl ude lines in a program normally occur at the top of the file. But do they 
have to be at the top? Rewrite the pacific_sea program in Section 1.4, "The Use of 
#defi ne and #i ncl ude," on page 15, so that the #i ncl ude line is not ilt the top of 
the file. For example, try 

int main(void) 
{ 

#i ncl ude "pad fi c_sea. h" 

8 Take one of your files containing a working program, say sea.c, and rename the file 
as sea. Now try to compile it. Some C compilers will complain; others will not. On 
UNIX systems, the complaint may be quite cryptic, with words such as bad magic 
number or unable to process using elf libraries. What happens on your system? 



62 Chapter 1 T An Overview of C 

9 The following program writes a large letter Ion the screen: 

#include <stdio.h> 

#define 
#define 
#define 
#define 

BOTTOM_SPACE 
HEIGHT 
OFFSET 
TOP_SPACE 

int main(void) 
{ 

i nt i ; 

H\n\n\n\n\n" 
17 
II 

"\n\n\n\n\n" 

printf(TOP_SPACE); 
printf(OFFSET HIIIIIII\n"); 
for (i = 0; i < HEIGHT; ++i) 

} 

printf(OFFSET II III\n"); 
pri ntf(OFFSET "IIIIIII\n"); 
printf(BOTTOM_SPACE); 
return 0; 

" /,~ 17 blanks ,~/ 

Compile and run this program so that you understand its effect. Write a similar 
program that prints a large letter C on the screen. 

10 Take a working program and omit each line in turn and run it through the compiler. 
Record the error messages each such deletion causes. As an example, consider the 
folloVYing code in the file nonsense.c: 

#include <stdio.h> 
/* forgot main */ 
{ 

printf("nonsense\n"); 
} 

11 Write a program that asks interactively for your name and age and responds with 

He 110 name, next year you wi 11 be nexLage. 

where nexLage is age + 1. 

T Exercises 63 

Write a program that neatly prints a table of powers. The first few lines of the table 
might look like this: 

.. .. .. .. ~ A TABLE OF POWERS .. .. .. . ~ 

Integer Square 3rd power 4th power 5th power 
------ ---------

1 1 
2 4 
3 9 

A fo r loop has the form 

for (exprl; expr2; expr3) 
statement 

1 
8 

27 

1 
16 
81 

If all three expressions are present, then this is equivalent to 

exprl; 
whil e (expr2) { 

statement 
expr3; 

} 

1 
32 

243 

Why is there no semicolon following statement? Of course, it may well happen that 
statement itself contains a semicolon at the end, but it does not have to. In C, a 
compound statement consists of braces surrounding zero or more other state
ments, and a compound statement is itself a statement. Thus, both { } and { ; ; 

} are statements. Try the following code: 

i nt i; 

for (i 
{ } 

for (i 
{ ; 

0; i < 3; ++i) 
/* no semicolon */ 

0; i < 3; ++i) 
; } /* three semicolons, 

but none after the statement */ 

Is your compiler happy with this? (It should be.) Compilers care about legality. If 
what you write is legal but otherwise nonsense, your compiler will be happy. 

14 The standard header files supplied by the C system can be found in one or more 
system-dependent directories. For example, on UNIX systems these header files 
might be in /usr/include. On Turbo C systems they might be in \turboc\include or 
\tc\include or \bc\include. Find the location of the standard header file sldio.h on 



64 

____ 00 __ 0000000000 __ 

Chapter 1" An Overview of C 

your system. Read this file and find the line that pertains to pri ntfO. The line will 
look something like 

i nt pri ntfCconst char ~'format, ... ); 

This line is an example of a function prototype. Function prototypes tell the com
piler the number and type of arguments that are expected to be passed to the func
tion and the type of the value that is returned by the function. As we will see in 
later chapters, strings are of type "pointer to char," which is specified by char "'. 
The identifier format is provided only for its mnemonic value to the programmer. 
The compiler disregards it. The function prototype for pri ntf 0 could just as well 
have been written 

int printf(const char *, ... ); 

The keyword const tells the compiler that the string that gets passed as an argu
ment should not be changed. The ellipses ... indicate to the compiler that the 
number and type of the remaining arguments vary. The pri ntfO function returns 
as an i nt the number of characters transmitted, or a negative value if an error 
occurs. Recall that the first program in this chapter in Section 1.2, "Program Out
put," on page 6, prints the phrase "from sea to shining C" on the screen. Rewrite the 
program by replacing the #i ncl ude line with the function prototype for pri ntfO 
given above. Caution: You can try to use verbatim the line that you found in stdio.h, 
but your program may fail. (See Chapter 8, "The Preprocessor.") 

15 (Suggested to us by Donald Knuth at Stanford University.) In the running_sum pro
gram in Section 1.6, "Flow of Control," on page 26, we first computed a sum and 
then divided by the number of summands to compute an average. The following 
program illustrates a better way to compute the average: 

/* Compute a better average. */ 

#include <stdio.h> 

int main(void) 
{ 

i nt 
double 
double 
double 
double 

i ; 
x; 
avg 
navg; 
sum = 

0.0; 

0.0; 

/* a better average */ 
/'~ a nai ve average * / 

pri ntf("%5s%17s%17s%17s\n%5s%17s%17s%17s\n\n", 
"Count", "Item", "Average", "Naive avg", 
If It" II n If n 

" Exercises 65 

for Ci = 1; scanfC"%lf", &x) 1; ++i) { 
avg += Cx avg) / i; 
sum += x; 
navg sum / i; 
printf("%5d%17e%17e%17e\n", i, x, avg, navg); 

} 
return 0; 

} 

Run this program so that you understand its effects. Note that the better algorithm 
for computing the average is embodied in the line 

avg += (x avg) / i; 

Explain why this algorithm does, in fact, compute the running average. Hint: Do 
some simple hand calculations first. 

In the previous exercise we used the algorithm suggested to us by Donald Knuth to 
write a program that computes running averages. In this exercise we want to use 
that program to see what happens when sum gets too large to be represented in the 
machine. (See Section 3.6, "The Floating Types," on page 119, for details about the 
values a doub 1 e can hold.) Create a say data, and put the following numbers 
into it: 

le308 1 le308 1 le308 

Run the program, redirecting the input so that the numbers in your file data get 
read in. Do you see the advantage of the better algorithm? 

(Advanced) In this exercise you are to continue the work you did in the previous 
exercise. If you run the better_average program taking the input from a file that 
contains some ordinary numbers, then the average and the naive average seem to 
be identical. Find a situation where this is not the case. That is, demonstrate experi
mentally that the better average really is better, even when sum does not overflow. 

18 Experiment with the type qualifier const. How does your compiler treat the follow
ing code? 

const int a = 0; 

a 333; 
printfC"%d\n", a); 



66 Chapter 1 'If An Overview of C 

19 Put the folIo' wing lines into a program and run it so that you understand its effects: 

int a1, a2, a3, cnt; 

printf("Input three integers: "); 
cnt = scanf("%d%d%d", &a1, &a2, &a3); 
printf("Number of successful conversions: %d\n", cnt); 

What happens if you type the letter x when prompted by your program? What num
bers can be printed by your program? Hint: If scanfO encounters an end-of-file 
mark before any conversions have occurred, then the value EOF is returned, where 
EOF is defined in stdio.h as a symbolic constant, typically with the value -1. You 
should be able to get your program to print this number. 

20 In ANSI C the pri ntfO function returns as an i nt the number of characters 
printed. To see how this works, write a program containing the following lines: 

int cnt; 

cnt printf("abc abc"); 
printf("\nNo. of characters printed: %d\n", cnt); 

What gets printed if the control string is replaced by 

"abc\nabc\n" or "abc\0abc\0" 

21 In the previous exercise you were able to get different numbers printed, depending 
on the input you provided. Put the following lines into a program: 

char c1, c2, c3; 
int cnt; 

printf("Input three characters: "); 
cnt scanf("%c%c%c", &c1, &c2, &c3); 
printf("Number of successful conversions: %d\n", cnt); 

By varying the input, what numbers can you cause to be printed? Hint: The numbers 
printed by the program you wrote for exercise 19, on page 66, can be printed here, 
but you have to work much harder to do it. 

'If Exercises 67 

Use the ideas presented in the nice_day program in Section 1.8, "Arrays, Strings, 
and Pointers," on page 39, to ""THe a program that counts the total number of let
ters. Use redirection to test your program. If infile is a file containing text, then the 
command 

nletlers < infile 

should cause something like 

Number of letters: 179 

to be printed on the screen. 

In the abc program in Section 1.8, "Arrays, Strings, and Pointers," on page 43, we 
used the loop 

for ( ; ~'p != '\0 1
; ++p) { 

i f (~'p == 'e I) 
'~p = 'E'; 

if (*p == ' ') 
;'p = '\n'; 

} 

Braces are needed because the body of the for loop consists of two if statements. 
Change the code to 

for C ; >"p 
if C"'p 

"'p 
else if 

"'p 

'\0'; ++p) 
Ie') 

, E' ; 
ep == ' ') 
'\n' j 

Explain why braces are not needed now. Check to see that the run-time behavior of 
the program is the same as before. Explain why this is so. 

Suppose that a is an array of some type and that i is an i nt. There is a fundamen
tal equivalence between the expression a[i] and a certain corresponding pointer 
expression. What is the corresponding pointer expression? 

Complete the following program by writing a prn_stri ng 0 function that uses 
putcharO to print a string passed as an argument. Remember that strings are ter
minated by the null character \0. The program uses the strcatO function from 
the standard library. Its function prototype is given in the header file string.h. The 
function takes two strings as arguments. It concatenates the two strings and puts 
the results in the first argument. 



l 

68 Chapter 1., An Overview of C 

#include <stdio.h> 
#include <string.h> 

#define MAXSTRING 100 

void prn_string(char '~)i 

int main(void) 
{ 

} 

char sl[MAXSTRING], s2[MAXSTRING]; 

strcpyl(sl,' "Mary, Mary, quite contrary, \n"); 
strcpy(s2, "how does your garden grow?\n"); 
prn_string(sl); 
prn_string(s2); 
strcat(sl, s2); /* concatenate the strings */ 
prn_string(sl); 
return 0; 

26 Redirection, like many new ideas, is best understood with experimentation. In Sec
tion 1.10, "Operating System Considerations," on page 57, we presented the dbLout 
program. Create a file, say myJile, that contains a few lines of text. Try the follow
ing commands so that you understand the effects of using redirection with dbLout 

dbLout < my-file 
dbLout < my-file > tmp 

The following command is of special interest: 

dbLout > tmp 

This command causes dbLout to take its input from the keyboard and to write its 
output in the file tmp, provided that you effect an end-of-file signal when you are 
finished. What happens if instead of typing a carriage return followed by a con
trol-d, you type a control-c to kill the program? Does anything at all get written into 
tmp? 

Chapter 2 

Lexical Elements, Operators, 
and the C System 

In this chapter, we explain the lexical elements of the C programming language. C is a 
language. Like other languages, it has an alphabet and rules for putting together words 
and punctuation to make correct, or legal, programs. These rules are the syntax of the 
language. The program that checks on the legality of C code is called the compiler. If 
there is an error, the compiler will print an error message and stop. If there are no 
errors, then the source code is legal, and the compiler translates it into object code, 
which in turn gets used by the loader to produce an executable file. 

When the compiler is invoked, the preprocessor does its work first. For that reason 
we can think of the preprocessor as being built into the compiler. On some systems, 
this is actually the case, whereas on others the preprocessor is separate. This is not of 
concern to us in this chapter. We have to be aware, however, that we can get error mes
sages from the preprocessor as well as from the compiler. (See exercise 30, on page 
106.) Throughout this chapter, we use the term compiler in the sense that, conceptually, 
the preprocessor is built into the compiler. 

A C program is a sequence of characters that will be converted by a C compiler to 
object code, which in turn gets converted to a target language on a particular machine. 
On most systems, the target language will be a form of machine language that can be 
run or interpreted. For this to happen, the program must be syntactically correct. The 
compiler first collects the characters of the program into tokens, which can be thought 
of as the basic vocabulary of the language. 

In ANSI C, there are six kinds of tokens: keywords, identifiers, constants, string con
stants, operators, and punctuators. The compiler checks that the tokens can be formed 
into legal strings according to the syntax of the language. Most compilers are very pre
cise in their requirements. Unlike human readers of English, who are able to understand 
the meaning of a sentence with an extra punctuation mark or a misspelled word, a C 
compiler will fail to provide a translation of a syntactically incorrect program, no mat
ter how trivial the error. Hence, the programmer must learn to be precise in writing 
code. 



70 Chapter 2 'f Lexical Elements, Operators, and the C System 

The programmer should strive to v\Tite understandable code. A key part of doing this 
is producing well-commented code with meaningful identifier names. In this chapter we 
illustrate these important concepts. 

The compilation process 

~ Group characters 
~ ----I....... into tokens 

2.1 Characters and Lexical Elements 

Translate tokens 
to target code 

A C program is first constructed by the programmer as a sequence of characters. 
Among the characters that can be used in a program are the following: 

Characters that can be used in a program 

lowercase letters a b c z 

uppercase letters A B C Z 

digits 0 1 2 3 4 5 6 7 8 9 

other characters + i'I=C) { } [ ] < > I If 

# % & - I A _ \ , ; ? 

white space characters blank, newline, tab, etc. 

These characters are collected by the compiler into syntactic units called tokens. Let us 
look at a simple program and informally pick out some of its tokens before we go on to 
a strict definition of C syntax. 

2.1 'f Characters and Lexical Elements 

1* Read in two integers and print their sum. *1 

#include <stdio.h> 

int a, b, sum; 

printfCHlnput two integers: If); 
scanfC"%d%d", &a, &b); 
sum = a + b; 
printfC"%d + %d = %d\n", a, b, sum); 
return 0; 

>cical Dissection of the sum Program 

I'll Read in two integers and pri nt thei r sum. *1 

;Olllillents are delimited by r and *1. The compiler first replaces each comment by a 
blank. Thereafter, the compiler either disregards white space or uses it to sepa-

tokens. 

<stdio.h> 

is a preprocessing directive that causes the standard header file stdio.h to be 
.IIlClUuea. We have included it because it contains the function prototypes for pr; ntf() 

scanfO. A function prototype is a lund of declaration. The compiler needs func
prototypes to do its work. 

int main(void) 
{ 

int a, b, sum; 

compiler groups these characters into four kinds of tokens. The function name 
n is an identifier, and the parentheses ( ) immediately follOwing mai n is an opera

. This idea is confusing at first, because what you see following ma; n is (vo; d), but 
IS only the parentheses ( ) themselves that constitute the operator. This operator 

the compiler that ma; n is a function. The characters "{", ", ", and";" are punctua
i nt is a keyword; a, b, and sum are identifiers. 

71 



72 Chapter 2.., Lexical Elements, Operators, and the C System 

II i nt a, b, sum; 

The compiler uses the white space between i nt and a to distinguish the two tokens. We 
cannot write 

inta, b, sum; /* wrong: white space is necessary */ 

On the other hand, the white space following a comma is superfluous. We could have 
written 

i nt a,b,sum; but not int absum; 

The compiler would consider absum to be an identifier. 

II printfC"Input two integers: "); 
scanfC"%d%d" , &a, &b); 

The names pri ntf and scanf are identifiers, and the parentheses following them tell 
the compiler that they are functions. After the compiler has translated the C code, the 
loader will attempt to create an executable file. If the code for pri ntfO and scanfO 
has not been supplied by the programmer, it vvill be taken from the standard library. A 
programmer would not normally redefine these identifiers. 

II "Input two integers: " 

A series of characters enclosed in double quotes is a string constant. The compiler 
treats this as a single token. The compiler also provides space in memory to store the 
string. 

II &a, &b 

The character & is the address operator. The compiler treats it as a token. Even though 
the characters & and a are adjacent to each other, the compiler treats each of them as a 
separate token. We could have written 

& 

but not 

&a &b 
a&, &b 

a & b or &a,&b 

/* the comma punctuator is missing */ 
/* & requires its operand to be on the right */ 

2.2 .., Syntax Rules 

a + bj 

acters = and + are operators. White space here will be ignored, so we could 
written 

or sum a + b 

u m a + b; 

'cc,;;;,"",-;,,, had written the latter, then each letter on this line would be treated by the com
as a separate identifier. Because not all of these identifiers have been declared, the 

.tc;v.'UfJU'-J would complain. 

• compiler either ignores white space or uses it to separate elements of the lan-
.. "" .. "'''''''. The programmer uses white space to provide more legible code. To the compiler, 
nr()gyiam text is implicitly a single stream of characters, but to the human reader, it is a 

WU-UIUlt::ll;:'lVll<U tableau. 

Syntax Ru les 

The syntax of C will be described using a rule system derived from Backus-Naur Form 
}(~NF), first used in 1960 to describe ALGOL 60. Although they are not adequate by 
themselves to describe the legal strings of C, in conjunction with some explanatory 

they are a standard form of describing modern high-level languages. 
A syntactic category will be written in italics and defined by productions, also called 

',-"'.LLlJlH'" rules, such as 

digit :: = 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

The syntactic category digitis rewritten as either the symbol 0, the symbol 1, ... , or 
the symbol 9. 

The vertical bar separates alteruate choices. Symbols not in italics are taken to be termi
nal symbols of the language to which no further productions are applied. 

73 



74 Chapter 2 v Lexical Elements, Operators, and the C System 

Symbols to be used in productions 

italics indicate syntactic categories ! 

, ,- "to be rewritten as" symbol , .-
I vertical bar to separate choices 

{ h choose 1 of the enclosed items 

{ }0+ repeat the enclosed it~ms 0 or more times 

{ h+ repeat the enclosed items 1 or more times 

{ }opt optional items 

Other items are terminal symbols of the language, 

Let us define a category letter_or_digit to mean any lower- or uppercase letter of the 
alphabet or any decimal digit, Here is one way we can do this: 

letter_or_digit :: letter I digit 
letter :: = lowercase_letter I uppercase_letter 
lowercase_letter :: = a I b I c I .. , I z 
uppercase_letter :: = A I B I C I ... I Z 
digit :: 0 I 1 I 2 I 3 I 4 I 5 , 6 , 7 I 8 I 9 

Now let us create a category alphanumeric_string to be an arbitrary sequence of letters 
or digits. 

alphanumericstring :: = {letter_or_digit}0+ 

Using these productions, we see that strings of one character such as "3" and strings of 
many characters such as "ab777c" as well as the null string '"' are all alphanumeric 
strings. Note that in each of our examples double-quote characters were used to delimit 
the alphanumeric string. The double-quote characters themselves are not part of the 
string. 

If we wish to guarantee that a string has at least one character, we must define a new 
syntactic category, such as 

aJpha_string_l :: {letter_or_digith+ 

and if we want strings that start with an uppercase letter, we could define 

2.3 V Comments 

a_string :: = uppercase_letter alphanumericstring 

define a syntactic category called conditionaLstatement to illustrate the { }opt 

as follows: 

: : = i f (expression) statement 
{e 1 se statement} opt 

expression and statement have not yet been supplied with rewriting rules, this 
is not defined completely. Those rewriting rules are complicated, and we are 
to present them here. In any case, some examples of this syntactic category 

f (big_big_big > 999) 
huge = giant + ot; /* no else part immediately 

follows */ 
(normalized_score >= 65) 
pass 1; 

lse /* else part associated with preceding if part */ 
pass = 0; 

Comments 

1l1l.l.lC.llli:> are arbitrary strings of symbols placed between the delimiters /* and 1(/ ' 

are not tokens. The compiler changes each comment into a single blank 
. Thus, comments are not part of the executable program. We have already 

examples such as 

a comment 1(/ /*** another comment ***/ 

example is 

A comment can be written in this fashion 
to set it off from the surrounding code. 

75 



76 Chapter 2" Lexical Elements, Operators, and the C System 

The following illustrates one of many styles that can be used to highlight comments: 

1***************************** 
* If you wish, you can * 
* put comments in a box. * 
*****************************1 

Comments are used by the programmer as a documentation aid. The aim of docu
mentation is to explain clearly how the program works and how it is to be used. Some
times a comment contains an informal argument demonstrating the correctness of the 
program. 

Comments should be written simultaneously with program text. Although some pro
grammers insert comments as a last step, there are two problems with this approach. 
The first is that once the program is running, the tendency is to either omit or abbrevi
ate the comments. The second is that ideally the comments should serve as running 
commentary, indicating program structure and contributing to program clarity and cor
rectness. They cannot do this if they are inserted after the coding is finished. 

In C++, the C style of comment is still valid. But in addition, C++ provides for com
ments that begin with I I and run to the end of the line. 

II This is a comment in c++. 

II 
II This is one common way of writing 
II a comment in C++ that consists 
II of many lines. 
II 
1"( 
II This C comment style mimics the 
II previous C++ comment style. 
~(I 

2.4 " Keywords 

Keywords 

T{/lvWOf(lS are explicitly reserved words that have a strict meaning as individual tokens 
They cannot be redefined or used in other contexts. 

Keywords 

auto do goto signed unsigned 

break double if sizeof void 

case else int static volatile 

char enum long struct while 

const extern register switch 

continue float return typedef 

default for short union 

implementations may have additional keywords. These will vary from one imple
tion, or system, to another. As an example, here are some of the additional key

words in Turbo C. 

Additional keywords for Borland C 

asm cdecl far huge interrupt near pascal 

Compared to other major languages, C has only a small number of keywords. Ada, for 
e'Xample, has 62 keywords. It is a characteristic of C that it does a lot with relatively few 
special symbols and keywords. 

77 

',:: 
I 

I 



78 Chapter 2.., Lexical Elements, Operators, and the C System 

2.5 Identifiers 

An identifier is a token that is composed of a sequence of letters, digits, and the special 
character _, which is called an underscore. A letter or underscore must be the first char
acter of an identifier. In most implementations of C, the lower- and uppercase letters 
are treated as distinct. It is good programming practice to choose identifiers that have 
mnemonic significance so that they contribute to the readability and documentation of 
the program. 

identifier {letter I underscoreh {letter I underscore I digit}0+ 
underscore :: = _ 

Some examples of identifiers are 

k 
d 

iamanidentifier2 
so_am_i 

but not 

not#me 
10Lsouth 
-plus 

/* special character # not allowed */ 
/* must not start with a digit */ 
/* do not mistake - for _ */ 

Identifiers are created to give unique names to objects in a program. Keywords can 
be thought of as identifiers that are reserved to have special meaning. Identifiers such 
as scanf and pri ntf are already known to the C system as input/output functions in 
the standard library. These names would not normally be redefined. The identifier ma; n 
is special, in that C programs always begin execution at the function called mai n. 

One major difference among operating systems and C compilers is the length of dis
criminated identifiers. On some older systems, an identifier with more than 8 charac
ters will be accepted, but only the first 8 characters will be used. The remaining 
characters are simply disregarded. On such a system, for example, the variable names 

and 

would be considered the same. 
In ANSI C, at least the first 31 characters of an identifier are discriminated. Many C 

systems discriminate more. 

2.6 .., Constants 

programming style requires the programmer to choose names that are mean
If you were to write a program to figure out various taxes, you might have iden
such as tax_rate, pri ee, and tax, so that the statement 

have an obvious meaning. The underscore is used to create a single identifier 
what would normally be a string of words separated by spaces. Meaningfulness 

avoiding confusion go hand in hand with readability to constitute the main guide
for a good programming style. 

"n"ru'YI'Identifiers that begin with an underscore can conflict with system names, 
systems programmers should use such identifiers, Consider the identifier ob, 
is often defined as the name of an array of structures in stdio.h. If a programmer 

to use _ ; ob for some other purpose, the compiler may complain, or the program 
misbehave. Applications programmers are advised to use identifiers that do not 
with an underscore. Also, external identifiers can be subjected to system-depen

restrictions, 

Constants 

we have seen in some simple introductory programs, C manipulates various kinds of 
Numbers such as 0 and 17 are examples of integer constants, and numbers such 

1.0 and 3.14159 are examples of floating constants. Like most languages, C treats 
and floating constants differently. In Chapter 3, "The Fundamental Data Types," 

will discuss in detail how C understands numbers. There are also character con
in C, such as ! a " 'b I , and '+'. Character constants are written between single 

and they are closely related to integers. Some character constants are special, 
as the newline character, written "\n". The backslash is the escape character, and 

think of \n as "escaping the usual meaning of n." Even though \n is wTitten ''lith the 
'i",i'UVV characters \ and n, it represents a single character called newline. 

addition to the constants that we have already discussed, there are enumeration 
('f\nQ!',:n,rc in C. We will discuss these along with the keyword enum in Section 7.5, "Enu

Types," on page 345. Integer constants, floating constants, character con
and enumeration constants are all collected by the compiler as tokens. Because 

implementation limits, constants that are syntactically expressible may not be avail-
on a particular machine. For example, an integer may be too large to be stored in a 

machine word. 

79 



80 Chapter 2" Lexical Elements, Operators, and the C System 

Decimal integers are finite strings of decimal digits. Because C provides octal and 
hexadecimal integers as well as decimal integers, we have to be careful to distinguish 
between the different kinds of integers. For example, 17 is a decimal integer constant, 
017 is an octal integer constant, and 0x17 is a hexadecimal integer constant. (See Chap
ter 3, "The Fundamental Data Types," for further discussion.) Also, negative constant 
integers such as -33 are considered constant expressions. 

decimaUnteger :: = 0 I positive_decimaUnteger 
positive_decimaUnteger :: = positive_digit {digitJe+ 
positive_digit :: = 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

Some examples of constant decimal integers are 

o 
77 
123456789000 

but not 

0123 
-49 
123.0 

1* too large for the machine? *1 

1* an octal integer *1 
1* a constant expression *1 
1* a floating constant *1 

Although we have already used integer constants such as 144 and floating constants 
such as 39.7, their meaning in terms of type, along with details concerning memory 
requirements and machine accuracy, is complicated enough to require a thorough dis
cussion. We do this in Chapter 3, "The Fundamental Data Types." 

2.7 String Constants 

A sequence of characters enclosed in a pair of double-quote marks, such as "abc", is a 
string constant, or a string literal. It is collected by the compiler as a single token. In 
Section 6.10, "Strings," on page 270, we will see that string constants are stored by the 
compiler as arrays of characters. String constants are always treated differently from 
character constants. For example, 'a' and "a" are not the same. 

Note that a double-quote mark" is just one character, not two. If the character" 
itself is to occur in a string constant, it must be preceded by a backslash character \ . If 
the character \ is to occur in a string constant, it too must be preceded by a backslash. 
Some examples of string constants are 

of text" 

" I~' a stri ng 
H == b + c;" I~' 

a .' '1" 

2.8 " Operators and Pu nctuators 

1* the null string *1 
of blank characters *1 
nothing is executed *1 

/* th1S 1S not a comment H 

"a string with double quotes \" within" 
!fa single backslash \\ is in this string" 

r "this is not a string" ~'I 
"and 
neither is this" 

sequences that would have meaning if outside a string constant are just a 
1!t:1./""''-H'-~ of characters when surrounded by double quotes. In the previous examples, 

string contains what appears to be the statement a = b + C;, but since it occurs 
"<I111'rOllnClea by double quotes, it is explicitly this sequence of characters. 

Two string constants that are separated only by white space are concatenated by the 
,.\;VJlUVU~L into a single string. Thus, 

is equivalent to "abcdef" 

is a new feature of the language available in ANSI C, but not in traditional C. 

constants are treated by the compiler as tokens. As with other constants, the 
!-<V'U/-"CL'-L provides the space in memory to store string constants. We will emphasize 

point again in Section 6.10, "Strings," on page 270, when we discuss strings and 

Operators and Punctuators 

C, there are many special characters with particular meanings. Examples include the 
C\rithmetic operators 

+ I % 

which stand for the usual arithmetic operations of addition, subtraction, multiplication, 
diviSion, and modulus, respectively. Recall that in mathematics the value of a modulus 

81 



~ 
i 

i 82 Chapter 2... lexical Elements, Operators, and the C System 

b is obtained by taking the remainder after dividing a by b. Thus, for example, 5 % 3 
has the value 2, and 7 % 2 has the value 1. 

In a program, operators can be used to separate identifiers. Although typically we 
put white space around binary operators to heighten readability, this is not required. 

/* this is the expression a plus b */ 
/* this is a 3-character identifier */ 

Some symbols have meanings that depend on context. As an example of this, consider 
the % symbol in the two statements 

pri ntf("%d", a); and a b % 7; 

The first % symbol is the start of a conversion specification, or format, whereas the sec
ond % symbol represents the modulus operator. 

Examples of punctuators include parentheses, braces, commas, and semicolons. Con
sider the following code: 

int main(void) 
{ 

i nt a, b = 2, c 

a = 17 * (b + c); 

3 ; 

The parentheses immediately following mai n are treated as an operator. They tell the 
compiler that ma; n is the name of a function. After this, the symbols "{", ",", ";", U(", 
and ")" are punctuators. 

Both operators and punctuators are collected by the compiler as tokens, and along 
with white space, they serve to separate language elements. 

Some special characters are used in many different contexts, and the context itself 
can determine which use is intended. For example, parentheses are sometimes used to 
indicate a function name; at other times they are used as punctuators. Another example 
is given by the expressions 

a + b ++a a += b 

They all use + as a character, but ++ is a single operator, as is +=. Having the meaning of 
a symbol depend on context makes for a small symbol set and a terse language. 

2.9 ... Precedence and Associativity of Operators 

Precedence and Associativity of Operators 

~"'~~<"-rlr' have rules of precedence and associativity that are used to determine how 
cc;.~,vnreS:SllJ11" are evaluated. These rules do not fully determine evaluation because the 

has leeway to make changes for its own purposes. Since expressions inside 
ses are evaluated first, parentheses can be used to clarify or change the order 
operations are performed. Consider the expression 

the operator'" has higher precedence than +, causing the multiplication to be per
""',wl"n£.n first, then the addition. Hence, the value of the expression is 7. An equivalent 

3) 

other hand, because expressions inside parentheses are evaluated first, the 

isccUfterent; its value is 9. Now consider the expression 

- 3 + 4 5 

e the binary operators + and have the same precedence, the associativity rule 
to right" is used to determine how it is evaluated. The "left to right" rule means 

operations are performed from left to right. Thus, 

5 

eqUivalent expression. 
following table gives the rules of precedence and associativity for some of the 

periato:rs of C. In addition to the operators we have already seen, the table includes 
that will be discussed later in this chapter. 

83 



84 Chapter 2 T Lexical Elements, Operators, and the C System 

Operator precedence and associativity 

Operator Associativity 

o ++ (postfix) -- (postfix) left to right 

+ (unary) (unary) ++ (prefix) -- (prefix) right to left 

/ % left to right 

+ left to right 

etc. right to left 

All the operators on a given line, such as '~, I, and %, have equal precedence with 
respect to each other, but have higher precedence than all the operators that occur on 
the lines below them. The associativity rule for all the operators on a given line appears 
at the right side of the table. Whenever we introduce new operators, we will give their 
rules of precedence and associativity, and often we will encapsulate the information by 
augmenting this table. These rules are essential information for every C programmer. 

In addition to the binary plus, which represents addition, there is a unary plus, and 
both these operators are represented by a plus sign. The minus sign also has binary and 
unary meanings. Note carefully that the unary plus was introduced with ANSI C. There 
is no unary plus in traditional C, only unary minus. 

From the preceding table we see that the unary operators have higher precedence 
than the binary plus and minus. In the expression 

-a"'b-c 

the first minus sign is unary and the second binary. Using the rules of precedence, we 
see that the following is an equivalent expression: 

((- a) '" b) - c 

2.10 T Increment and Decrement Operators 

Increment and Decrement Operators 

n¥DTI1""nt operator ++ and the decrement operator -- are unary operators. They 
IIlULlU."" because they can be used as both prefix and postfix operators. Suppose 

a variable of type i nt. Then both ++va 1 and val ++ are valid expressions, with 
illustrating the use of ++ as a prefix operator and val ++ illustrating the use of ++ 

operator. In traditional C, these operators have the same precedence as the 
unary operators. In ANSI C, for technical reasons they have the very highest pre

and left-to-right associativity as postfix operators, and they have the same pre
as the other unary operators and right-to-Ieft associativity as prefix operators. 

++ and -- can be applied to variables, but not to constants or ordinary expres-
Moreover, different effects may occur depending on whether the operators occur 

or postfix position. Some examples are 

/* constants cannot be incremented *1 
b - 1) 1* ordinary expressions cannot be incremented "'/ 

of the expressions ++i and i ++ has a value; moreover, each causes the stored 
of i in memory to be incremented by 1. The expression ++ i causes the stored 
of i to be incremented first, with the expression then taking as its value the new 
value of i. In contrast, the expression i ++ has as its value the current value of i; 

the expression causes the stored value of i to be incremented. The following code 
the situation: 

a, b, c 0; 

++c; 

%d %d\n", a, b, ++c); 1* 1 1 3 is printed *1 

85 



86 Chapter 2 T Lexical Elements, Operators, and the C System 

In a similar fashion, the expression --i causes the stored value of i in memory to be 
decremented by 1 first, with the expression then taking this new stored value as its 
value. With i --, the value of the expression is the current value of i; then the expres
sion causes the stored value of i in memory to be decremented by l. 

Note carefully that ++ and cause the value of a variable in memory to be changed. 
Other operators do not do this. For example, an expression such as a + b leaves the 
values of the variables a and b unchanged. These ideas are expressed by saying that the 
operators ++ and -- have a side effect, not only do these operators yield a value, they 
also change the stored value of a variable in memory. (See exercise 14, on page 99.) 

In some cases, we can use ++ in either prefix or postfix position, with both uses pro
ducing equivalent results. For example, each of the two statements 

++i; and i++; 

is eqUivalent to 

i i + 1; 

In simple situations, one can consider ++ and -- as operators that provide concise nota
tion for the incrementing and decrementing of a variable. In other situations, careful 
attention must be paid as to whether prefix or postfix position is desired. 

Declarations and initializations 

int a = 1, b = 2, c = 3, d '" 4; 

Expression Equivalent expression Value 

a'" b / c (a ,., b) / c 0 

a it b % c + 1 ((a * b) % c) + 1 3 

++a'''b-c -- ((++ a) ," b) (c .) 1 

7--b i'++ d 7 - ((-b) * (++ d)) 17 

2.11 T Assignment Operators 

Assignment Operators 

the value of a variable, we have already made use of assignment statements 

b + c; 

other languages, C treats as an operator. Its precedence is lower than all the 
we have discussed so far, and its associativity is right to left. In this section 
in detail the significance of this. 

understand = as an operator, let us first consider + for the sake of comparison. 
operator + takes two operands, as in the expression a + b. The value of the 

sian is the sum of the values of a and b. By comparison, a simple assignment 
'.L'-U'V~~~~ is of the form 

righLside 

righLside is itself an expression. Notice that a semicolon placed at the end would 
made this an assignment statement. The assignment operator = has the two oper
variable and righLside. The value of righLside is assigned to variable, and that 
becomes the value of the assignment expression as a whole. To illustrate this, 

C!onSllCler the statements 

2 ; 
3; 
b + c; 

the variables are all of type i nt. By making use of assignment expressions, we 
condense this to 

2) + (c = 3); 

assignment expression b = 2 assigns the value 2 to the variable b, and the assign
expression itself takes on this value. Similarly, the assignment expression c = 3 

the value 3 to the variable c, and the assignment expression itself takes on this 
Finally, the values of the two assignment expressions are added, and the result

is assigned to a. 

87 



88 Chapter 2 'f Lexical Elements, Operators, and the C System 

Although this example is artificial, there are many situations where assignment 
occurs naturally as part of an expression. A frequently occurring situation is multiple 
assignment. Consider the statement 

a = b = c = 0; 

Because the operator = associates from right to left, an equivalent statement is 

a = (b = (c = 0)); 

First, c is assigned the value 0, and the expression c = 0 has value 0. Then b is assigned 
the value 0, and the expression b (c = 0) has value 0. Finally, a is assigned the value 
0, and the expression a = (b = (c = 0)) has value 0. Many languages do not use 
assignment in such an elaborate way. In this respect C is different. 

In addition to =, there are other assignment operators, such as += and -= . An expres
sion such as 

will add 2 to the old value of k and assign the result to k, and the expression as a whole 
will have that value. The expression 

k += 2 

accomplishes the same task The following table contains all the aSSignment operators: 

Assignment operators 

+= ~'= /= %= »= «= &"" A= 1= 

All these operators have the same precedence, and they all have right-to-Ieft associativ
ity. The semantics is specified by 

variable OP=' expression 

which is equivalent to 

variable = variable op (expression) 

with the exception that if variable is itself an expression, it is evaluated only once. 
When dealing with arrays, this is an important technical point. Note carefully that an 
assignment expression such as 

2.12 'f An Example: Computing Powers of 2 

+ 3 is equivalent to j = j ,~ (k + 3) 

k + 3 

table illustrates how assignment expressions are evaluated: 

ons and initializations 

1, j = 2, k = 3, m = 4; 

Equivalent expression Equivalent expression Value 

+ k i += (j + k) i (; + (j + k)) 6 

5 j *= (k = em + 5)) j (j ,', (k (m + 5))) 18 

An Example: Computing Powers of 2 

some of the ideas presented in this chapter, we will write a program that 
a line some powers of 2. Here is the program: 

Some powers of 2 are printed. */ 

main(void) 

i = 0, power l' , 

while (++i <= 10) 
pri ntf("%-6d" , power ''J'(= 2); 

printf("\n"); 
return 0; 

t of the program is 

4 8 16 32 64 128 256 512 1024 

89 



... 
90 Chapter 2"" Lexical Elements, Operators, and the C System 

• • 
Dissection of the pow_of_2 Program 

• /* Some powers of 2 are printed. */ 

Programs often begin with a comment explaining the program's intent or use. In a large 
program, comments may be extensive. The compiler treats comments as white space. 

• #include <stdio.h> 

The header file stdio.h contains the function prototype for the pri ntfO function. This 
is a kind of declaration for pri ntfO. The compiler needs it to do its work correctly. 
(See Section 2.13, "The C System," on page 91, for further details.) 

• int i = 0, power l' , 

The variables i and powe r are declared to be of type i nt. They are initialized to 0 and 
1, respectively. 

• while (++i <= 10) 

As long as the value of the expression ++i is less than or equal to 10, the body of the 
whi 1 e loop is executed. The first time through the loop, the expression ++i has the 
value 1; the second time through the loop, ++i has the value 2; and so forth. Thus, the 
body of the loop is executed ten imes. 

• pri ntfC"%-6d", power '1'= 2); 

The body of the whi 1 e loop consists of this statement. The string constant "%-6d" is 
passed as the first argument to the pri ntfO function. The string contains the format 
%-6d, which indicates that the value of the expression power '1'= 2 is to be printed as a 
decimal integer with field width 6. The minus sign indicates that the value is to be left 
adjusted in its field. 

• power i'= 2 

This assignment expression is equivalent to power == power * 2 which causes the old 
value of power to be multiplied by 2 and the resulting value to be assigned to power. 
The value assigned to powe r is the value of the assignment expression as a whole. 

2.13 " The C System 

first time through the whi 1 e loop, the old value of powe r is 1, and the new value is 
second time through the loop, the old value of power is 2, and the new value is 4, 

so forth. 

The C System 

C system consists of the C language, the preprocessor, the compiler, the library, 
other tools useful to the programmer, such as editors and debuggers. In this sec
we discuss the preprocessor and the library. (See Chapter 8, "The Preprocessor," 

further details about the preprocessor. See Appendix A, "The Standard Library," for 
about functions in the standard library.) . 

Preprocessor 

that begin with a # are called preprocessing directives. These lines communicate 
the preprocessor. In traditional C, preproceSSing directives were required to begin 

1. In ANSI C, this restriction has been removed. Although a # may be pre-
on a line by white space, it is still a common programming style to start prepro

directives in column 1. 
have already used preprocessing directives such as 

and #define PI 3.14159 

form of the #i ncl ude facility is given by 

ncl ude "filename" 

causes the preprocessor to replace the line with a copy of the contents of the 
file. A search for the file is made first in the current directory and then in other 
-dependent places. With a preprocessing directive of the form 

preproc~ssor looks for the file only in the "other places" and not in the current 

#i ncl ude directives commonly occur at the beginning of the program, the 
files they refer to are called header files, and a . h is used to end the file name. 

91 



92 Chapter 2 v Lexical Elements, Operators, and the C System 

This is a convention; the preprocessor does not require this. There is no restriction on 
what an include file can contain. In particular, it can contain other preprocessing direc
tives that will be expanded by the preprocessor in turn. Although files of any type may 
be included, it is considered poor programming style to include files that contain the 
code for function definitions. (See Chapter 5, "Functions.") 

On UNIX systems, the standard header files such as stdio.h are typically found in the 
directory /usr/include. On Borland C systems, they might be found in the directory 
c:\bc\include or in some other directory. In general, the location of the standard 
#i ncl ude files is system-dependent. All of these files are readable, and programmers, 
for a variety of reasons, have occasion to read them. 

One of the primary uses of header files is to provide function prototypes. For exam
ple, the file stdio.h contains the following lines: 

int 
int 

printf(const char *format, ... ); 
scanf(const char *format, ... ); 

These are the function prototypes for the pri ntfO and scanfO functions in the stan
dard library. Roughly spealdng, a function prototype tells the compiler the types of the 
arguments that get passed to the function and the type of the value that gets returned 
by the function. Before we can understand the function prototypes for pri ntfO and 
scanfO, we need to learn about the function-definition mechanism, pointers, and type 
qualifiers. These ideas are presented in later chapters. The point we are maldng here is 
that when the programmer uses a function from the standard library, then the corre
sponding standard header file should be included. The header file will provide the 
appropriate function prototype and other necessary constructs. The compiler needs the 
function prototype to do its work correctly. 

The Standard library 

The standard library contains many useful functions that add considerable power and 
flexibility to the C system. Many of the functions are used extensively by all C program
mers, whereas other functions are used more selectively. Most programmers become 
acquainted with functions in the standard library on a need-to-know basis. 

Programmers are not usually concerned about the location on the system of the stan
dard library because it contains compiled code that is unreadable to humans. The stan
dard library may comprise more than one file. The mathematics library, for example, is 
conceptually part of the standard library, but it often exists in a separate file. (See exer
cise 25, on page 105, and exercise 26, on page 105.) Whatever the case, the system 
knows where to find the code that corresponds to functions from the standard library, 
such as pri ntfO and scanfO, that the programmer has used. Note carefully, how
ever, that even though the system provides the code, it is the responsibility of the pro-

2.13 V The C System 

to provide the (unction prototype. This is usually accomplished by including 
te header files. 

tion: Do not mistake header files for the libraries themselves. The standard 
contains object code of functions that have already been compiled. The stan

files do not contain compiled code. 
an illustration of the use of a function in the standard library, let us show how 
o can be used to generate some randomly distributed integers. In later chapters 

have occasion to use rand 0 to fiH arrays and strings for testing purposes. 
use it to print some integers on the screen. 

nclude <stdio.h> 
nclude <stdlib.h> 

i nt i, n; 

printf("\n%s\n%s", 
"Some randomly distributed integers 
"How many do you want to see? "); 

scanf("%d", &n) j 

will be printed.", 

for (i = 0; i < n; ++i) { 
if (i % 10 0) 

putchar (' \n!) j 
pri ntf("%7d", rand 0) ; 

} 
printf("\n\n"); 
return 0; 

e that we execute the program and type 19 when prompted. Here is what 
on the screen: 

randomly distributed integers will be printed. 
many do you want to see? 23 

16838 
16212 
25089 

5758 
4086 

21183 

10113 
2749 

25137 

17515 
12767 
25566 

31051 
9084 

26966 

5627 
12060 

4978 

23010 
32225 
20495 

7419 
17543 

93 



94 Chapter 2 T Lexical Elements, Operators, and the C System 

• • 
Dissection of the prn_rand Program 

• #include <stdio.h> 
#include <stdlib.h> 

These header files are included because of the function prototypes they contain. In par
ticular, the function prototype 

int rand(void); 

is in stdlib.h. It tells the compiler that rand 0 is a function that takes no arguments and 
returns an i nt value. Rather than include stdlib.h, we could instead supply this line our
selves at the top of the file just before main O. However, it is both easier and safer to 
include the header file. 

• printf("\n%s\n%s" , 
"Some randomly distributed integers will be printed.

H
, 

"How many do you want to see? H); 
scanf("%d", &n); 

A prompt to the user is printed on the screen. The characters typed in by the user are 
received by scanfO, converted in the format of a decimal integer, and placed at the 
address of n. 

• for (i = 0; ; < n; ++i) { 

} 

This is a for loop. It is equivalent to 

i == 0; 
while (i < n) { 

++i; 
} 

2.1 3 T The C System 

way to write this program would be to initialize i to zero and then use the con-

< n) { 

that i++ < n is different from ++i < n. (See exercise 19, on page 101.) 

(; % 10 == 0) 
putchar('\n'); 

rintf("%7d H, randO); 

tor == is the "is equal to" operator. If exprl and expr2 are two expressions 
the same value, then the expression exprl == expr2 will be true; otherwise it will 

In Section 4.3, "Equality Operators and Expressions," on page 152, we will see 
has lower precedence than % . Thus, 

o is equivalent to (i % 10) 

time through the loop and every eighth time thereafter, the expression as a 
true. Whenever the expression is true, a newline character gets printed. 

ntf(H%7d", randO); 

time through the loop, the value returned by the call to randO is printed in the 
of a decimal integer. The width of the field where the integer gets printed is 7. 

• • 
uses of rand 0, the programmer needs to seed the random-number generator 

it gets used. This can be done v\lith the following line: 

exerc:ise 22, on page 102, for further discussion. Also, see exercise 25, on page 105, 
use of other random-number generators.) 

95 



-
96 Chapter 2" Lexical Elements, Operators, and the C System 

Summary 

1 Tokens are the basic syntactic units of C. They include keywords, identifiers, con
stants, string constants, operators, and punctuators. White space, along with opera
tors and punctuators, can serve to separate tokens. For this reason, white space, 
operators, and punctuators are collectively called separators. White space, other 
than serving to separate tokens, is ignored by the compiler. 

2 Comments are enclosed by the bracket pair /'/< and "'1 and are treated as white 
space by the compiler. They are critical for good program documentation. Com
ments should assist the reader to both use and understand the program. 

3 A keyword, also called a reserved word, has a strict meaning. There are 32 key
words in C. They cannot be redefined. 

4 Identifiers are tokens that the programmer uses chiefly to name variables and func
tions. They begin with a letter or underscore and are chosen to be meaningful to the 
human reader. 

5 Some identifiers are already known to the system because they are the names of . 
functions in the standard library. These include the input/output functions 
scanfO and pri ntfO and mathematicalfunctions such as sqrtO, si nO, cosO, 
and tanO. 

6 Constants include various kinds of integer and floating constants, character con
stants such as I a' and '#', and string constants such as "abc". All constants are 
collected by the compiler as tokens. 

7 String constants such as "deep bl ue seal! are arbitrary sequences of charact~rs, 
including white-space characters, that are placed inside double quotes. A strmg 
constant is stored as an array of characters, but it is collected by the compiler as a 
single token. The compiler provides the space in memory needed to store a string 
constant. Character constants and string constants are treated differently. For 
example, 'x' and II x 11 are not the same. 

" Summary 

and punctuators are numerous in C. The parentheses that follow rna; n in 

an operator; they tell the compiler that rna; n is a function. The parenthe
in the expression a * (b + c) are punctuators. The operations inside the 

)(ll'-U",,~ses are done first. 

C, the rules of precedence and associativity for operators determine how an 
gets evaluated. The programmer needs to know them. 

increment operator ++ and the decrement operator -- have a side effect. In 
to having a value, an expression such as ++i causes the stored value of i 

memory to be incremented by 1. 

operators ++ and can be used in both prefix and postfix positions, possibly 
different effects. The expression ++; causes i to be incremented in memory, 

the new value of ; is the value of the expression. The expression; ++ has as its 
the current value of ; , and then the expression causes; to be incremented in 

C, the assignment symbol is an operator. An expression such as a = b + c 
UC>C>"b'U'> the value of b + c to a, and the expression as a whole takes on this value. 

uu.<V ..... F,H the assignment operator in C and the equal sign in mathematics look 
they are not comparable. 

standard library contains many useful functions. If the programmer uses a 
from the standard library, then the corresponding standard header file 

be included. The standard header file provides the appropriate function 

97 

,.J........ 



98 Chapter 2.... Lexical Elements, Operators, and the C System 

Exercises 

1 Is mai n a keyword? Explain. 

2 List five keywords and explain their use. 

3 Give two examples of each of the six types of tokens. 

4 Which of the following are not identifiers and why? 

3id __ yes o_no_o_no 
_am one_i_aren"t me_to-2 

0~Lgo 
xYshouldI 

star~(i t 
int 

5 Design a standard form of introductory comment that will give a reader informa
tion about who wrote the program and why. 

6 Take a symbol such as + and show the different ways it can be used in a program. 

7 ANSI C does not provide for the nesting of comments, although many compilers 
provide an option for this. Try the following line on your compiler and see what 
happens: 

/* This is an attempt 1* to nest *1 a comment. *1 

8 The ANSI C committee is conSidering adding the c++ comment style to the C lan
guage, and some compilers already accept this. If you put a line such as 

II Will this c++ style comment work in C? 

in one of your working C programs, what happens on your system? Even if your C 
compiler does accept this comment style, you should be aware that many compilers 
do not. If you want your code to be portable, do not use C++ style comments. 

9 Write an interactive program that converts pounds and ounces to kilograms and 
grams. Use symbolic constants that are defined at the top of the file outside of 
mainO. 

10 This exercise illustrates one place where white space around operators is impor
tant. The expression a+++b can be interpreted as either 

.... Exercises 

+ b or a + ++b 

lC:UU.U"EJ on how the plus symbols are grouped. The correct grouping is the first 
one. This is because the compiler groups the longest string as a token first, and so 
uses ++ instead of + as a first token. Write a short program to check this. 

For the pow_of_2 program in Section 2.12, "An Example: Computing Powers of 2," 
on page 89, ~xplain what the effect would be if the expression ++i were changed to 

The following code can be used to write a variation of the pow_of_2 program. What 
printed? Write a program to check your answer. 

i 0, power = 2048; 

ile «power 1= 2) > O) 
printf("%-6d", power); 

program that you wrote in exercise 12 contains a whi 1 e loop. Write another 
~."""T"'ClYYl that has the same effect, but use a for loop instead. 

Study the following code and write down what you think gets printed. Then write a 
test program to check your answers. 

i nt a, b = 0, c = O; 

a = ++b + ++c; 
printf("%d %d %d\n" , a, b, c) ; 
a = b++ + c++; 
printf("%d %d %d\n", a, b, c) ; 
a = ++b + c++; 
printf("%d %d %d\n" , a, b, c) ; 
a = b-- + --c; 
printf("%d %d %d\n" , a, b, c) ; 

What is the effect in the following statement if some, or all, of the parentheses are 
. removed'? Explain. 

x = (y 2) + (z = 3); 

First complete the entries in the table that follows. After you have done this, write a 
program to check that the values you entered are correct. Explain the error in the 
last expression in the table. Is it a compile-time error or a run-time error? 

99 



100 Chapter 2 'f Lexical Elements, Operators, and the C System 

Declarations and initializations 

i nt a 2, b == -3, c 5, d -7, e 11; 

• Expression Equivalent expression Value 

! 

/ b / c (a / b) / c 0 ,a 
'7 + c ,', d / e 7 + ((c 'I, (-- d)) / e) 

!2 i, a % b + c + 1 

39 / ++ e + 29 % c 

a +== b +== C += 1 + 2 

7 + ++ a % (3 + b) error 

17 Consider the following code: 

int a = 1, b == 2, c 3; 

a += b += C += 7; 

Write an equivalent statement that is fully parenthesized. What are the values of 
the variables a, b, and c? First write dmvn your answer. Then write a test program 
to check your answer. 

18 A good programming style includes a good layout style, and a good layout style is 
crucial to the human reader, even though the compiler sees only a stream of charac
ters. Consider the following program: 

int main(void 
){float qx, 
zz, 
tt;printf("gimme 3" 
);scanf 
("%f%f %f" ,&qx,&zz 
,&tt);printf("averageis=%f", 
(qx+tt+zz)/3.0);return 
o 
; } 

Although the code is not very readable, it should compile and execute. Test it to see 
if that is true. Then completely reV'.Tite the program. Use white space and comments 
to make it more readable and well documented. Hint: Include a header file and 
choose new identifiers to replace qx, ZZ, and tt. 

'f Exercises 

the prnJand program in Section 2.l3, "The C System," on page 93, replac
the for loop with the following whi 1 e loop: 

< n) { 

you get your program running and understand its effects, rewrite the pro
changing 

to ++i < n 

the program will behave differently. To compensate for this, rewrite the body 
whi 1 e loop so that the program behaves exactly as it did in the beginning. 

integers produced by the function rand 0 all fall within the interval [0, n], 
n is system-dependent. In ANSI C, the value for n is given by the symbolic 

RAND_MAX, which is defined in the standard header file stdlib.h. Write a 
, ... ", .... ",,..... that prints out the value of RAND_MAX on your system. Hint: Include the 

file stdlib.h and use the line 

printf("RAND_MAX = %d\n", RAND_MAX); 

sible, run your program on a number of different C systems. You will proba
find that RAND_MAX has the same value on all systems. The reason for this is 
the ANSI C committee suggested how the function rand 0 could be imple

d, and most compiler writers followed the committee's suggestions verbatim. 
as been our experience that C systems on PCs, UNIX workstations, and even the 

supercomputer in San Diego all use the same value for RAND_MAX and that on 
of these systems rand 0 produces the same output values. (See exercise 25, on 

105, for further discussion.) 

the prnJand program in Section 2.13, "The C System," on page 93, three times 
print out, say, 100 randomly distributed integers. Observe that the same list of 

ers gets printed each time. For many applications, this is not desirable. Mod
the prnJand program by using 5 rand 0 to seed the random-number generator. 
first few lines of your program should look like 

101 



102 Chapter 2 T Lexical Elements, Operators, and the C System 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

; nt ma; n (vo; d) 
{ 

int i, n, seed; 

seed = time(NULL); 
srand(seed); 
printf(rI\n%s\n%s", 

"Some randomly distributed integers 
"How many do you want to see? rI); 

wi 11 be pri nted. " , 

On most C systems, the function call ti me (NULL) returns the number of elap 
seconds since 1 January 1970. (See Appendix A, "The Standard Library.") We s 
this value in the variable seed, and then we use the function call s rand (seed) 
seed the random-number generator, Repeated calls to rand 0 will generate all 
integers in the interval [0, RAND_MAX], but in a mixed-up order. The value used to 
seed the random-number generator determines where in the mixed-up or 
rand 0 will start to generate numbers. If we use the value produced by ti me 0 as a 
seed, then the seed will be different each time we call the program, causing a differ
ent set of numbers to be produced. Run this program repeatedly. You should see a 
different set of numbers printed each time. Do you? 

22 In the previous exercise, we suggested the code 

seed = time(NULL); 
srand(seed); 

In place of these lines, most programmers would write 

srand(time(NULL)); 

Make this change to your program, and then compile and execute it to see that it 
behaves the same as before. 

T Exercises 

two previous exercises we used the value returned by ti me 0 to seed the ran
generator. In this exercise we want to use the value returned by 

o to measure the time it takes to call rand O. Here is one way this can be 

<stdio.h> 
<stdlib.h> 
<time,h> 

NCALLS 
NCOLS 
NLINES 

i, val; 

10000000 
8 
3 

begin, diff, end; 

/* number of fct calls */ 
/* number of columns */ 
/* number of lines */ 

begin = time(NULL); 
srand(time(NULL)); 
printf("\nTIMING TEST: %d calls to randO\n\n", NCALLS); 
for (i = 1; i <= NCALLS; ++i) { 

val = randO; 

} 

if (i <= NCOLS * NLINES) { 
printf("%7d", val); 

} 

if (; % NCOLS == 0) 
putchar('\n'); 

else if (i == NCOLS * NLINES + 1) 
printf("%7s\n\n", ", .. , ,"); 

end = time(NULL); 
diff = end - begin; 
printf("%s%ld\n%s%ld\n%s%ld\n%s%,10f\n\n", 

" end time: ", end, 
begin time: rI begin, 

" elapsed time: ", diff, 
"time for each call:" (double) diff / NCALLS); 

return 0; 

103 



104 Chapter 2 'f Lexical Elements, Operators, and the C System 

Here is the output on our system: 

TIMING TEST: 10000000 calls to rand() 

11753 
19570 
13830 

27287 
432 

27126 

12703 
12211 
17405 

5493 
9712 
4877 

end time: 868871916 
begin time: 868871900 

elapsed time: 16 

23634 
30284 
19045 

23237 
31480 

7305 

24988 
32334 

1114 

31011 
30292 
28874 

time for each call: 0.0000016000 

The intent of this program is to print out some of the values produced by the call to 
rand 0 but not all of them. After all, looking at ten million numbers on the screen 
is not too interesting. Experiment with this program by modifying some of the 
#defi nes so that you can see what their effects are. For example, try making the 
following changes: 

#define 
#define 
#define 

NCALLS 
NCOLS 
NLINES 

1000 
7 
7 

/* number of fct calls */ 
/* number of columns */ 
/* number of lines */ 

Caution: If you are on a time-shared machine, then the use of values returned by 
ti me 0 to time things can be misleading. Between your calls to ti me 0, the 
machine may be servicing other requests, making your timing results inaccurate. 
The proper way to time C code is with the use of the clock 0 fmIction. (See Section 
11.16, "How to Time C Code," on page 528.) 

24 The function randO returns values in the interval [0, RAND_MAX]. (See exercise 20, 
on page 101.) If we declare the variable medi an of type double and initialize it to 
have the value RAND_MAX/2 .0, then rand 0 will return a value that is sometimes 
larger than medi an and sometimes smaller. On average, there should be as many 
values that are larger as there are values that are smaller. Test this hypothesis. 
Write a program that calls randO, say 500 times, inside a for loop, increments the 
variable above_cnt every time rand 0 returns a value larger than medi an, and 
increments the variable bel ow_cnt every time rand 0 returns a value less than 
medi an. Each time through the for loop, print out the value of the difference of 
above_cnt and bel ow_cnt. This difference should oscillate about zero. Does it? 

'f Exercises 

this exercise we continue with the discussion started in exercise 20, on page 101. 
call to rand 0 produces a value in the interval [0, RANDJ1AX], and RAND_MAX typi

has the value 32767. Since this value is rather small, rand 0 is not useful for 
scientific problems. Most C systems on UNIX machines provide the program-

with the rand48 family of random-number generators, so called because 48-bit 
gets used to generate the numbers. The function d rand48 0, for exam

ple, can be used to produce randomly distributed doubl es in the range [0, 1], and 
function 1 rand48 0 can be used to produce randomly distributed integers in 
range [0, 231 - 1]. Typically, the function prototypes for this family of functions 
in stdlib.h. Modify the program that you wrote in exercise 20, on page 101, to 
1 rand480 in place of randO and srand480 in place of srandO. You will see 
, on average, larger numbers are generated. Whether the numbers are better 

on the application. To find out more about pseudo random-number gener-
, consult the text Numerical Recipes in C by William Press et al. (Cambridge, 

LU'F>'UU~'. Cambridge University Press, 1992), pages 274-328. 

value of expressions such as ++a + a++ and a += ++a are system-dependent, 
\C'-'AU.C'~ the side effects of the increment operator ++ can take place at different 

. This is both a strength and a weakness of C. On the one hand, compilers can 
what is natural at the machine leveL On the other hand, because such an expres

is system-dependent, the expression will have different values on different 
s. Experienced C programmers recognize expressions such as this to be 
y dangerous and do not use them. Experiment with your machine to see 

value is produced by ++a + a++ after a has been initialized to zero. Unfortu
many compilers do not warn about the danger of such expressions. What 

""'y, ..... ",..... on your system? 

on a UNIX system typically end in .a, which is mnemonic for "archive" 
libraries in Win 95/NT systems typically end in .lib. See if you can find the 
C libraries on your system. These libraries are not readable by humans. 

a UNIX system you can give a command such as 

ar t /usr/lib/libc.a 

see all the titles (names) of the objects in the library. If you do not see any math
tical functions, then the mathematics library is probably in a separate file. Try 
command 

ar t /usr/lib/libm.a 

105 



106 Chapter 2... Lexical Elements, Operators, and the C System 

28 In both ANSI C and traditional C, a backslash at the end of a line in a string constant 
has the effect of continuing it to the next line. Here is an example of this: 

"by using a backslash at the end of the line \ 
a string can be extended from one line to the next" 

Write a program that uses this construct. Many screens have 80 characters per line. 
What happens if you try to print a string with more than 80 characters? 

29 In ANSI C, a backslash at the end of any line is supposed to have the effect of con
tinuing it to the next line. This can be expected to work in string constants and 
macro definitions on any C compiler, either ANSI or traditional. (See the previous 
exercise.) However, not all ANSI C compilers support this in a more general way. 
After all, except in macro definitions, this construct gets little use. Does your C 
compiler support this in a general way? Try the following: 

#inc\ 
lude <stdio.h> 

int mai\ 
nevoid) 
{ 

printf("Will this work?\n"); 
ret\ 

urn 0; 
} 

30 When you invoke the compiler, the system first invokes the preprocessor. In this 
exercise we want to deliberately make a preprocessing error, just to see what hap
pens. Try the follOwing program: 

#incl <stdixx.h> 

int main(void) 
{ 

} 

printf("Try me.\n"); 
return 0; 

I'" two errors on this line 'i'l 

What happens if you change #i ncl to #i ncl ude? 

ter 3 

he Fundamental Data Types 

begin this chapter with a brief look at declarations, expressions, and assignment. 
we give a detailed explanation for each of the fundamental data types, paying par

ticular attention to how C treats characters as small integers. In expressions with oper
ands of different types, certain implicit conversions occur. We explain the rules for 
conversion and examine the cast operator, which forces explicit conversion. 

Declarations, Expressions, and Assignment 

Variables and constants are the objects that a program manipulates. In C, all variables 
be declared before they can be used. The beginning of a program might look like 

#include <stdio.h> 

int main(void) 
{ 

int 
float 

a, b, c; 
x, y = 3.3, z -7.7; 

printf("Input two integers: "); 
scanf("%d%d", &b, &c); 
a = b + c; 
x = y + z; 

1* declaration *1 
1* declaration with 

initializations *1 

1* function call *1 
1* function call *1 
I'~ assi gnment 'k I 
1* assi gnment 'i'l 



108 Chapter 3 v The Fundamental Data Types 

Declarations associate a type with each variable that is declared, and this tells the com
piler to set aside an appropriate amount of space in memory to hold values associated 
with variables. This also enables the compiler to instruct the machine to perform speci
fied operations correctly. In the expression b + c, the operator + is being applied to 
two variables of type i nt, which at the machine level is a different operation than + 
applied to variables of type float, as occurs in the expression y + z. Of course, the 
programmer need not be concerned that the two + operations are mechanically differ
ent, but the C compiler has to recognize the difference and give the appropriate 
machine instructions. 

The braces { and} surround a block, which consists of declarations and statements. 
The declarations, if any, must occur before the statements. The body of a function defi
nition is a block, but as we shall see in Section 5.10, "Scope Rules," on page 213, there 
are other uses for blocks. 

Expressions are meaningful combinations of constants, variables, operators, and 
function calls. A constant, variable, or function call by itself can also be considered an 
expression. Some examples of expressions are 

a + b 
sqrt(7.333) 
5.0 * x - tan(9.0 / x) 

Most expressions have a value. For example, the expression a + b has an obvious value, 
depending on the values of the variables a and b. If a has value 1 and b has value 2, 

then a + b has value 3. 
The equal sign = is the basic assignment operator in C. An example of an assignment 

expression is 

i = 7 

The variable i is assigned the value 7, and the expression as a whole takes that value as 
well. When followed by a semicolon, an expression becomes a statement, or more 
explicitly, an expression statement. Some examples of statements are 

i = 7; 
printfC"The plot thickens!\n"); 

The following two statements are perfectly legal, but they do no useful work. Some 
compilers will issue warnings about such statements; others will not. 

3.777; 
a + b; 

3.1 v Declarations, Expressions, and Assignment' 109 

us consider a statement that consists of a simple assigmnent expression followed 
a semicolon. It will have the following form: 

t, the value of the expression on the right side of the equal sign is computed. Then 
value is assigned to the variable on the left side of the equal sign, and this becomes 
value of the assignment expression as a whole. (Statements do not have a value.) 

that here the value of the assignment expression as a whole is not used. That is 
ctly all right. The programmer is not required to use the value produced by an 

Even though assignment expressions sometimes resemble mathematical equations, 
two notions are distinct and should not be confused. The mathematical equation 

° 
not become an assignment expression by typing 

/* wrong */ 

the left side of the equal sign is an expression, not a variable, and this expression 
not be assigned a value. Now consider the statement 

current value of x is assigned the old value of x plus 1. If the old value of x is 2 
the value of x after execution of the statement will be 3. Observe that as a mathe: 

equation 

meaningless; after subtracting x from both sides of the equation, we obtain 

0=1 

tion: Although they look alike, the assignment operator in C and the equal sign in 
"'~'LL'-"llUtiCS are not comparable. 



110 Chapter 3 V The Fundamental Data Types 

3.2 The Fundamental Data Types 

C provides several fundamental data types, many of which we have already seen. We 
need to discuss limitations on what can be stored in each type. 

Fundamental data types: long form 

char 

signed short int 

signed char 

signed int 

unsigned char 

signed long int 

unsigned short int unsigned int unsigned long int 

float double long double 
~~----------------------

These are all keywords. They may not be used as names of variables. ?f course, cha 
stands for "character" and i nt stands for "integer," but only char and 1 nt can be 
as keywords. Other data types such as arrays, pointers, and structures are derived 
the fundamental types. They are presented in later chapters. 

Usually, the keyword si gned is not used. For example, s; gned i nt is equivalent 
; nt, and because shorter names are easier to type, i nt is typically used. The type char, 
however, is special in this regard. (See Section 3.3, "Characters and .the Da~a Type 
char," on page 111.) Also, the keywords short; nt, 10l1g i nt, and unSl gned, 1 nt 
be, and usually are, shortened to just short, long, and unsi gned, re~pec:lvelY. 
keyword si gned by itself is equivalent to i nt, but it is seldom used m thIS con 
With all these conventions, we obtain a new list. 

Fundamental data types 

char signed char unsigned char 

short i nt long 

unsigned short unsigned unsigned long 

ifloat double long double 

Let us assume that the category type is defined to be anyone of the lUJllU,ClllJlCU 

types given in the preceding table. Using this category, we can provide the syntax of 
simple declaration: 

declaration :: = type identifIer { , identifier }0+ 

3.3 V Characters and the Data Type char 1 1 1 

fundamental types can be grouped according to functionality. The integral types 
those types that can be used to hold integer values; the floating types are those that 
be used to hold real values. They are all arithmetic types. 

Fundamental types grouped by functionality 

Integral types ichar signed char unsigned char 

ishort int long 

unsigned short unsigned unsigned long 

Floating types float double long double 

Arithmetic types Integral types + Floating types 

These collective names are a convenience. In Chapter 6, for example, when we dis
arrays, we will explain that only integral expressions are allowed as subscripts, 

nearuing only expressions involving integral types are allowed. 

Characters and the Data Type char 

C, variables of any integral type can be used to represent characters. In particular, 
char and i nt variables are used for this purpose. In some situations, an i nt may 

required for technical reasons. (See Section 3.9, "The Use of getcha r 0 and 
charO," on page 124.) Constants such as 'a t and t + t that we think of as charac
are of type; nt, not of type char. There are no constants of type char in C. This is 
of the few places where C++ differs from C. In C++, character constants are of type 

(See exercise 14, on page 142.) 
In addition to representing characters, a variable of type char can be used to hold 

integer values. Each char is stored in memory in 1 byte. Other than being large 
to hold all the characters in the character set, the size of a byte is not specified 

C. However, on most machines a byte is composed of 8 bits and is capable, therefore, 
storing 28, or 256, distinct values. Only a subset of these values represents actual 

characters. These include the lower- and uppercase letters, digits, punctuation, 
special characters such as % and +. The character set also includes the white space 

'hl'll'l'lf'tAl'" blank, tab, and newline. 
Most machines use either ASCII or EBCDIC character codes. In the discussion that fol

we will be using the ASCII code. A table for this code appears in Appendix D, 



112 Chapter 3... The Fundamental Data Types 

"ASCII Character Codes." For any other code, the numbers will be different, but th~ 
ideas are analogous. The following table illustrates the correspondence between some 
character and integer values on an Ascn machine: 

Some character constants and their corresponding integer values 

Character constants 'a' , b' 'e' ... 'z' 

Corresponding values 97 98 99 ., . 112 

Character constants 'A' 'B' 'e' ... 'z' 
Corresponding values 65 66 67 90 

Character constants '0' '1' '2 ' ... '9' 

Corresponding values 48 49 50 ... 57 

Character constants '&' '*' '+' 
Corresponding values 38 42 43 

Observe that there is no particular relationship between the value of the character con
stant representing a digit and the digit's intrinsic integer value. That is, the value of '2' 
is not 2. The property that the values for I a', 'b', I c I , and so on occur in order is 
important. It makes convenient the sorting of characters, words, and lines into lexico
graphical order. Character arrays are needed for this kind of work. (See Section 6.10, 
"Strings," on page 270.) 

Some nonprinting and hard-to-print characters require an escape sequence. The hori
zontal tab character, for example, is 'written as \ t in character constants and in strings. 
Even though it is being described by the two characters \ and t, it represents a single 
character. The backslash character \ is called the escape character and is used to 
escape the usual meaning of the character that follows it. The following table contains 
some nonprinting and hard-to-print characters: 

3.3 ... Characters and the Data Type char 113 

Special Characters 

Name of character Written in C Integer value 

alert \a 7 

backslash \\ 92 

backspace \b 8 

carriage return \r 13 

double quote \" 34 

formfeed \f 12 

horizontal tab \t 9 

newline \n 10 

null character \0 0 

single quote \' 39 
vertical tab \v 11 

question mark \7 63 

alert character \a is special; it causes the bell to ring. To hear the bell, try executing 
program that contains the line 

pri ntf("%c", '\a'); or putchar('\a'); 

double-quote character 11 has to be escaped if it is used as a character in a string. 
example is 

fi' "abel! is pri nted ;, / 

ly, the single-quote character ' has to be escaped if it is used in a constant char
acter construct. 

1\", '\ t '); /* 'abc' is printed */ 

single quotes we can use either \ I! or I! 

/* 'abc' is printed */ 

double quotes we can use either \' or 

printf("\'abe'"); /* 'abc' is printed */ 



114 Chapter 3 T The Fundamental Data Types 

In ANSI C, the effect of escaping an ordinary character is undefined. Some compilers 
will complain about this; others will not. 

Another way to write a character constant is by means of a one-, two-, or three-octal
digit escape sequence, as in '\007'. This is the alert character, or the audible bell. It 
can be written also as '\07' or '\7', but it cannot be written as '7'. ANSI C also pro
vides hexadecimal escape sequences. An example is '\xla' , which is control-z. 

Next, we want to understand how characters are treated as small integers, and, con
versely, how small integers are treated as characters. Consider the declaration 

char c:=' a'; 

The variable c can be printed either as a character or as an integer. 

printf("%c", c); 
printf("%d", c); 

1* a is printed *1 
1* 97 is printed *1 

Because c has an integer value, we may use it in arithmetic expressions. 

pri ntfC'%c%c%c", c, c + 1, c + 2); 1* abc is printed *1 

Actually, in this regard there is nothing special about the type char. Any integral 
expression can be printed either in the format of a character or an integer. 

char 
int 

c; 
i ; 

for (i = 'a'; i <= 'z'; ++i) 
pri ntf("%c", i); 

for (c = 65; c <= 90; ++c) 
printf("%c", c); 

for (c = '0'; C <= '9'; ++c) 
printf("%d ", c); 

l" abc z is pri nted ~'I 

/" ABC Z is printed t'l 

1* 48 49 ... 57 is printed *1 

Next, we want to look at how a char is stored in memory at the bit level, and how 
strings of bits are interpreted as binary numbers. Before we describe this, recall how 
strings of decimal digits are interpreted as decimal numbers. Consider, for example, 
the decimal number 20753. Its value is given by 

2x104 + Oxl03 + 7xl0z + 5x101 + 3xl0o 

Observe that each of the exponents corresponds to the count of a digit in the number 
20753, when we count from zero starting on the right. The digit 3 with count 0 is the 
least significant digit, and the digit 2 with count 4 is the most significant digit. The gen
eral form of a decimal number is given by 

3.3 T Characters and the Data Type char 11 5 

each d i is a decimal digit. Note that the digits are numbered from least signifi
to most significant, counting from zero. The value of the number is given by 

dnxl0n + dn_1xl0n-1 + ... + dzxl0z + d1x101 + doxl0o 

a similar fashion, strings of bits, which are comprised of the binary digits 0 and 1, 
be interpreted as binary numbers. The general form of a binary number, also called 

2 number, is given by 

each bi is a bit, or binary digit. The value of the number is given by 

bnx2 n + bn-lX2n-1 + ... + b2 x + b1x2 1 + box2o 

Now we are ready to look at how a cha r is stored in memory at the bit level. Consider 
declaration 

c = 'a'; 

can think of c stored in memory in 1 byte as 

the Os and Is comprise the 8 bits in the byte. By convention, 0 represents a bit 
off and 1 represents a bit turned on. This string of binary digits can be consid

a binary number, and its value is given by 

is 64 + 32 + 1, or 97, in decimal notation. 
ANSI C provides the three types char, si gned char, and unsi gned char. The type 

char is equivalent to either si gned char or unsi gned char, depending on the com
piler. Each of the three char types is stored in 1 byte, which can hold 256 distinct val
ues. For a si gned char the values go from -128 to 127. For an unsi gned char the 
values go from 0 to 255. To determine the values that are appropriate for a plain char 

your system, see exercise 10, on page 141. 



116 Chapter 3 T The Fundamental Data Types 

3.4 The Data Type i nt 

The data type i ntis the principal working type of the C language. This type, along 
the other integral types such as char, short, and long, is designed for working 
the integer values that are representable on a machine. 

In mathematics, the natural numbers are 0,1,2,3, ... , and these numbers, along 
their negatives, comprise the integers. On a machine, only a finite portion of these inte
gers are representable for a given integral type. 

Typically, an i nt is stored in either 2 bytes ( 16 bits) or in 4 bytes (= 32 bits). 
are other possibilities, but this is what happens in most C systems. On older PCs, an 
i nt is typically stored in 2 bytes. In newer PCs, and in workstations and mainframes, an 
i nt is typically stored in 4 bytes. 

Because the size of an i nt varies from one C system to another, the number of 
tinct values that an i nt can hold is system-dependent. Suppose that we are on a 
puter that has 4-byte i nts. Because 4 bytes equals 32 bits, an i nt can take on 23 

distinct states. Half of these states are used to represent negative integers and half 
used to represent nonnegative integers: 

_2 31 , _2 31 + 1, "', 3, -2, -1, 0,1,2.3, ... ,231 1 

If. on the other hand, we are using a computer that has 2-byte words. then an i nt can 
take on only 216 distinct states. Again, half of these states are used to represent 
tive integers, and half are used to represent nonnegative integers: 

_2 15 , _2 15 + 1. ''', 3. -2, -1,0,1,2.3, ...• 215 1 

Let Nmin.int represent the smallest integer that can be stored in an i nt, and let Nmax.int 
represent the largest integer that can be stored in an i nt. If i is a variable of type i nt, 
the range of values that i can take on is given by 

with the end points of the range being machine-dependent. The typical situation is as 
follows: 

On machines with 4-byte words: 

Nmin int = _2 31 = -2147483648 ~ -2 billion 
Nmax-;nt = +2 31 - 1 = +2147483647 ~ +2 billion 

3.5 T The Integral Types short, 1ong, and unsi gned 

machines with 2-byte words: 

-32768 ~ -32 thousand 
- 1 +32767 ~ +32 thousand 

any machine. the following code is syntactically correct: 

BIG 

i nt a, b 
a == b + c; 

2000000000 1'1' 2 bi 11 i on "'1 

BIG, c = BIG; 
1* out of range? *1 

11 7 

, at run-time the variable a may be assigned an incorrect value. The logical 
of the expression b + c is 4 billion, which is greater than Nm,ncint. This condition 

called an integer overflow. Typically, when an integer overflow occurs, the program 
JlLlHU<'-O to run, but with logically incorrect results. For this reason. the programmer 

strive at all times to keep the values of integer expressions within the proper 

addition to decimal integer constants. there are hexadecimal integer constants 
as 0xla and octal integer constants such as 0377. (See Section 3.12. "Hexadecimal 

Octal Constants." on page 134.) Many C programmers have no particular need for 
eXcldeClIlaal and octal numbers. but all programmers have to know that integers that 

with a leading 0 are not decimal integers. For example, 11 and 011 do not have 
same value. 

The Integral Types short, long, and unsigned 

C, the data type i nt is considered the "natural" or "usual" type for working with inte
The other integral types. such as char, short, and long, are intended for more 

ut:\.It"1" /.~d use. The data type short, for example, might be used in situations where 
is of concern. The compiler may provide less storage for a short than for an 

nt, although it is not required to do so. In a similar fashion. the type long might be 
in situations where large integer values are needed. The compiler may provide 
storage for along than for an i nt, although it is not required to do so. Typically, 

short is stored in 2 bytes and along is stored in 4 bytes. Thus, on machines with 4-
words, the size of an i nt is the same as the size of along. and on machines with 



1 1 8 Chapter 3 T The Fundamental Data Types 

2-byte words, the size of an i nt is the same as the size of a short. If s is a variable 
type short, then the range of values that s can take on is given by 

where typically 

=: -32768 c::: 32 thousand 
+32767 c::: +32 thousand 

If bi g is a variable of type long, then the range of values that bi g can take on is given 
by 

where typically 

=: -2147483648 c:: -2 billion Nmin_long 
Nmax_long 1 +2147483647 c:: +2 billion 

A variable of type uns; gned is stored in the same number of bytes as an i nt. How
ever, as the name implies, the integer values stored have no sign. Typically, variables of 
type i nt and unsi gned are stored in a machine word. If u is a variable of type 
uns; gned, then the range of values u can take on is given by 

o ::;; u ::;; 2wordsize 1 

The typical situation is as follows: On machines with 4-byte words 

NmaLUnsigned = 232 - 1 = +4294967295 c::: +4 billion 

On machines with 2-byte words 

1 = +65535 c::: +65 thousand 

Arithmetic on unsigned variables is performed modulo 2wordsize. (See exercise 16, on 
page 143.) 

Suffixes can be appended to an integer constant to specify its type. The type of an 
unsuffixed integer constant is either; nt, long, or uns; gned long. The system 
chooses the first of these types that can represent the value. For example, on machines 
with 2 -byte words, the constant 32000 is of type i nt, but 33000 is of type long. 

3.6 T The Floating Types 119 

Combining long and unsigned 

I Suffix Type -r Example 
i 

lu or U unsigned i37U I 
i 

1 or L long 
1
37L I 

i 
ul or UL unsigned long i 37l1L 

The Floating Types 

C provides the three floating types: float, double, and long double. Variables 
this type can hold real values such as 0.001, 2.0, and 3.14159. A suffix can be 
ended to a floating constant to specify its type. Any unsuffixed floating constant is 

type doubl e. Unlike other languages, the working floating type in C is doubl e, not 
t. 

Combining float and unsigned 

Suffix Type Example 

f or F float 3.7F 

11 or L long double 3.7L 

are representable as floating constants, but they must be written with a deci
point. For example, the constants 1. 0 and 2.0 are both of type double, whereas 
constant 3 is an i nt. 

In addition to the ordinary decimal notation for floating constants, there is an expo
notation, as in the example 1. 234567e5. This corresponds to the scientific 
1. 234567 x 105. Recall that 

1.234567 x 105 1.234567 x 10 x 10 x 10 x 10 x 10 
1.234567 x 100000 
123456.7 (decimal point shifted five places) 

a similar fashion, the number 1. 234567e- 3 calls for shifting the decimal point three 
to the left to obtain the equivalent constant 0.001234567. 



120 Chapter 3 v The Fundamental Data Types 

Now we want to carefully describe the exponential notation. After we give the 
rules, we will show some examples. A floating constant such as 333. 77777e-22 may 
not contain any embedded blanks or special characters. Each part of the constant is 
given a name: 

I 
Floating-point constant parts for 333. 7777e-22 

Integer Fraction Exponent 

333 77777 e-22 

A floating constant may contain an integer part, a decimal point, a fractional part, and 
an exponential part. A floating constant must contain either a decimal point or an expo
nential part or both. If a decimal point is present, either an integer part or fractional 
part or both must be present. If no decimal point is present, then there must be an inte
ger part along with an exponential part. 

floating_constant :: = f_constant 
Lpart 
Lpart 
Lpart 

{f_suffix} opt 
. f_part e_part 

f_part 
f_constant : : = 

1 

1 
1 

1 

f_part 

1 Lpart 
f_part e_part 
e_part 

Lpart :: = integer_part :: = {digit} 1+ 
f_part :: = fractionaL part :: = {digit} 1+ 
e_part :: = exponentiaLpart :: {e I E} 1 {+ 1-} 
{_suffix :: = floating_suffix :: f 1 F 1 1 I L 

Some examples of floating constants are 

3.14159 
314.15ge-2F 
0e0 

/* of type float */ 

opt {digith+ 

1. 
/* equivalent to 0.0 */ 
/* equivalent to 1.0, but harder to read */ 

but not 

3.14,159 
314159 
.e0 
-3.14159 

/* comma not allowed */ 
/* decimal point or exponent part needed */ 
/* integer or fractional part needed */ 
/* this is floating constant expression */ 

Typically, a C compiler will provide more storage for a variable of type dou b 1 ethan 
for one of type fl aa t, although it is not required to do so. On most machines, a fl oa t 

3.6 v The Floating Types 121 

in 4 bytes, and a daub 1 e is stored in 8 bytes. The effect of this is that a float 
s about 6 decimal places of accuracy, and a daub 1 e stores about 15 decimal places 

ccuracy. An ANSI C compiler may provide more storage for a variable of type 
9 double than for one of type daub 1 e, though it is not required to do so. Many 

implement along double as a daub 1 e. (See exercise 15, on page 143.) 
possible values that a floating type can be assigned are described in terms of 

called precision and range. The precision describes the number of significant 
r1eLllll'CU places that a floating value carries. The range describes the limits of the largest 

smallest positive floating values that can be represented in a variable of that type. 
oat on many machines has an approximate precision of 6 significant figures and 

approximate range of 10-38 to 10+38, This means that a positive float value is rep
~1>I::,llU:U in the machine in the form (only approximately true) 

each di is a decimal digit; the first digit, db is positive and -38 x n x +38. The 
'nr(~sent(]ltioin of a float value in a machine is actually in base 2, not base 10, but the 

as presented give the correct flavor. 
A doub 1 e on many machines has an approximate precision of 15 significant figures 

approximate range of 10-308 to 10+308. This means that a positive double value is 
in the machine in the form (only approximately true) 

... dIS X 10n 

each di is a decimal digit, the first digit, di , is positive; and -308 ::; n ~ +308. 
",n~~£'~e X is a variable of type daub 1 e. Then the statement 

x = 123.45123451234512345; /* 20 significant digits */ 

result in x being assigned a value that is stored in the form (only approximately 

0.123451234512345 x 10+3 (15 significant digits) 

The main points you must be aware of are (l) not all real numbers are representable, 
(2) floating arithmetic operations, unlike the integer arithmetic operations, need 

not be exact. For sman computations this is usually of no concern. For very large com
putations, such as numerically solving a large system of ordinary differential equations, 
a good understanding of rounding effects, scaling, and so on may be necessary. This is 
the domain of numerical analysis. 



122 Chapter 3 "If The Fundamental Data Types 

3.7 The Use of typedef 

The C language provides the typedef mechanism, which allows the programmer 
explicitly associate a type with an identifier. Some examples are 

typedef 
typedef 
typedef 

char 
i nt 
unsigned long 

uppercase; 
INCHES, FEET; 
size_t; /* found in stddef.h * 

In each of these type definitions, the named identifiers can be used later to declare 
abIes or functions in the same way ordinary types can be used. Thus, 

uppercase 
INCHES 

u; 
length, width; 

declares the variable u to be of type uppercase, which is synonymous "vith the 
char, and it declares the variables 1 ength and wi dth to be of type INCHES, which 
synonymous with the type; nt. 

What is gained by allowing the programmer to create a new nomenclature for 
existing type? One gain is in abbreviating long declarations. Another is having 
names that reflect the intended use. Furthermore, if there are system-sensitive U'-,->u>-< 

tions, such as an i nt that is 4 bytes on one system and 2 bytes on another, and 
differences are critical to the program, then the use of typedef may make the 
of the software easier. In later chapters, after we introduce enumeration types 
structure types, we will see that the typedef facility gets used routinely. 

3.8 The s i zeof Operator 

C provides the unary operator si zeof to find the number of bytes needed to store 
object. It has the same precedence and associativity as all the other unary operators. 
expression of the form 

si zeof(object) 

3.8 "If The si zeof Operator 123 

an integer that represents the number of bytes needed to store the object in 
. An object can be a type such as i nt or float, or it can be an expression such 

+ b, or it can be an array or structure type. The following program uses this oper
On a given machine it provides precise information about the storage require
for the fundamental types. 

Compute the size of some fundamental types. */ 

printf("The 
pri ntf(" 
pri ntf(" 
printf(" 

size of some fundamental types is computed.\n\n"); 
char:%3u byte \n", sizeof(char)); 

short:%3u by tes\n" , sizeof(short)); 
int:%3u bytes\n", sizeof(int)); 

pri ntfC" 
printf(" 
pri ntf(" 
printf(" 
printf("long 
return 0; 

long:%3u by tes\n" , sizeof(long)); 
unsigned:%3u by tes\n" , sizeof(unsigned)); 

float:%3u by tes\n" , s;zeof(float)); 
double:%3u by tes\n" , sizeof(double)); 
double:%3u bytes\n", sizeof(long double)); 

use the C language is flexible in its storage requirements for the fundamental 
, the situation can vary from one machine to another. However, it is guaranteed 

sizeof(char) = 1 
.zeof(c~ar) <= si~eof(shor~) ~ s;zeof(int) ~ sizeof(long) 

slzeof(slgned) = slzeof(unslgned) = s;zeof(int) 
sizeof(float) ~ sizeof(double) ~ sizeof(long double) 

the signed and unsigned versions of each of the integral types are guaranteed to 
the same size. 

that we wrote si zeof( ... ) as if it were a function. It is not, however-it is an 
. If si zeof is being applied to a type, then parentheses are required; otherwise 

are optional. The type returned by the operator is typically unsigned. 

----- - -



124 Chapter 3 T The Fundamental Data Types 

3.9 The Use of getchar() and putchar() 

In this section, we illustrate the use of getchar 0 and putchar O. These are macros 
defined in stdio.h that are used to read characters from the keyboard and to print char
acters on the screen, respectively. Although there are technical differences, a macro 
used as a function is used. (See Section 8.6, "An Example: Macros vvith Arguments," on 
page 377.) These macros, as well as others, are often used when manipulating character 
data. 

In memory, a char is stored in 1 byte, and an i nt is stored typically in either 2 or 4 
bytes. Because of this, an i nt can hold all the values that can be stored in a char, 
more. We can think of a char as a small integer type, and, conversely, we can think 
an i nt as a large character type. This is a fundamental idea, and, unfortunately, a 
cult one for beginning C programmers. 

Our next program is called double_out. It reads characters one after another from 
standard input file, which is normally connected to the keyboard, and writes each 
acter twice to the standard output file, which is normally connected to the screen. 

In double_out.c 

• 

#include <stdio.h> 

int main(void) 
{ 

i nt c' , 

while ((c getchar())!= EOF) { 
putchar(c); 
putchar(c); 

} 
return 0; 

} 

Dissection of the double_out Program 

• #include <stdio.h> 

One line of this header file is 

3.9 T The Use of getcharO and putcharO 125 

EOF (-1) 

EOF is mnemonic for "end-of-file." What is actually used to signal an end
mark is system-dependent. Although the i nt value -1 is often used different 

can have different values. By including the file stdio.h and using th~ symbolic 
EOF, we have made the program portable. This means that the source file can 

d to a different system and run with no changes. The header file stdio.h also 
the macro definitions of get char 0 and putchar O. 

c; 

variable c has. be~n declared as an i nt rather than a char. Whatever is used to sig
end of a fIle, It cannot be a value that represents a character. Because c is an 

it can hold all possible character values as well as the special value EOF. 

= getchar()) != EOF) { 

= getchar()) != EOF 

LVHHJvsed of two parts. The subexpression c = getcharO gets a value from the 
and assigns it to the variable c, and the value of the subexpression takes on 

value as well. The symbols! = represent the "not equal" operator. As long as the 
. of the subexpression c ;: getchar 0 is not equal to EOF, the body of the whi 1 e 
IS executed. The parentheses around the subexpression c = getcharO are neces

. Suppose we had left out the parentheses and had typed 

c = getchar() != EOF 

of operator precedence this is equivalent to 

EOF) 

is syntactically correct, but not what we want. 

value of c is written to the standard output stream in the format of a character. 

• 



126 Chapter 3 T The Fundamental Data Types 

Characters have an underlying integer-valued representation that on most C systems 
is the numeric value of their ASCII representation. For example, the character constant 
'a' has the value 97. The values of both the lower- and uppercase letters occur in 
order. Because of this, the expression 'a I + 1 has the value I b' , the expression 
, b' + 1 has the value I c I , and so on. Also, because there are 26 letters in the alpha
bet, the expression' z' - 'a' has the value 25. Consider the expression' A I - I a' . It 
has a value that is the same as 'B' - 'b', which is the same as 'C I - Ie', and so on. 
Because of this, if the variable c has the value of a lowercase letter, then the expression 
c + I A' I a' has the value of the corresponding uppercase letter. These ideas are 
incorporated into the next program, which capitalizes all lowercase letters. 

In file capitalize.c 

#include <stdio.h> 

int main(void) 
{ 

} 

i nt c; 

while ((c = getchar()) 1= EOF) 
if (c >= 'a' && c <= 'Zl) 

putchar(c + 'AI - la'); 
else 

putchar(c); 
return 0; 

Because of operator precedence, the expressions 

C >= la' && c <= I Z ' and (c >= 'a')'&1 (c <= IZI) 

are equivalent. The symbols <= represent the operator "less than or equal." The subex
pression c >= I a I tests to see if the value c is greater than or equal to the value of I a' . 
The subexpression c <= I Z I tests to see if the value of c is less than or equal to the 
value 'z!. The symbols && represent the operator "logical and." If both subexpressions 

are true, then the expression 

C >= la' && c <= 'Zl 

is true; otherwise it is false. Thus, the expression is true if and only if c is a lowercase 
letter. If the expression is true, then the statement 

putchar(c + lA' - la'); 

is executed, causing the corresponding uppercase letter to be printed. 

3.10 T Mathematical Functions 127 

Mathematical Functions 

are no built-in mathematical functions in C. Functions such as 

powO expO logO sinO cosO tanO 

available in the mathematics library, which is conceptually part of the standard 
. All of these functions, except the power function powO, take a single argument 

type double and return a value of type double. The power function takes two argu
of type double and returns a value of type double. Our next program illustrates 

use of s~ rt 0 and powO. It asks the user to input a value for x and then prints it 
along wIth the square root of x and the value of x raised to the x power. 

power_square.c 

<math.h> 
<stdio.h> 

int main(void) 
{ 

double x; 

pri ntf("\n%s" , 
liThe following will 
H\n" 
" the square root 
" x raised to the 
"\n"); 

be computed:\n" 

of x\n" 
power x\n" 

while (1) { 
printf("Input x: "); 

} 

if (scanf("%l fll, &x) ! = 1) 
break; 

if (x >= 0.0) 
printf("\n%1Ss%22.1Se\n%1Ss%22.1Se\n%15s%22.15e\n\n" 

I1 X H; X, ' 

"sqrt(x) = tI, sqrt(x), 
"pow(x, x) = tI, pow(x, x)); 

else { 

} 

printf("\nSorry, your number must be nonnegative.\n"); 
break; 



128 Chapter 3., The Fundamental Data Types 

pri ntfC\nSye! \n\nlt); 
return 0; 

} 

If we execute the program and enter 2 wh~n prompted, here is what appears on the 

screen: 

The following will be computed: 

the square root of x 
x raised to the power x 

Input x: 2 

x 
sqrt(x) 

pow(x, x) 

Input x: 

• • 

2.000000000000000e+00 
1.414213562373095e+00 
4.000000000000000e+00 

Dissection of the sqrLpow Program 

• #include <math.h> 
#include <stdio.h> 

These header files contain function prototypes. In particular, m~t~.h contains the 
totypes for the functions in the mathematics library. Although It IS not , 
to do so, as an alternative to including math.h, we can supply our own functIOn 

types: 

• double sqrt(double) , pow(double, double); 

This declaration should be placed in the file just above main.O. (S,ome compilers 
complain if the function prototype is placed in the body of mal n 0 Itself.) 

• while (1) { 

Because any nonzero value is considered to be true, the expression 1 creates an 
whi 1 e loop. We will use a break statement to exit the loop. 

3.10 ., Mathematical Functions 129 

scanf(lt%l fll, &x) 

format %1 f is used in the control string because x is a dou b 1 e. A common error is 
use %f instead of %1 f. Notice that we typed 2 when we illustrated the use of this pro
am. Equivalently, we could have typed 2.0 or 2e0 or 0. 2el. The function call 

("%1 fit, &x) would have converted each of these to the same doubl e. In C 
code, 2 and 2 . 0 are different. The first is of type i nt, and the second is of type 

b 1 e. The input stream that is read by scanf 0 is not source code, so the rules for 
code do not apply. When scanf 0 reads in a doub 1 e, the number 2 is ,just as 

od as the number 2.0. (See Section 11.2, "The Input Function scanfO," on page 

if (scanf(lt%lflt, &x) != 1) 
break; 

function scanfO returns the number of successful conversions. To exit the whi 1 e 
we can type "quit" or anything else that scanfO cannot convert to a double. If 

value returned by scanfO is not 1, the break statement gets executed. This causes 
control to exit the while statement. We discuss the break statement more 

in Chapter 4, "Flow of Control." 

if (x >= 0.0) 

use the square root function is defined only for nonnegative numbers, a test is 
to ensure that the value of x is nonnegative. A call such as sq rt (-1.0) can cause 
time error. (See exercise 20, on page 144.) 

printf("\n%15s%22.15e\n%15s%22.15e\n%15s%22.15e\n\n", 
"x := ", x, 
"sqrt(x) = ", sqrt(x) , 
"pow(x, x) = ", pow(x, x)); 

that we are printing doubl e values in the format %22 .15e. This results in 1 place 
the left of the decimal point and 15 places to the right, 16 significant places in all. On 

machine, only n places are valid, where n is between 15 and 16. (The uncertainty 
<COim(~S about because of the translation from binary to decimal.) You can ask for lots of 
';~"l~","HU(U places to be printed, but you should not believe all that you read. 

• 



130 Chapter 3 T The Fundamental Data Types 

The Use of abs 0 and fabs 0 

In many languages, the function abs 0 returns the absolute value of its real 
In this respect, C is different. In C, the function abs 0 takes an argument of type in 
and returns its absolute value as an i nt. Its function prototype is in stdlib.h. For 
matieal code, the C programmer should use fabs 0, which takes an argument of 
double and returns its absolute value as a double. (See exercise 25, on page 145.) 
function prototype is in mathh The name fabs stands for floating absolute value. 

UNIX and the Mathematics Library 

In ANSI C, the mathematics library is conceptually part of the standard library. 
means that you should not have to do anything special to get access to 
functions. However, on older UNIX systems this is often not the case. Suppose you 
a program in a file, say pgm.c, that uses the sq rt () function. The following LVlllllldJlll 

should then compile your program: 

cc pgm.c 

If, however, the ANSI C system is not properly connected, you will see something 
the following printed on the screen: 

Undefined symbol: _sqrt 

This means that the linker looked through the libraries that were made available to 
but was unable to find a .0 file that contained the object code for the sqrtO 
(See Section 11.15, "Libraries," on page 526, for further discussion of libraries.) If 
give the command 

cc pgm.c -1m 

the mathematics library will be attached, which will allow the loader to find the 
sary .0 file. In -1m the letter 1 stands for "library" and the letter m stands for 
maties." As older versions of UNIX give way to newer versions, the necessity of 
the -1m option disappears. 

3.11 T Conversions and Casts 131 

Conversions and Casts 

etic expression such as x + y has both a value and a type. If both x and y 
. type i nt, then the expression x + y also has type i nt. But if both x and y have 
short, then x + y is of type i nt, not short. This is because in any expression, a 

always gets promoted, or converted, to an i nt. In this section we want to give 
rules for conversions. 

Integral Promotions 

ar or short, either si gned or unsi gned, or an enumeration type can be used in 
expression where an i nt or unsi gned i nt may be used. (See Section 7.5, "Enumer

Types," on page 345.) If all the values of the original type can be represented by 
nt, then the value is converted to an i nt; otherwise, it is converted to an unsi gned 
This is called an integral promotion. Here is an example: 

char c 0= I A'; 
pri ntf("%c\n", c); 

char variable c occurs by itself as an argument to p ri ntf O. However, because an 
promotion takes place, the type of the expression c is i nt, not char. 

e Usual Arithmetic Conversions 

tic conversions can occur when the operands of a binary operator are evalu
Suppos~, for example, that i is an i nt and f is a float. In the expression i + f, 

operand 1 gets promoted to a float, and the expression i + f as a whole has type 
at. The rules governing this are called the usual arithmetic conversions; those rules 



132 Chapter 3 V The Fundamental Data Types 

I'he usual arithmetic conversions: 

If either operand is of type long doubl e, the other operand is converted to long 

Otherwise, if either operand is of type doubl e, the other operand is converted to doubl 

Othen-vise, if either operand is of type float, the other operand is converted to float, 

Otherwise, the integral promotions are performed on both operands, and the 
rules are applied: 

If either operand is of type unsi gned long, the other operand is converted 
unsi gned long. 

Otherwise, if one operand has type long and the other has type unsi gned, then 
of two possibilities occurs: 

If along can represent all the values of an unsi gned, then the operand 
type unsi gned is converted to long. 

If along cannot represent all the values of an unsi gned, then both of 
operands are converted to unsi gned long. 

Othervvise, if either operand has type long, the other operand is converted to lon 

Otherwise, if either operand has type uns i gned, the other is converted 
unsi gned. 

Otherwise, both operands have type i nt. 

This arithmetic conversion has several alternate names: 

.. automatic conversion 

.. implicit conversion 

II coercion 

III promotion 

III widening 

3.11 V Conversions and Casts 133 

following table illustrates the idea of automatic conversion: 

Declarations 

char Cj short s; int i; 
long 1; unsigned u; unsigned long ul; 
float f; double d; long double ld; 

Expression Type Expression Type 

C - s / i int u 'I, 7 - i unsigned 
u 'I, 2.0 - i double f 1< 7 - i float 

C + 3 int 7 1< S ,~ ul unsigned long 

C + 5.0 double ld + C long double 

d + 5 double u ul unsigned long 

2 # i / 1 long u 1 system-dependent 

In addition to automatic conversions in mixed expressions, an automatic conversion 
can occur across an assignment. For example, 

= i 

LOILl"<:L> the value of i, which is an i nt, to be converted to a dou b 1 e and then assigned to 
d, and doubl e is the type of the expression as a whole. A promotion or widening such 

d = i will usually be well behaved, but a narrowing or demotion such as i = dean 
information. Here, the fractional part of d will be discarded. If the remaining inte

part does not fit into an i nt, then what happens is system-dependent. 

In addition to implicit conversions, which can occur across assignments and in mixed 
expressions, there are explicit conversions called casts. If i is an i nt, then 

(double) i 

will cast, or convert, the value of i so that the expression has type doubl e. The variable 
i itself remains unchanged. Casts can be applied to expressions. Some examples are 



134 Chapter 3 v The Fundamental Data Types 

(long) (tAl + 1.0) 
f = (float) ((int) d + 1) 
d = (double) i / 3 
(double) (x = 77) 

but not 

(double) x = 77 /* equivalent to ((double) x) = 77, error */ 

The cast operator (type) is a unary operator having the sam~ precedence and righ 
left associativity as other unary operators. Thus, the expressIOn 

(float) ; + 3 is equivalent to ((float) i) + 3 

because the cast operator (type) has higher precedence than +. 

3.12 Hexadecimal and Octal Constants 

A number represented by a positional notation in base 16 is called a hexadecimal 
ber. There are 16 hexadecimal digits. 

Hexadecimal digits and their corresponding decimal values 

Hexadecimal digit: 0 1 9 A B C D E 

Decimal value: 0 1 9 10 11 12 13 14 

F 

15 

A positive integer written in hexadecimal notation is a string of hexadecimal digits of 

the form 

hn I1n-l .•. 112 hI ho 

where each hi is a hexadecimal digit. It has the value 

I1nx16 n + hn.-:1 x16n- 1 + ... + h2 x162 + 111x161 + hox16
o 

For example, 

3.12 v Hexadecimal and Octal Constants 

= A X 164 + 0 x 163 + F x 162 + 3 x 161 + C x 160 

10 x 164 + 0 x 163 + 15 x 162 + 3 x 161 + 12 x 160 

=: 659260 

135 

hexadecimal numbers and their decimal equivalents are given in the following 

i Hexadecimal number 

2A 

B3 

113 

Conversion to decimal 

2 x 16 + A = 2 x 16 + 10 42 

B x 16 + 3 11 x 16 + 3 = 179 

1 x 162 + 1 x 16 + 3 = 275 

On machines that have 8-bit bytes, a byte is conveniently represented as two hexa
U<O'.UU.W digits. Moreover, the representation has two Simultaneously valid interpreta

First, one may consider the 8 bits in a byte as representing a number in base 2 
tation. That number can be expressed uniquely as a hexadecimal number with two 

llt:.ACllH;,-uuUL digits. The following table lists 8-bit bytes and corresponding two-digit 
llt:.I\.Clll<O'-HU'UL numbers. For convenience, decimal numbers are listed, and for later refer

octal numbers are also listed. 

Decimal Binary Hexadecimal Octal 

0 00000000 00 000 

1 00000001 01 001 

2 00000010 02 002 

3 00000011 03 003 

31 00011111 IF 037 

32 00100000 20 040 

188 10111100 BC 274 

254 11111110 FE 376 

Another interpretation of this correspondence is also useful. By definition, a nibble 
consists of 4 bits, so a byte is made up of 2 nibbles. Each nibble has a unique represen-



136 Chapter 3 'f' The Fundamental Data Types 

tation as a single hexadecimal digit, and 2 nibbles, malting up a byte, are representable 

as 2 hexadecimal digits. For example, 

1011 1100 corresponds to Be 

Note that this same correspondence occurs in the table. All of this is useful when 
manipulating the values of variables in bit form. 

The octal digits are 0, 1, 2, ... , 7. A positive integer written in octal notation is a 

string of digits of the form 

where each 0i is an octal digit. It has the value 

onx811 + 011-1 x811- 1 + ... + o2 x82 + olx8
1 

+ oox8
o 

For example, 

75301 = 7 x 84 + 5 x 83 + 3 x 82 + 0 X 8
1 

+ 1 x 8
0 

On machines that have words consisting of 24 or 48 bits, it is natural to have words 
consisting of "bytes" with 6 bits, each "byte" made up of 2 "nibbles" of 3 bits each. In 
this case a "nibble" has a unique representation as a single octal digit, and a "byte" has 
a unique representation as two octal digits. 

In C source code, positive integer constants prefaced with 0 represent int~gers in 
octal notation, and positive integer constants prefaced with 0x or 0X represent mte~ers 
in hexadecimal notation. Just as with decimal integer constants, octal and hexadeCimal 
constants may have suffixes appended to specify the type. The letters A through F and 
a through f are used to code hexadecimal digits. 

hexadecimaUnteger_constant :: h_integer_consta~t {.L~uft1x }opt 
h_integer_constant ::;: { 0x 1 0X h {hexadeclmaLdzgzt h+ 
hexadecimaL digit :: = 0 1 1 1 • • • 1 9 1 a I. AI. 1 f 1 F 
octaUnteger_constant :: = o_integer_constant {Lsufflx }opt 

o_lnteger_constant :: = 0 { octaLdigit h+ 
octaL digit :: = 0 1 1 1 • . • 1 7 
Lsuft1x :: integer_suffix: :;: { u 1 U } opt {l 1 L } opt 

Let us write a program to illustrate these ideas. We will show the output of each 

pri ntfO statement as a comment. 

1* Decimal, hexadecimal, octal conversions. *1 

#include <stdio.h> 

int main(void) 
{ 

} 

printf(l!%d %x %o\n", 19, 19, 19); 
printf("%d %x %o\n", 0x1c, 0x1c, 0x1c); 
pri ntf("%d %x %o\n" , 017, 017, (17); 
printf("%d\n", 11 + 0x11 + (11); 
printf("%x\n", 2(97151); 
printf("%d\n", 0xlFfFFf); 
return 0; 

C13 'f' Summary 137 

I'" 19 13 23 *1 
I" 28 1c 34 ,~ I 
1* 15 f 17 *1 
r' 37 *1 
I" 1fffff ," I 
I'" 2097151 ,,< I 

machines with 2-byte i nts, the last two formats must be changed to %1 x and %1 d, 
. The functions p r i n t f 0 and scan f 0 use the conversion characters and 

x, and 0 in conversion specifications for deCimal, hexadecimal, and octal, respec
. With pri ntfO, formats of the form %x and %0 cause integers to be printed out 

hexadecimal and octal notation, but not prefaced with 0x or 0. The formats %#x and 
can be used to get the prefixes. (See Section ILl, "The Output Function pri ntfO," 

page 493, for further discussion.) Caution: When using scanfO to read in a hexa
u ..... uu,'u number, do not type an 0x prefix. 

C.13 Summary 

The fundamental data types are char, short, i nt, long, unsigned versions of 
these, and three floating types. The type char is a I-byte integral type mostly used 
for representing characters. 

The type i nt is designed to be the "natural" or "working" integral type. The other 
integral types such as short, long, and unsi gned are provided for more special
ized situations. 

3 Three floating types, float, double, and long double, are provided to represent 
real numbers. Typically, a float is stored in 4 bytes and a doub1 e in 8 bytes, The 
number of bytes used to store along double varies from one compiler to another. 
However, as compilers get updated, the trend is to store along dou b 1 e in 16 bytes. 
The type double, not float, is the "worldng" type. 



138 Chapter 3" The Fundamental Data Types 

4 Unlike integer arithmetic, floating arithmetic is not always exact. Engineers and 
numerical analysts often have to take roundoff effects into account when doing 
extensive calculations with floating-point numbers. . 

5 The unary operator si zeof can be used to find the number of bytes needed to 
a type or the value of an expression. For example, si zeof(i nt) is 2 on some 
small machines and is 4 on most new machines that have 32-bit words. 

6 The usual mathematical functions, such as si nO, cos 0, and tan 0, are available 
in the mathematics library. Most of the functions in the library take a single argu
ment of type double and return a value of type double. The standard header file 
math.h should be included when using these functions. 

7 Automatic conversions occur in mixed expressions and across an equal sign. Casts 
can be used to force explicit conversions. 

8 Integer constants beginning with 0x and 0 designate hexadecimal and octal inte" 
gers, respectively. 

9 Suffixes can be used to explicitly specify the type of a constant. For example, 3U 
of type unsi gned, and 7. 0F is of type float. 

10 A character constant such as 1 A I is of type i nt in C, but it is of type char in C++. 
This is one of the few places where c++ differs from C. 

Exercises 

1 Not all real numbers are machine-representable; there are too many of them. Thus, 
the numbers that are available on a machine have a "graininess" to them. As an 
example of this, the code 

double 
double 

x :: 123.45123451234512345; 
Y :: 123.45123451234512300; /~' last two digits zero i'/ 

printf("%.17f\n%.17f\n", x, Y)j 

causes two identical numbers to be printed. How many zeros must the initializer 
for Y end with to get different numbers printed? Explain your answer. 

" Exercises 139 

The mathematical formula 

holds for all x real. Does this formula hold on your machine? Try the following pro
gram: 

#include <math.h> 
#include <stdio.h> 

int main(void) 
{ 

} 

double 
double 
double x; 

2 .0 ,', M_PI; 
0.1; 

/k in math. h ,~/ 
/~, step si ze * / 

for (x 0.0; x < two_pi; x += h) 
printf("%5.lf: %.15e\n", 

x, sin(x) * sin(x) + cos(x) * cos(x)); 
return 0; 

What happens if the format %.15e is changed to %.15f? Explain. 

Write a program that prints a table of trigonometric values for si n 0 I cos 0 I and 
tan O. The angles in your table should go from 0 to 21t in 20 steps. 

Write a test program to find out whether the pri ntfO function truncates or 
rounds when writing a fl oa t or dou b 1 e with a fractional part. The ANSI standard 
requires rounding, but some systems do not do this. What happens on your 
machine? 

Use the following code to print out a list of powers of 2 in decimal, hexadecimal, 
and octal: 

i nt i, val = 1; 

for (i = Ij i < 35; ++i) { 
printfC'.'%15d%15u%15x%150\n", val, val, val, val); 
val ,"= 2; 

} 

What gets printed? Explain. Powers of 2 have a special property when written in 
hexadecimal and octal notation. What is the property? 



140 Chapter 3 '" The Fundamental Data Types 

6 What happens when the arithmetic overflows? Try the following code on your sys
tem: 

int big_big 2000000000 + 2000000000; 

printf(lf%d 

If you are working on a machine with a 2-byte ; nt, change 2000000000 to 32000. 
What gets printed? Explain. Does the output change if bi g_bi g is declared to be 
unsi gned instead of i nt? 

7 Study the following code carefully without running it: 

printf(IfWhy is 21 + 31 equal to %d?\nlf, 21 + 31); 

On a machine with 4-byte i nts, here is what gets printed: 

Why is 21 + 31 equal to 5? 

Can you see why? Can you deduce the moral? 

8 In mathematics the Greek letter E, called "epsilon," is often used to represent a 
small positive number. Although it can be arbitrarily small in mathematics, on a 
machine there is no such concept as "arbitrarily small." In numerical analYSis it is 
convenient sometimes to declare eps (for "epsilon") as a variable of type doub 1 e 
and to assign to eps the smallest positive number with the property that 

1. 0 < 1. 0 + eps 

is true. This number is machine-dependent. See if you can find eps on your 
machine. Begin by assigning the value 1e-37 to eps. You will find that for this value 
the expression is false. 

9 If you expand the two functions tan (si n(x)) and si n (tan (x)) in a Taylor series 
about the origin, the two expansions agree for the first seven terms. (If you have 
access to a computer algebra system such as Maple or Mathematica, you can see 
this easily.) This means that the difference of the two functions is very flat at the 
origin. Try the follOwing program: 

#include <math.h> 
#include <stdio.h> 

double f(double x); 

int main(void) 
{ 

double x; 

for ex -0.25; x <= +0.25; x += 0.01) 
printfC lf fC%+.2f) = %+.15f\n", x, f(x)); 

return 0; 
} 

double fCdouble x) 
{ 

return Ctan(sin(x)) 
} 

sin(tan(x))); 

" Exercises 141 

The output of this program illustrates the flatness of fO near the origin. Do you 
see it? Also, as an experiment remove the plus signs that occur in the formats. You 
will find that the output does not line up properly. 

Most machines use the two's complement representation to store integers. On these 
machines, the value -1 stored in an integral type turns all bits on. Assuming that 
your system does this, here is one way to determine whether a char is equivalent to 
a si gned char or to an unsi gned char. Write a program that contains the lines 

char 
signed char 
unsigned char 

printfC"c "" %d 

c 
s 
u 

-1; 
-1; 
1; 

s = %d u = %d\n", c, s, u); 

Each of the variables c, s, and u is stored in memory with the bit pattern 11111111. 
What gets printed on your system? Can you tell from this what a char is equivalent 
to? Does your ANSI C compiler provide an option to change a plain char to, say, an 
unsi gned char? If so, invoke the option, recompile your program, and run it again. 

Explain why the following code prints the largest integral value on your system: 

unsigned long val -1; 

printf("The biggest integer value: %lu\n", val); 

What gets printed on your system? Although technically the value that gets printed 
is system-dependent, on most systems the value is approximately 4 billion. Explain. 



142 Chapter 3... The Fundamental Data Types 

12 A variable of type char can be used to store small integer values. What happens if 
large value is assigned to a char variable? Consider the code 

char c1 = 256, c2 = 257; /,~ too big! "'/ 

printf("c1 %d\nc2 = %d\n", c1, c2); 

Your compiler should complain. Does it? Even if it does complain, it will prob 
produce executable code. Can you guess what gets printed? 

13 The following table shows how many bytes are required on most machines to 
some of the fundamental types. What are the appropriate values for your machine? 
Write and execute a program that allows you to complete the table. 

Memory required Memory required 
on machines with on machines with Memory required 

Fundamental type 4-byte words 2-byte words on your machine 

char 1 byte 1 byte 

short 2 bytes 2 bytes 

int 4 bytes 2 bytes 

unsigned 4 bytes 2 bytes 

long 4 bytes 4 bytes 

float 4 bytes 4 bytes 

double 8 bytes 8 bytes 

long double ? ? 

14 The type of a character constant such as 'A' is different in C and C++. In C, its type 
is i nt, but in its type is char. Compile the following program first in C and 
then in C++. In each case, what gets printed? 

#include <stdio.h> 

i nt rnai n (voi d) 
{ 

} 

printf("sizeof('A') = %u\n", sizeof(,A ' )); 
return 0; 

Consider the following code: 

char c = 'A '; 

printf("sizeof(c) 
pri ntf(" si zeof( I A ') 
printf("sizeof(c + c) 
printf("sizeof(c = 'A') 

== %u\n", 
%u\n", 

= %u\n", 
= %u\n", 

sizeof(c)); 
sizeof('A')) ; 
sizebf(c + c)); 
sizeof(c = 'A')); 

... Exercises 143 

Write down what you think gets printed; then write a small program to check your 
answer. How many lines of the output change if you compile the program in .C++? 

Let Nmin_u_long and Nmax_u_long represent the minimum and maximum values that 
can be stored in an unsi gned long on your system. What are those values? Hint: 
Read the standard header file limits.h. 

7 On a 24-hour clock, the zero hour is midnight, and the 23rd hour is 11 o'clock at 
night, one hour before midnight. On such a clock, when 1 is added to 23, we do not 
get 24, but instead we get O. There is no 24. In a similar fashion, 22 plus 5 yields 3, 
because 22 plus 2 is 0 and 3 more is 3. This is an example of modular arithmetic, or 
more precisely, of arithmetic modulo 24. Most machines do modular arithmetic on 
all the integral types. This is most easily illustrated with the unsigned types. Run 
the following program and explain what gets printed: 

#include <lirnits.h> 
#include <stdio.h> 

int rnain(void) 
{ 

i nt 
unsigned 

i ; 
u = UINT_MAX; 

for (i = 0; i < 10; ++i) 

/* typically 4294967295 or 65535 */ 

pri ntf("%u + %d = %u\n", u, i, u + i); 
for (i = 0; i < 10; ++i) 

} 

printf("%u * %d = %u\n", u, i, U 'k i); 
return 0; 

18 The ANSI C standard suggests that the recommendations of IEEE Standard for 
Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985) be followed. Does your 
compiler follow these recommendations? Well, one test is to try to see what hap
pens when you assign a value to a floating variable that is out of its range. Write a 
small program containing the lines 



144 Chapter 3 T The Fundamental Data Types 

double x = le+307; r big *1 
double y = x * x; I'" too bi g! '~I 

printf("x == %e y = %e\n", x, y); 

Does the value for y get printed as Inf of Infi ni ty? If so, there is a good chance 
that your compiler is following ANSI/IEEE Std 754-1985. 

19 In mathematics, the numbers e and )'t are well known. The number e is the base of 
the natural logarithms and the number )'t is the ratio of the diameter of a circle to its 
circumference. Which of the two numbers, e7t and )'te, is larger? This is a standard 
problem for students in an honors calculus course. However, even if you have never 
heard of e and )'t and know nothing about calculus, you should be able to answer 
this question. Hint: 

e 2.71828182845904524 and )'t :.::::: 3.14159265358979324 

20 What happens when the argument to the sqrtO function is negative? In some com
pilers a call such as sq rt ( -1.0) causes a run-time error to occur, whereas in other 
compilers the special value NaN gets returned. The value NaN is called "not a num
ber." What happens on your system? To find out, write a test program that contains 
the line 

printf("sqrt(-1.0) == %f\n", sqrt(-1.0)); 

21 If the value of x is too large, the call pow(x, x) may cause a run-time error or may 
cause the word Inf or Infi ni ty to appear on the screen when a pri ntfO state
ment is used to print the value produced by pow (x, x). What is the largest integer 
value for x such that the statement 

printf("pow(%.1f, %.1f) == %.7e\n", x, x, pow(x, x)); 

does not cause a run-time error and does not cause Inf or Infi ni ty to be printed? 
Hint: Put the statement in a for loop. 

22 In traditional C, any float was automatically promoted to a double. In ANSI C, a 
compiler can promote a fl oa t to a dou b 1 e in arithmetic expressions, but is not 
required to do so. We find that most ANSI C compilers perform arithmetic on 
floats without any Widening. "Vhat happens on your compiler? Try the following 
code: 

float x 1.0, y 2.0; 

printf("%s%u\n%s%u\n%s%u\n", 
"sizeof(float) = ", s;zeof(float) , 
"sizeof(double) = ", sizeof(double) , 
"sizeof(x + y) = ", sizeof(x + y)); 

T Exercises 145 

In traditional C, the types long float and doub 1 e are synonymous. However, 
because long float is harder to type, it was not popular and was rarely used. In 
ANSI C, the type long float has been eliminated. Nonetheless, many ANSI C com
pilers still accept it. Check to see if this is true on your compiler. 

Write a program called try_me that contains the follOwing lines: 

int c; 

while ((c = getchar()) != EOF) 
putchar(c); 

Create a small text file, say infile, and give the command 

try_me < infile > outfile 

to copy the contents of infile to outfile. (Make sure that you actually look at what is 
in outfile.) Is there any text that you can put into infile that will not get copied to 
outfile'? What about EOF, or the value of EOF, which is typically -I? Do these cause a 
problem? Explain. 

In mathematical code, the use of abs 0 instead of fabs 0 can be disastrous. Try 
the following program on your machine: 

#include <math.h> 
#include <stdio.h> 
#include <stdlib.h> 

int main(void) 
{ 

double x = -2.357; 

li( for fabsO i'l 

/;, for absO i'l 

printf(" abs(x) = %e\n", abs(x)); 
printf("fabs(x) = %e\n", fabs(x)); 
return 0; 

} 

Ii' wrong! i'l 

Some compilers give a warning, others do not. What happens on your machine? 
Here, the programmer can easily spot that something is wrong. But sometimes the 
use of abs 0 is deeply embedded in lots of other code, malting its misuse difficult 
to spot. 



146 Chapter 3 T The Fundamental Data Types 

26 In C, the letters used in a hexadecimal constant can be either upper- or 
or both. Consider the following code: 

int a = 0xabc; 
int b = 0xABc; 
int c = 0XABCj 

printf("a = %d b = %d c = %d\n", a, b, c); 

Write down what you think gets printed. Then write a program containing 
lines to check your answer. 

27 The following code is machine-dependent. If when you execute the code it does 
unexpected, see if you can explain what is happening. 

char c = 0xff; 

if (c == 0xff) 
pri ntf("Truth! \n") ; 

else 
printf("This needs to be explained!\nn); 

hapter 4 

ow of Control 

;tL'-J'U~,'H~ in a program are normally executed one after another. This is called sequen
flow of control. Often it is desirable to alter the sequential flow of control to provide 
a choice of action, or a repetition of action. By means of if, i f-e 1 se, and swi tch 

,c,-",~~ •• ts, a selection among alternative actions can be made. By means of whi 1 e, for, 
do statements, iterative actions can be taken. Because the relational, equality, and 

operators are heavily used in flow of control constructs, we begin with a thor-
discussion of these operators. They are used in expressions that we think of as 
true or false. We also discuss the compound statement, which is used to group 

statements that are to be treated as a unit. 

Relational, Equality, and Logical Operators 

following table contains the operators that are often used to affect flow of control: 

Relational, equality, and logical operators 

less than < 

greater than > 

less than or equal to <= 
Relational operators greater than or equal to >= 

equal to --
Equality operators not equal to != 

(unary) negation ! 

logical and && 
logical operators logical or II 



148 Chapter 4" Flow of Control 

, I al't d logical operators have rules of Just as with other operators, the relatlOna ,equ 1 y, an "1' th 
precedence and associativity that determine precisely how expreSSIOns mvo vmg ese 
operators are evaluated. 

Operator precedence and associativity 
I------------------·------r-A-S-S-oc-:i-at~iv-:-i-tyl 

Operators 

+ 

< <= > >= 

1= 

&& 

- (postfix) 

++ (prefix) 

etc 

left to right 

right to left 

left to right 

left to right 

left to right 

left to right 

left to right 

The I operator is unary. All the other relational, equality, and logical op:rator1s 
. . , 'ld 'th the i nt value 0 or the 1 nt va ue binary They operate on expreSSIOns and Yle el er 1 

The re~son for this is that in the C language, false is represented by the va ue ze~o . 
true is represented by any nonzero value, The value for (alse can be any ze[o ~ ue, 
can be a 0 or 0.0 or the null character' \0' or the N~LL pomter value.:~e ~~:: ;:ue 
can be any nonzero value. Intuitively, an expresslOn such as a d< h l~ etl e

1 
eO l'f 

' " h' 1 11'f it is true an tel n va u false. In C, this expresslOn \>\'111 Yield tel nt va ue 
is false. 

4.2 " Relational Operators and ExpreSSions 149 

Relational Operators and Expressions 

relational operators 

> <= >= 

all binary. They each take two expressions as operands and yield either the i nt ° or the i nt value 1. 

relationaL expression . '.. - expr < expr 
expr > expr 
expr <= expr 
expr >= expr 

a < 3 
a > b 
-1.3 >= (2.0 * x + 3.3) 

b < c 1* syntactically correct, but confusing *1 

1* out of order *1 
I'" space not a 11 owed '1'1 
I-k thi sis a shi ft exp ressi on 'II I 

"u,>~~'''. a relational expression such as a < b. If a is less than b, then the expression 
the i nt value 1, which we think of as being true. If a is not less than b, then the 

un~:~:-;HHI has the i nt value 0, which we think of as false. Mathematically, the value of 
b is the same as the value of a - b < 0. Because the precedence of the relational 

is less than that of the arithmetic operators, the expression 

b < Ii) is equivalent to (a - b) < 0 

many machines, an expression such as a < b is implemented as a _ b < 0. The 
arithmetic conversions occur in relational expressions. 
el and el be arbitrary arithmetic expressions. 'The follOwing table shows how the 
of el e2 determines the values of relational expressions: 



150 Chapter 4 v Flow of Control 

Values of relational expressions 

a-b a<b a>b a <= b a >= b 

positive 0 1 0 1 

zero 0 0 1 1 

negative 1 0 1 0 

The following table illustrates the use of the rules of precedence and associativ
ity to evaluate relational expressions: 

Declarations and initializations 

I ~har 1 nt 
idouble 

c 'w' 
i 1, j 2, k -7 
x 7e+33, y = 0.001 

Expression . Equivalent expression 

i 'a' + 1 < c (' a' + 1) < c 
; - 5 * j >= k + 1 «- i) (5 ,~ j)) >= (k + 1) 

3 < j < 5 (3 < j) < 5 

x - 3.333 <= x + y (x - 3.333) <= (x + y) 

x < (x + y) 

Value 

1 

0 

1 

1 

0 

Two expressions in this table give surprising results in that they do not conform 
to rules as written mathematically. In mathematics, one writes 

3 < j < 5 

to indicate that the variable j has the property of being greater than 3 and less than 5. 
It can also be considered as a mathematical statement that, depending on the value of j, 
mayor may not be true. For example, if j::= 4, then the mathematical statement 

is true, but if j 7 then the mathematical statement is false. Now consider the C code , 

j 7; 
printf("%d\n", 3 < j < 5); /* 1 gets printed, not 0 */ 

4.2 v Relational Operators and Expressions 1 51 

aH(.uV,'"o' with mathematics, one might expect that the expression is false and that 0 is 
However, that is not the case. Because relational operators associate from left 

is equivalent to (3 < j) < 5 

the expression 3 < j is true, it has value 1. Thus, 

< j) < 5 is equivalent to 1 < 5 

has value 1. In C, the correct way to write a test for both 3 < j and j < 5 is 

< j && j < 5 

the relational operators have higher precedence than the binary logical opera
this is equivalent to 

as we will see later, this expression is true if and only if both operands of the && 
C1n:1-ii:>JlUH are true. 

numbers that are representable in a machine do not have infinite precision. 
~-~";~'~s, this can cause unexpected results. In mathematics the relation 

Y is equivalent to o < y 

, if Y is positive, then both of these relations are logically true. Computa
if x is a floating variable with a large value such as 7e+33 and y is a floating 
with a small value such as 0.001, then the relational expression 

be false, even though mathematically it is true. An equivalent expression is 

it is this expression that the machine implements. If, in terms of machine accuracy, 
values of x and x + yare equal, the expression will yield the i nt value O. 



152 Chapter 4 'f Flow of Control 

4.3 Equality Operators and Expressions 

The equality operators =:= and! are binary operators acting on expressions. They 
either the i nt value 0 or the i nt value 1. The usual arithmetic conversions are 
to expressions that are the operands of the equality operators. 

equality_expression 
expr ::= expr 

expr == expr expr != expr 

Some examples are 

C =:= 'A' 
k != -2 
x + y == 3 * z - 7 

but not 

a := b 
a:= b - 1 
(x + y) =! 44 

/* an assignment statement */ 
/" space not all owed >~ / 
/* syntax error: equivalent to (x + y) = (!44) */ 

Intuitively, an equality expression such as a == b is either true or false. An equiv 
expression is a - b == 0, and this is what is implemented at the machine level. If 
equals b, then a - b has value 0 and 0 == 0 is true. In this case the expression a 
will yield the i nt value 1, which we think of as true. If a is not equal to b, then a == 
will yield the i nt value 0, which we think of as false. 

The expression a ! '" b uses the not equal operator. It is evaluated in a similar 
ion, except that the test here is for inequality rather than for equality. The 
semantics is given by the following table: 

I Values of: 

• exprl expr2 

zero 

nonzero 

exprl =:= expr2 

1 

o 

expr1 != expr2 

o 
1 

4.3 'f Equality Operators and Expressions 153 

next table shows how the rules of precedence and associativity are used to evaluate 
expressions ''lith equality operators. 

Declarations and initializations 

; = 1, j := 2, k = 3; 

Equivalent expression 

== j j -- i 

j ! i 

- 2 " k ( (i + j) + 

is equivalent to ! (a == b) 

note carefully that the two expressions 

and a b 

k) ((-

Value 

o 
1 

2) ,~ (- k» 1 

visually similar. They are close in form but radically different in function. The 
a == b is a test for equality, whereas a = b is an assignment expression. 

/* do something */ 

(a 1) 
/* do something */ 

common programming error. The expression in the first if statement is always 
and an error such as this can be very difficult to find. 



154 Chapter 4 T Flow of Control 

4.4 Logical Operators and Expressions 

The logical operator! is unary, and the logical operators && and II are binary. All 
these operators, when applied to expressions, yield either the i nt value 0 or the in 
value 1. 

Logical negation can be applied to an expression of arithmetic or pointer type. If 
expression has value zero, then its negation will yield the i nt value 1. If the expres 
has a nonzero value, then its negation will yield the i nt value O. 

logicaL negation_expression :: "" ! expr 

Some examples are 

!a 
l(x + 7.7) 
l(a < b I I c < d) 

but not 

al 
a 1= b 

1* out of order *1 
1* != is the token for the "not equal" operator *1 

The usual arithmetic conversion rules are applied to expressions that are the 
of !. The following table gives the semantics of the ! operator: 

Values of: 

expr ! expr 

zero 

nonzero 

1 

o 

Although logical negation is a very simple operator, there is one subtlety. 
operator ! in C is unlike the not operator in ordinary logic. If s is a logical stalLLU ... J." 

then 

not (not s) s 

4.4 T Logical Operators and Expressions 155 

s in C the value of ! ! 5, for example, is 1. Because ! associates from right to left, 
same as all other unary operators, the expression 

is equivalentto ! (! 5) 

! (! 5) is equivalent to 1(0), which has value 1. The following table shows how 
expressions with logical negation are evaluated: 

Declarations and initializations 

char c = 'A'; 
i nt i = 7, j '" 7; 
double x = 0.O, Y 2.3 

r Expression Equivalent expression : Value 
I 

! I 
! • C ! c I 0 

I! (i - j) ! (i j) 1 I 
I! i - j ( ! i) - j -7 I I 

I! ! (x + y) I! (! (x + y)) 1 I 
I! x * ! ! Y (! x) ," (l(! y») 1 I 

The binary logical operators && and I I also act on expressions and yield either 
i nt value 0 or the i nt value 1. The syntax for a logical expression is given by 

logicaL expression logicaL negation_ expression 
logicaL or_expression 
logicaL and_ expression 

logicaL or_expression :: '" 
logicaL and_ expression 

expr II expr 
expr && expr 

examples are 

a && b 

a " b I(a < b) && c 
3 && (-2 * a + 7) 

a && I'~ one operand missing *1 
a I I b I'" extra space not allowed *1 
a & b 1"1' this is a bitwise operation 
&b I'~ the address of b *1 

"1'1 



156 Chapter 4... Flow of Control 

The operator semantics is given by the following table: 

Values of: 

exprl expr2 exprl && expr2 exprl II expr2 

zero zero 0 0 

zero nonzero 0 1 

nonzero zero 0 1 

nonzero nonzero 1 1 

The precedence of && is higher than I I, but both operators are of lower 
than all unary, arithmetic, and relational operators. Their associativity is left to 
The next table shows how the rules of precedence and associativity are used to 
pute the value of some logical expressions. 

Declarations and initializations 

char 
int 
double 

c 'B'; 
i = 3, j = 3, k = 3; 
x = 0.0, y = 2.3; 

Expression 

i&&j&&k 

xlli&&j-3 

i < j && x < y 

'A' <= c && c <= 'z' 
c 1 == 'A' I I c + 1 == 'z' 

Equivalent expression 

(i && j) && k 

x I I (i && (j - 3)) 

(i < j) && (x < y) 

(i < j) I I (x < y) 

('A' <= c) && (c <= 'Z') 

((c 1) == 'A') I I ((c + 1) == 'Z') 

1 

o 
o 
1 

1 

1 

The usual arithmetic conversions occur in expressions that are the operands of logical 
operators. Note that many of the expressions in the table are of mixed type. Whenever 
this occurs, certain values are promoted to match the highest type present in the 
expression. 

4.5 ... The Compound Statement 157 

rt-circuit Evaluation 

evaluation of expressions that are the operands of && and I I, the evaluation pro
stops as soon as the outcome true or false is known. This is called short-circuit 

tion. It is an important property of these operators. Suppose that expr 1 and 
are expressions and that exprl has value zero. In the evaluation of the logical 

1 && expr2 

evaluation of expr2 will not occur because the value of the logical expression as a 
is already determined to be O. Similarly, if exprl has nonzero value, then in the 

of 

II expr2 

evaluation of expr2 will not occur because the value of the logical expression as a 
is already determined to be 1. 
is a simple example of how short-circuit evaluation might be used. Suppose that 

want to process no more than three characters. 

ent = 0; 
(++ent <= 3 && (c = getchar()) != EOF) { 

/* do something */ 

the expression ++cnt <= 3 is false, the next character will not be read. 

The Compound Statement 

compound statement is a series of declarations and statements surrounded by 

compound_statement :: = { { declaration h~+ { statement h+ } 

The chief use of the compound statement is to group statements into an executable 
unit. When declarations come at the beginning of a compound statement, the com
pound statement is also called a block. (See Section 5.10, "Scope Rules," on page 213, 
for a further discussion of blocks.) In C, wherever it is syntactically correct to place a 



158 Chapter 4 'f Flow of Control 

statement, it is also syntactically correct to place a compound statement: A compound 
statement is itself a statement An example of a compound statement is 

{ 
a += b += c; 
printf("a = %d, b =: %d, c = %d\n", a, b, c); 

} 

and another example is 

{ 
a = 1; 
{ 

b 2; 
c 3; 

} 
} 

This example has an inner compound statement within an outer compound statement. 
Compound statements and blocks nest. Also, we follow an indentation style where 
statements within the brace are offset an additional three spaces. This lets us visually 
identify the grouping of statements within the braces. An important use of the com
pound statement is to achieve the desired flow of control in if, i f-e 1 se, whi 1 e, for, 
do, and swi tch statements. 

4.6 The Expression and Empty Statement 

The expression statement is an expression followed by a semicolon. The 
turns the expression into a statement that must be fully evaluated before going on to 
the next program statement. 

expr_statement :: = { expr } opt 

The empty statement is written as a single semicolon. It is useful where a statement is 
needed syntactically, but no action is required semantically. As we shall see, this is 
sometimes useful in constructs that affect the flow of control, such as i f-e 1 se state
ments and for statements. The empty statement is a special case of the expres 
statement. 

- - --------------
4.7 'f The if and the i f-e 1 se Statements 

examples of expression statements are 

c; 

a) ; 

/* an assignment statement */ 
/~( 1 ega 1, but no useful work gets done '1(/ 
/* an empty statement */ 
/* a function call */ 

159 

All of these examples are expression statements. However, the assignment state
and function call are important enough to be given their own designations. In an 
sion statement, the expression is evaluated, including all side effects. Control 

passes to the next statement. A typical case is a = b; where a is assigned the 
of b. 

The; f and the; f-e 1 se Statements 

general form of an if statement is 

if (expr) 
statement 

is nonzero (true), then statement is executed; otherWise, statement is skipped 
control passes to the next statement. In the example 

if (grade >= 90) 
printf("(ongratulations!\n"); 

printf("Your grade is %d.\n", grade); 

atulatory message is printed only when the value of grade is greater than or 
to 90. The second pri ntfO is always executed. The syntax of an if statement is 
by 

: : = if (expr) statement 

the expression in an if statement is a relational, equality, or logical expression, 
as the syntax shows, an expression from any domain is permissible. Some other 

,<UUll'«:'" of if statements are 



160 Chapter 4 l' Flow of Control 

if (y != 0.0) 
x /= y; 

if (c == ' ') { 
++blank_cnt; 
printf("found another blank\n"); 

} 

but not 

if b == a /* parentheses missing */ 
area = a * a; 

Where appropriate, compound statements should be used to group a series of 
ments under the control of a single if expression. The following code consists of 
if statements: 

if (j < k) 
min j; 

if (j < k) 
printf("j is smaller than k\n"); 

The code can be written to be more efficient and more understandable by using a 
if statement with a compound statement for its body. 

if (j < k) { 
min = j; 
printf("j is smaller than k\n"); 

} 

The i f-e 1 se statement is closely related to the if statement. It has the 
form 

if (expr) 
statementl 

else 
statement2 

If expr is nonzero, then statementl is executed and statement2 is skipped; if expr 
zero, then statementl is skipped and statement2 is executed. In both cases control 
passes to the next statement. Consider the code 

if (x < y) 
min x; 

else 
min y; 

4.7 l' The if and the if-else Statements 161 

Y is true, then mi n will be assigned the value of x, and if it is false, then mi n will 
h1:>iiO;;U'-."" the value of y. The syntax is given by 

example is 

. '.. -

if (c >= 'a' && c <= 'z') 
++lc_cnt; 

lse { 
++other_cnt; 

if (expr) statement 
else statement 

printf("%c is not a lowercase letter\n", c); 

!= j) { 
i += 1; 
j += 2; 

i j; /* syntax error */ 

syntax error occurs because the semicolon following the right brace creates an 
statement, and consequently the else has nowhere to attach. 

Because an if statement is itself a statement, it can be used as the statement part of 
if statement. Consider the code 

(a == 1) 
if (b == 2) 

pri ntf("ioh"\n"); 

if (a == 1) 
statement 

statement is the following if statement 

if (b == 2) 
pri ntf("*id'\n") ; 



162 Chapter 4" Flow of Control 

In a similar fashion, an i f-el se statement can be used as the statement part 
another if statement. Consider, for example, 

if (a == 1) 
if (b == 2) 

pri ntf("~'1d'\nfl) j 
else 

printf("###\nfl)j 

Now we are faced with a semantic difficulty. This code illustrates the dangling 
problem. It is not clear from the syntax what the else part is associated with. Do not 
fooled by the format of the code. As far as the machine is concerned, the follmving 
is equivalent: 

if (a 1) 
if (b 2) 

pri ntf("'hh~\n"); 
else 

pri ntf("###\n") ; 

The rule is that an else attaches to the nearest if. Thus, the code is correctly 
ted as we first gave it. It has the form 

if (a == 1) 
statement 

where statement is the i f-e 1 se statement 

if (b == 2) 
pri ntf (" ,·,>'d'\n ") ; 

else 
printf("###\n"); 

4.8 " The whi 1 e Statement 163 

The whil e Statement 

.,,"~"'Tlr\n of action is one reason we on computers. When there are large amounts 
it is very convenient to have control mechanisms that repeatedly execute spe

statements. In C, the whi 1 e, for, and do statements provide for repetitive action. 
LLU'J~M'~~ we have already used the wh-i 1 e statement, or whi 1 e loop, in many exam-

we now want to explain how this iterative mechanism works. The syntax 
by 

: : = whil e (expr) statement 

examples are 

while (i++ < n) 
factori al 1'= i; 

while ((c = getchar())! EOF) { 
if (c >= 'a' && c <= 'z') 

++lowercase_letter_cnt; 
++total_cnt; 

} 

while (++i < LIMIT) do { 
j = 2 ,~ i + 3j 
printf("%d\n", j); 

\"V.l.l"UUCl a construction of the form 

whi 1 e (expr) 
statement 

next statement 

/* syntax error: do is not allowed */ 

expr is evaluated. If it is nonzero (true), then statement is executed and control is 
passed back to the beginning of the while loop. The effect of this is that the body of the 
while loop, namely statement, is executed repeatedly until expr is zero (false). At that 
point, control passes to next statement Thus, the effect of a while loop is that its body 
gets executed zero or more times. 



164 Chapter 4... Flow of Control 

It is possible to inadvertently specify an expression that never becomes zero, 
unless other means of escaping the whi 1 e loop are introduced, the program is stuck 
an infinite loop. Care should be taken to avoid this difficulty. As an example, -~~~U"«'. 
the code 

printf("Input an integer: "); 
scanf("%d", &n); 
while (--n) 

/* do something */ 

The intent is for a positive integer to be entered and assigned to the i nt variable n 
Then the body of the whi 1 e loop is to be executed repeatedly until the expression 
is eventually zero. However, if a negative integer is inadvertently assigned to n, then 
loop will be infinite. To guard against this possibility, it would be better to code instead 

while (--n > 0) 
/* do something */ 

It is sometimes appropriate for a whi 1 e loop to contain only an empty statement. 
A typical example would be 

while ((c = getcharO) == ' ') 
/* empty statement */ 

This code will cause blank characters in the input stream to be slapped. We could have 
written this as 

while ((c = getcharO) == ' '); 

However, it is considered good programming style to place the semicolon on the next 
line by itself so that it is clearly visible as an empty statement. 

Our next program illustrates the ideas that we have presented in this section. The 
program counts various kinds of characters. 

4.8 ... The whi 1 e Statement 

cnLchar.c 

/* Count blanks, digits, letters, newlines, and others. */ 

} 

int 

<stdio.h> 

blank_cnt = 0, c, digit_cnt = 0, 
1etter_cnt = 0, n1_cnt = 0, other_cnt = 0; 

while ((c = getchar()) != EOF) /* braces not necessary */ 
if (c == ' ') 

++b 1 an Iccnt ; 
else if (c >= '0' && c <= '9') 

++digit_cnt; 
else if (c >= 'a' && c <= 'z' I I c >= 'A' && c <= 'Z') 

++letter_cnt; 
else if (c == '\n') 

++n1_cnt; 
else 

++other_cnt; 
printf("%10s%10s%10s%10s%10s%10s\n\n" , 

"bl anks", "di gi ts", "1 etters", "1 i nes", "others", "total "); 
printf("%10d%10d%10d%10d%10d%10d\n\n" , 

b1ank_cnt, digit_cnt, 1etter_cnt, nl_cnt, other_cnt, 
blank_cnt + digit_cnt + 1etter_cnt + n1_cnt + other_cnt); 

return 0; 

execute this program, using its source file for data, we give the command 

cnLchar < cnLchar.c 

is the output that appears on the screen: 

bl anks 
197 

digits 
31 

letters 
348 

lines 
27 

others 
180 

total 
783 

165 



166 Chapter 4 T Flow of Control 

• 
Dissection of the cnLchar Program 

• while ((c = getchar()) !~ EOF) /* braces not necessary */ 

Braces are unnecessary because the long i f-el se construct that follows is a 
statement that comprises the body of the whi 1 e loop. This whi 1 e statement 
executes the compound i f-e 1 se statement that follows it. Braces are unnecess 
because the whole i f-e 1 se construct is a single statement. 

• if (c == ' ') 
++blank_cnt; 

else if (c >= '0' && c <= '9') 
++digit_cntj 

else if (c >~ 'a' && c <= 'z' I I c >= 'A' && c <~ 'Z') 
++letter_cnt; 

else if (c ~= '\n') 
++nl_cnt; 

else 
++other_cnt; 

This statement tests a series of conditions. When a given condition evaluates to true, 
corresponding expression statement is executed and the remaining tests are 
slapped. For each character read into the variable c, exactly one of the variables 
for counting will be incremented. 

Note that logically we could have written the i f-e 1 se as 

if (c == ' ') 
++blanLcntj 

else 
if (c >= '0' && c <= '9') 

++digit_cnt; 
else 

i' f (c >= 'a' && c <= 'z' I I c >= 'A' && c <= 'Z') 
; ++1 etter _cnt; 
else 

• 

When the code is formatted this way, each of the i f-e 1 se pairs lines up to show the 
logical structure of the code. However, this coding style is not recommended because 
long chains of i f-e 1 se statements can cause the code to march too far to the right. 

4.9 T The for Statement 167 

The for Statement 

r statement, like the whi 1 e statement, is used to execute code iteratively. We can 
its action in terms of the whi 1 e statement. The construction 

expr3) 

SeJlllUllU,",""'L} equivalent to 

exprl; 
while (expr2) { 

statement 
expr3; 

} 
next statement 

that expr2 is present, and provided that a conti nue statement is not in the 
of the for loop. From our understanding of the whi 1 e statement, we see that the 

~Cl.11(U.,,"_a of the for statement are the following. First, exprl is evaluated. Typically, 
exprl is used to initialize the loop. Then expr2 is evaluated. If it is nonzero (tr.ue); then 
n"~TnVlVIn'U' is executed, expr3 is evaluated, and control passes back to the begmmng of 

for loop, except that evaluation of exprl is skipped. Typically, expr2 is a logical 
expression controlling the iteration. This process continues until expr2 is zero (false), at 

point control passes to next statement. 
The syntax of a fo r statement is given by 

for_statement::= for (expr ; expr ; expr) statement 

Some examples are 

for (i = 1; i <= n; ++i) 
factorial ~'= i; 

for (j = 2; k % j == 0; ++j) { 

} 

printf(lf%d is a divisor of %d\nlf, j, k); 
sum += j; 



168 Chapter 4 T Flow of Control 

but not 

for (i = 0! i < n, i += 3) 
sum += 1; /* semicolons are needed */ 

Any or all ~f the expre~sio~s ~n a for statement can be missing, but the two semicolon 
m
f 

usIt remam. If exprlIs mIssmg, then no initialization step is performed as part of the
S 

or oop. The code 

i == 1; 
sum = 0; 
for ( ; i <== 10; ++i) 

sum += i; 

computes the sum of the integers from 1 to 10, and so does the code 

1; 
0-, 

i = 
sum 
for ( ; i 

sum += 
<= 10 ; ) 
i++; 

I
The ~pecial rule for when expr2 is missing is that the test is always true Thus the for 
oop m the code . , 

i 
sum 
for 

} 

I-I 
= 0; 
( ; ; ) { 

suI!! += i++; 
pn ntf("%d\n" I 

is an infinite loop. 

sum); 

A for statement can be used as the statement part of an if i f-e 1 se, whil e, or 
another fo r statement. For example, the construction ' 

for ( ..... ) 
for ( ..... ) 

for ( ..... ) 
statement 

is a Single for statement. 

4.10 T An Example: Boolean Variables 169 

many situations, program control can be accomplished by using either a whi 1 e or 
fo r statement. Which one gets used is often a matter of taste. One major advantage 
a for loop is that control and indexing can both be kept right at the top. When loops 
nested, this can facilitate the reading of the code. The program in the next section 
n.~"r<'" this. 

An Example: Boolean Variables 

Dolean algebra plays a major role in the design of computer circuits. In this algebra all 
variables have only the values zero or one. Transistors and memory technologies imple
ment zero-one value schemes with currents, voltages, and magnetic orientations. Fre

, the circuit designer has a function in mind and needs to check whether, for all 
possible zero-one inputs, the output has the desired behavior. 

We will use i nt variables bl, b2, ... , b5 to represent five boolean variables. They will 
be allowed to take on only the values 0 and 1. A boolean function of these variables is 
one that returns only 0 or 1. A typical example of a boolean function is the majority 
function; it returns 1 if a majority of the variables have value 1, and 0 otherwise. We 
want to create a table of values for the functions 

bl II b3 II bS and bl && b2 I I b4 && b5 

and the majority function. Recall that logical expressions always have the i nt value 0 
or 1. 



170 Chapter 4 Y Flow of Control 

In file booL vals.c 

} 

/* Print a table of values f b or some oolean functions. */ 

#include <stdio.h> 

int main(void) 
{ 

int bI, b2, b3, b4, bS; 
int cnt '" 0; /* boolean variables */ 

pri ~tf(::\n~Ss%Ss%SS%5s%5s%5s%7s%7s%l1s\n\n" / 
Cnt, bI", "b2" "b3" "b4" "bS" i, headings i'/ 

"f tI" "f ,,' , , , c • ct2, "majority"); 
for (bI = 0; bI <= 1; ++bI) 

for (b2 = 0; b2 <= 1; ++b2) 
for (b3 = 0; b3 <= 1; ++b3) 

for (b4 = 0; b4 <=' 1; ++b4) 
for (bS = 0; b5 <= 1; ++bS) 

putchar("\n') ; 
return 0; 

printf("%5d%Sd%Sd%Sd%Sd%5d%6d%7d%9d\n" 
++cnt, bI, b2, b3, b4, bS, ' 
bI I I b3 'I bS, bI && b2 I I b4 && bS 
bI + b2 + b3 + b4 + bs >= 3); , 

ITt~lle program prints a table of values for all possible inputs and corresponding outputs 
1 ustrates a typical use of ne t d fl' . s e 0 r oops. Here IS some output of the program: 

Cnt bl b2 b3 b4 bS fctl fct2 
100 000 0 0 
20 00011 0 
30 00100 0 

majority 
o 
o 
o 

4.11 Y The Comma Operator 1 71 

The Comma Operator 

operator has the lowest precedence of all the operators in C. It is a binary 
with expressions as operands. The comma operator associates from left to 

expression expr , expr 

'Co:mnla expression of the form 

, expr2 

1 is evaluated first, and then expr2. The comma expression as a whole has the value 
type of its right operand. An example is 

1 

lias been declared an i nt, then this comma expression has value 1 and type i nt. 
comma operator sometimes gets used in for statements. It allows mUltiple ini

and multiple processing of indices. For example, the code 

(sum 0, i = 1; i <= n; ++i) 
sum += i; 

be used to compute the sum of the integers from 1 to n. Carrying this idea further, 
can stuff the entire body of the for loop inside the for parentheses. The previous 

could be revvritten as 

0, i 1; i <= n; sum += i, ++i) 

for (sum = 0, i = 1; i <= n; ++i, sum += i) 

In the comma expression 

++i, sum += i 

the expression ++i is evaluated first, and this will cause sum to have a different value. 



172 Chapter 4 T Flow of Control 

The comma operator should be used only in situations where it fits naturally. So 
we have given examples to illustrate its use, but none of the code is naturaL In 
10.2, "Linear Linked Lists," on page 449, where we discuss linked lists, we will 
occasion to keep track of an index and a pointer at the same time. The comma nn'''''''r_ 

can be used in a natural way to do this by writing 

for (i 0, p = head; p! NULL; ++i, p = p -> next) 

Examples of comma expressions are given in the following table: 

I Declarations and initializations 

int i , j, k = 3 ; 
double x = 3.3; 

• Expression Equivalent expression Value 
I 

! i = 1, j 2, ++ k + 1 ( (i 1), (j = 2», ((++ k) + 1) 5 

k 1= 1, ++ x ,y 2.0 + 1 (k 1= 1), (((++ x) 'i, 2.0) + 1) 9.6 

Most commas in programs do not represent comma operators. For examp 
those commas used to separate expressions in argument lists of functions or us 
within initializer lists are not comma operators. If a comma operator is to be used 
these places, the comma expression in which it occurs must be enclosed in 

4.12 The do Statement 

The do statement can be considered a variant of the whi 1 e statement. Instead of mak- .. 
ing its test at the top of the loop, it makes it at the bottom. Its syntax is given by 

do statement whil e (expr) ; 

An example is 

4.12 T The do Statement 

=' 0; 
== 0; 

/* sum a series of integer inputs until 0 is input */ 
do { 

sum += i; 
scanf("%d", &i); 

wh; 1 e (i > 0); 

,VH.n~·-' 
a construction of the form 

statement 
whi 1 e (expr); 
next statement 

173 

statement is executed and expris evaluated. If the value of expris nonzero (true), 
control passes back to the beginning of the do statement and the process repeats 
When expr is zero (false), then control passes to next statement. 

As an example, suppose that we want to read in a positive integer and that we want 
insist that the integer be positive. The following code will do the job: 

do { 
printf("Input a positive integer: "); 
scanf("%d", &n); 
if (error = (n <= 0» 

printf("\nERROR: Do it againl\n\n"); 
} while (error); 

a nonpositive integer is entered, the user will be notified with a request for a positive 
Control will exit the loop only after a positive integer has been entered. 

Because in C, only a small percentage of loops tend to be do loops, it is considered 
programming style to use braces even when they are not needed. The braces in 

construct 

do { 
a single statement 

} whi 1 e ( ..... ); 

cmake it easier for the reader to realize that you have written a do statement rather than 
a whi 1 e statement followed by an empty statement. 

Now that we have discussed in detail the if statement, the i f-e 1 se statement, and 
the various looping statements, we want to mention the following tip that applies to all 
of their control expressions. It is good programming style to use a relational expres
sion, when appropriate, rather than an equality expression. In many cases this will 
result in more robust code. For expressions of type oa t or dou b 1 e, an equality test 



174 Chapter 4" Flow of Control 

can be beyond the accuracy of the machine. Here is an example, which on 
machines goes into an infinite loop: 

In file loop.c 

'\ 
/* A test that fails. */ 

#include <stdio.h> 

int main(void) 
{ 

i nt cnt 
double sum 

0; 
0.0, x; 

for (x 0.0; x != 9.9; x += 0.1) { /* trouble! ;'/ 

} 

4.13 

sum += x; 
printfC"cnt = %5d\n", ++cnt); 

} 
printfC"sum %f\n", sum); 
return 0; 

An Example: Fibonacci Numbers 

The sequence of Fibonacci numbers is defined recursively by 

1, fi+l = f; + f i - 1 for i 1, 2, ..... 

Except for fo and fl' every element in the sequence is the sum of the previous two ele
ments. It is easy to \\>Tite down tM first few elements of the sequence. 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ..... 

Fibonacci numbers have lots of uses and many interesting properties. One of the prop
erties has to do with the Fibonacci quotients defined by 

for i = 2, 3, ..... 

It can be shown that the sequence of quotients converges to the golden mean, which is 
the real number (1 + sqrt 5) / 2. 

4.13 " An Example: Fibonacci Numbers 175 

We want to write a program that prints Fibonacci numbers and quotients. If fl con
tains the value of the current Fibonacci number and f0 contains the value of the previ
ous Fibonacci number, then we can do the following: 

Fibonacci Program 

1 Save the value of f1 (the current Fibonacci number) in a temporary. 

2 Add f0 and f1, and store the value in fl, the new Fibonacci number. 

3 Store the value of the temporary in f0 so that f0 will contain the previous 
Fibonacci number. 

4 Print, and then repeat this process. 

Because the Fibonacci numbers grow large very quickly, we are not able to compute 
many of them. Here is the program: 

In me fibonaccLc 

/* Print Fibonacci numbers and quotients. */ 

#include <stdio.h> 

#define LIMIT 46 

int mainCvoid) 
{ 

} 

long f0 = 0, fl 1, n, temp; 

printfC"%7s%19s%29s\n%7s%19s%29s\n%7s%19s%29s\n", 
r headi ngs;' / 

" "," Fi bonacci ", "Fi bonacci " , 
" n"," number"," quotient", 
" __ Il, " _________ ", " _________ 11); 

printf("%7d%19d\n%7d%19d\n", 0, 0, 1, 1); t" 1st 2 cases ,~/ 
for Cn 2; n <= LIMIT; ++n) { 

} 

temp fl; 
fl += f0; 
f0 = temp; 
printfC"%71d%19ld%29.16f\n", n, fl, (double) f1 / f0); 

return O; 



176 Chapter 4" Flow of Control 

Here is some of the output of the program: 

Fibonacci 
n number 

0 0 
1 1 
2 1 
3 2 
4 3 
5 5 
6 8 
7 13 

23 28657 
24 46368 
25 75025 

44 701408733 
45 1134903170 
46 1836311903 

• 
Dissection of the fibonacci Program 

• #define LIMIT 46 

Fi bonacci 
quotient 

1.0000000000000000 
2.0000000000000000 
1.5000000000000000 
1.6666666666666667 
1.6000000000000001 
1.6250000000000000 

1.6180339901755971 
1.6180339882053250 
1.6180339889579021 

1.6180339887498949 
1.6180339887498949 
1.6180339887498949 

When for loops are used, they frequently repeat an action up to some limiting value. If 
a symbolic constant such as LIMIT is used, then it serves as its own comment, and its 
value can be changed readily. 

• long f0 = 0, fl = 1, n, tempi 

The variables f0, fl, and temp have been declared to be of type long so that the pro
gram will work properly on machines having 2-byte words, as well as on machines hav
ing 4-byte words. Note that some of the Fibonacci numbers printed are too large to be 
stored in a 2-byte i nt. There is no need for n to be of type long; it could just as well be 
of type i nt. 

4.13 " An Example: Fibonacci Numbers 177 

for (n = 2; n <= LIMIT; ++n) { 
temp = fl; 
fl += f0; 
f0 = temp; 

'rst n is initialized to 2. Then a test is made to see if n is less than or equal to LIMIT. If 
is, then the body of the fo r loop is executed, n is incremented, and control is passed 

to the top of the for loop. The test, the execution of the body, and the increment
of n all get done repeatedly until n has a value greater than LIMIT. Each time 

the loop, an appropriate Fibonacci number is computed and printed. The body 
the for loop is the compound statement surrounded by braces. The use of the vari

temp in the body is essential. Suppose that instead we had written 

for (n = 2; n <= LIMIT; ++n) { r wrong code -/</ 
fl += f0; 
f0 = fl; 

each time through the loop f0 would not contain the previous Fibonacci number. 

printf("%7ld%19ld%29.16f\n" , n, fl, (double) fl / f0); 

variables of type long are being printed, the modifier 1 is being used with the 
conversion character d. Note that the field widths speCified here match those in the 
pri ntfO statements used at the beginning of the program. The field widths control 
the spacing between columns in the output. There is no magic in choosing them-just 
yvhatever looks good. Because a cast is a unary operator, it is of higher precedence than 
. division. Thus, the expression 

(double) fl / f0 is equivalent to ((double) fl) / f0 

Because the operands of the division operator are of mixed type, the value of f0 gets 
promoted to a doubl e before division is performed. 

• • 



178 Chapter 4 V Flow of Control 

4.14 The go to Statement 

The goto statement is considered a harmful construct in most accounts of modern pro
gramming methodology. It causes an unconditional jump to a labeled statement some

. where in the current function. Thus, it can undermine all the useful structure provided 
by other flow of control mechanisms (for, whi 1 e, do, if, swi tch). 

Because a goto jumps to a labeled statement, we need to discuss this latter construct 
first. The syntax of a labeled statement is given by 

labeled_statement :: = label : statement label 

Some examples of labeled statements are 

bye: exit(l); 
L444: a = b + c; 
bug1: bug2: bug3: printf("bug found\n"); 

but not 

. '.. - identifier 

/* multiple labels */ 

333: a = b + c; /* 333 is not an identifier */ 

The scope of a label is within the function in which it occurs. Label identifiers have their 
own name space. This means that the same identifier can be used both for a label and a 
variable. This practice, however, is considered bad programming style and should be 
avoided. 

Control can be unconditionally transferred to a labeled statement by executing a 
goto statement of the form 

goto label; 

An example would be 

goto error; 

error: { 

} 

printf("An error has occurred - bye!\n"); 
exit(l); 

4.15 V The break and conti nue Statements 179 

Both the goto statement and its corresponding labeled statement must be in the body 
of the same function. Here is a more specific piece of code that uses a goto: 

whi 1 e (scanf("%lf", &x) == 1) { 
if (x < 0.0) 

goto negative_alert; 
pri ntf("%f %f\n", sqrt(x) , sqrt(2 ,', x)); 

} 

negative_alert: printf("Negative value encountered!\n"); 

Note that this example could have been rewritten in a number of ways without using a 
goto. 

In general, the goto should be avoided. It is a primitive method of altering flow of 
control, which, in a richly structured language, is unnecessary. Labeled statements and 
goto's are the hallmark of incremental patchwork program design. A programmer who 
modifies a program by adding gotos to additional code fragments soon makes the pro
gram incomprehensible. 

When should a goto be used? A simple answer is "not at all." Indeed, one ,cannot go 
wrong by following this advice. In some rare instances, however, which should be care
fully documented, a goto can make the program significantly more efficient. In other 
cases, it can simplify flow of control. This may occur when a special value is tested for 
in a deeply nested inner loop and, when this value is found, the program control needs 
to jump to the outermost level of the function. 

4.15 The break and conti nue Statements 

Two special statements, 

break; and conti nue; 

interrupt the normal flow of control. The break statement causes an exit from the 
innermost enclosing loop or swi tch statement. In the following example, a test for a 
negative argument is made, and· if the test is true, then a break statement is used to 
pass control to the statement immediately following the loop. 



180 Chapter 4 T Flow of Control 

while (1) { 
scanf("%lf", &x); 
if (x < 0.0) 

break; 
printf("%f\n", sqrt(x)); 

} 

/* break jumps to here */ 

/* exit loop if x is negative */ 

This is a typical use of break. What would otherwise be an infinite loop is made to ter
minate upon a given condition tested by the if expression. 

The conti nue statement causes the current iteration of a loop to stop and causes the 
next iteration of the loop to begin immediately. The following code processes all char
acters except digits: 

for (i 0; i < TOTAL; ++i) { 
c getcharO; 
if (c >= '0' && c <= '9') 

continue; 
/* process other characters */ 

/* continue transfers control to here to begin next iteration */ 
} 

The conti nue statement may occur only inside for, whi 1 e, and do loops. As the 
example shows, conti nue transfers control to the end of the current iteration, whereas 
break terminates the loop. With a conti nue statement, a for loop of the form 

for (exprl; expr2; expr3) { 

continue; 

} 

is equivalent to 

exprl; 
whil e (expr2) { 

goto next; 

next: 
expr3; 

} 

which is different from 

4.16 T The swi tch Statement 181 

exprl; 
whi 1 e (expr2) { 

continue; 

expr3; 
} 

(See exercise 29, on page 193, for a convenient way to test this.) 

The sw; tch Statement 

The swi tch is a multiway conditional statement generalizing the i f-e 1 se statement. 
Let us first look at the syntax for a swi tch statement. 

switch_statement :: = swi tch ( integraL expression ) 
{case_statement I defaulLstatement I switch_block} 1 

case_statement :: = { case constanUntegraLexpression : h+ 
statement defaulLstatement ::= default : statement 
switch_block ::= {{declaration_list}opt {case_grouph+ {defau[Lgroup}o t} 
case_group ::= { case constanUntegraLexpression : h+ { statement }l+ 
defau[Lgroup ::= default : {statementh+ 

The following is a typical example of a swi tch statement: 

switch (c) { 
case 'a'; 

++a....cnt; 
break; 

case 'b': 
case 'B I: 

++b_cnt; 
break; 

default: 
++other_cnt; 

} 

Notice that the body of the swi tch statement in the example is a compound statement. 
This will be so in all but the most degenerate situations. The controlling expression in 
the parentheses following the keyword swi tch must be of integral type. In the example, 
it is just the i nt variable c. The usual automatic conversions are performed on the con
trolling expression. After the expression is evaluated, control jumps to the appropriate 



182 Chapter 4 'f' Flow of Control 

case label. The constant integral expressions following the case labels must all be 
unique. Typically, the last statement before the next case or defaul t label is a break 
statement. If there is no break statement, then execution "falls through" to the next 
statement in the succeeding case. Missing break statements are a frequent cause of 
error in swi tch statements. There may be at most one defau 1 t label in a swi tch. Typ
ically, it occurs last, although it can occur anywhere. The keywords case and default 
cannot occur outside of a swi tch. 

The effect of a switch 

1 Evaluate the swi tch expression. 

2 Go to the case label having a constant value that matches the value of the 
expression found in step 1, or, if a match is not found, go to the defaul t label, 
or, if there is no defaul t label, terminate the swi tch. 

3 Terminate the sw; tch when a break statement is encountered, or terminate the 
swi tch by "falling off the end." 

Let us review the various kinds of jump statements available to us. These include 
the goto, break, conti nue, and return statements. The goto is unrestricted in its use 
and should be avoided as a dangerous construct. The break may be used in loops and 
is important to the proper structuring of the swi tch statement. The conti nue is con
strained to use within loops and is often unnecessary. The retu rn statement must be 
used in functions that return values. It will be discussed in the next chapter. 

4.17 The Conditional Operator 

The conditional operator?: is unusual in that it is a ternary operator. It takes as oper
ands three expressions. 

conditionaL expression 

In a construct such as 

. '. ,-

exprl ? expr2 : expr3 

expr ? expr expr 

exprl is evaluated first. If it is nonzero (true), then expr2 is evaluated, and that is the 
value of the conditional expression as a whole. If exprl is zero (false), then expr3 is 
evaluated, and that is the value of the conditional expression as a whole. Thus, a condi-

4.17 'f' The Conditional Operator 183 

expression can be used to do the work of an i f-e 1 se statement. Consider, for 

'"aJ"~""-' the code 

if (y < z) 
x y; 

else 
x z; 

effect of the code is to assign to x the minimum of y and z. This also can be accom
lJH'>"~'~ by writing 

: z; 

Dt::'-U<<O:''- the precedence of the conditional operator is just above assignment, parenthe
are not necessary. However, parentheses often are used to make clear what is being 

for. 
The type of the conditional expression 

exprl ? expr2 : expr3 

determined by both expr2 and expr3. If they are of different types, then the usual 
rules are applied. Note carefully that the type of the conditional expression 

not depend on which of the two expressions expr2 or expr3 is evaluated. The con
operator?: has precedence just above the assignment operators, and it associ

from right to left. 

Declarations and initializations 

a = 'a', b 'b'; /* a has decimal value 97 */ 
; 1, j = 2; 
x 7.07; 

Equivalent expression Value Type 

1 b + 1 (; j) ? (a - 1) : (b + 1) 99 i nt 

0 ? i + 4 x ( (j % 3) 0) ? (i + 4) : x 7.07 double 

i + 4 : x (j % 3) ? (i + 4) : x 5.0 double 



184 Chapter 4... Flow of Control 

Summary 

1 Relational, equality, and logical expressions have the i nt value 0 or 1. 

2 The negation operator ! is unary. A negation expression such as ! a has the; 
value 0 or 1. Remember: ! ! a and a need not have the same value. 

3 A chief use of relational, equality, and logical expressions is to test data to affect 
flow of control. 

4 Automatic type conversions can occur when two expressions are compared that 
the operands of a relational, equality, or logical operator. 

5 The grouping construct { . . . . . } is a compound statement. It allows enclosed 
statements to be treated as a single unit. 

6 An if statement provides a way of choosing whether or not to execute a sta,\..UL'-U". 

7 The el se part of an i f-el se statement associates with the nearest available if 
This resolves the "dangling else" problem. 

8 The wh il e, fa r, and do statements provide for the iterative execution of code. The 
body of a do statement executes at least once. 

9 To prevent an unwanted infinite loop, the programmer must make sure that the 
expression controlling the loop eventually becomes zero. The miscoding of control
ling expressions is a common programming error. 

10 The programmer often has to choose between the use of a wh i 1 e or a fa r state
ment. In situations where clarity dictates that both the control and the indexing be 
kept visible at the top of the loop, the for statement is the natural choice. 

11 The comma operator is occasionally useful in for statements. Of all the operators 
in C, it has the lowest priority. 

12 The four statement types 

goto break continue return 

cause an unconditional transfer of flow of control. Their use should be minimized. 

... Exercises 185 

gato's are conSidered harmful to good programming. Avoid them. 

The swi tch statement provides a multiway conditional branch. It is useful when 
dealing with a large number of special cases. 

Give equivalent logical expressions of the following "Without negation: 

lea> b) 
lea <= b && c <= d) 
lea + 1 == b + 1) 
!ea < 1 I I b < 2 && c < 3) 

Complete the following table: 

Declarations and initializations 

, i nt a == 1, b '" 2, c '" 3; 
double x = 1.0; 

Expression Equivalent expression 

a > b && c < d 

a < I b II ! ! a 

a + b < ! c + c 

ia - x II b"'c&&b/a 

Value 

I 

Write a program that reads characters from the standard input file until EOF is 
encountered. Use the variables di gi t_cnt and other _cnt to count the number of 
digits and the number of other characters, respectively. 

Write a program that counts the number of times the first three letters of the alpha
bet (a, A, b, B, c, C) occur in a file. Do not distinguish between lower- and uppercase 
letters. 



186 Chapter 4 'f Flow of Control 

5 Write a program that contains the loop 

while (seanf("%lf", &salary) == 1) { 

} 

Within the body of the loop, compute a 17% federal withholding tax and a 3% state 
withholding tax, and print these values along with the corresponding salary. Accu
mulate the sums of all salaries and taxes printed. Print these sums after the pro
gram exits the whi 1 e loop. 

6 What gets printed? 

char 
i nt 

e = 'A'; 
i = 5, j = 10; 

pri ntf("%d %d %d\n", ! e, !! e, !!! c) ; 
p ri ntf ("%d %d %d\n", - ! i, ! - i, ! - i - ! j); 
printf("%d %d %d\n", ! (6 ,., j + i-c), ! i-5, ! j - 10); 

7 Explain the effect of the following code: 

i nt i . , 

while (i = 2) { 

} 

printf("Some even numbers: %d %d %d\n", i, i + 2, i + 4); 
i = 0; 

Contrast this code with the following: 

i nt i ; 

if (i = 2) 
pri ntf("Some even numbers: %d %d %d\n", i, i + 2, i + 4); 

Both pieces of code are logically wrong. The run-time effect of one of them is so 
strildng that the error is easy to spot, whereas the other piece of wrong code has a 
subtle effect that is much harder to spot. Explain. 

What gets printed? 

char 
double 

e = 'A'; 
x = 1e+33, y = 0.001; 

'f Exercises 

printf("%d %d %d\n", e == 'a', e == 'b', e != 'e'); 
printf("%d\n", e == 'A' && e <= 'B' II 'C'); 
printf("%d\n", 1 != !!e == !! Ie); 
printf("%d\n", x + y > x - y); 

9 What gets printed? Explain. 

i nt i=7,j=7; 

if (i == 1) 
if (j == 2) 

pri ntf("%d\n", i = i + j); 
else 

pri ntf("%d\n", i = i - j); 
pri ntf("%d\n", i); 

187 

Run a test program with this piece of code in it to find out how your compiler 
reports this syntax error. Explain why. 

while (++i < LIMIT) do { 
j = 2 ~, i + 3; 
pri ntf("j = %d\n", j); 

} 

/* syntax error */ 

/'~ Many other languages requi re "do", but not C. ~'/ 

11 Can the following code ever lead to an infinite loop? Explain. (Assume that the val
ues of i and j are not changed in the body of the loop.) 

printf("Input two integers: "); 
seanf("%d%d", &i, &j); 
wh i 1 e (i ~, j < 0 && ++ i ! = 7 && j ++ ! = 9) { 

/* do something */ 
} 



188 Chapter 4 T Flow of Control 

12 In Section 4.8, "The whi 1 e Statement," on page 163, we said that if n has a negative 
value, then 

while (--n) 
/* do something */ 

is an infinite loop. Actually, this is system dependent. Can you explain why? 

13 Write a program that reads in an integer value for n and then sums the integers 
from n to 2 ,', n if n is nonnegative, or from 2 ,', n to n if n is negative. Write the 
code in two versions, one using only for loops and the other using only whi 1 e 
loops. 

14 The function putehar() returns the int value of the character that it writes. What 
does the following code print? 

for (putehar('1'); putehar('2'); putehar('3')) 
putehar(' 4'); 

15 For the C language, answer the following true-false questions: 

Every statement ends in a semicolon. 
Every statement contains at least one semicolon. 
Every statement contains at most one semicolon. 
There exists a statement with precisely 33 semicolons. 
There exists a statement made up of 35 characters that contains 33 semicolons. 

16 In Section 4.10, "An Example: Boolean Variables," on page 170, we presented a pro
gram that prints a table of values for some boolean functions. Execute the program 
and examine its output. For the 32 different inputs, exactly half of them (16 in num
ber) have majority value 1. Write a program that prints a table of values for the 
majority function for, say, 7 boolean variables. Of the 128 different inputs, how 
many have majority value I? State the general case as a theorem and try to give a 
proof. (Your machine can help you find theorems by checking special cases, but in 
general it cannot give a proof.) 

17 Write three versions of a program that computes the sum of the first n even inte
gers and the sum of the first n odd integers. The value for n should be entered 
interactively. In the first version of your program, use the code 

for (ent = 0, i = 1, j = 2; ent < n; ++ent, i += 2, j += 2) 
odd_sum += i, even_sum += j; 

T Exercises 189 

Note the prolific use of the comma operator. The code is not very good, but it will 
give you confidence that the comma operator works as advertised. In the second 
version, use one or more fo r statements but no comma operators. In the third ver
sion, use only whi 1 e statements. 

Choose one version of the program that you wrote in exercise 16, on page 188, and 
incorporate into it the following piece of code: 

do { 
printf("Input a pOSltlVe integer: "); 
seanf("%d", &n); 
if (error = (n <= 0)) 

printf("\nERROR: Do it again!\n\n"); 
} while (error); 

Then write another version of the program that uses a whi 1 e statement instead of a 
do statement to accomplish the same effect. 

19 Until interrupted, the following code prints TRUE FOREVER on the screen repeat
edly. (In UNIX, type a control-c to effect an interrupt.) 

whi 1 e (1) 
printf(" TRUE FOREVER "); 

Write a simple program that accomplishes the same thing, but use a fo r statement 
instead of a whi 1 e statement. The body of the for statement should contain just 
the empty statement";". 

20 The following code is meant to give you practice with short-circuit evaluation: 

int a = 0, b = 0, x; 

x = 0 && (a = b = 777); 
printf("%d %d %d\n", a, b, x); 
x = 777 I I (a = ++b); 
printf("%d %d %d\n", a, b, x); 

What gets printed? First, write down your answers. Then write a test program to 
check them. 



190 Chapter 4 v Flow of Control 

21 The semantics of logical expressions imply that order of evaluation is critical 
some computations. Which of the follovlling two alternate expressions is most likely 
to be the correct one? Explain. 

if ((x! 0.0) && ((z x) I x 1, X < 2.0)) 
(b) if (((z - x) I x 1, X < 2.0) && (x! 0.0)) 

22 Suppose that we have three statements called stl, st2, and st3. We wish to write an 
if-e 1 se statement that will test the value of an i nt variable i and execute differ
ent combinations of the statements accordingly. The combinations are given in the 
following table: 

i execute i execute i execute 

1 stl 1 st2 1 stl, st2 

2 st2 2 stl, 8t3 2 stl, st2 

3 st3 3 stl 3 st2, st3 

Write programs that read in values for i interactively. Use appropriate pri ntfO 
statements to check that the flow of control mimics the action described in the 
tables. For example, statements such as 

if (; == 1) 
printf(" s tatement_l executed\n"); 

can be used to show that your programs run properly. 

23 A polynomial in x of at most degree 2 is given by 

ax2 + bx+ c 

Its discriminant is defined to be 

We are interested in the square root of the discriminant. If the discriminant is non
negative, then 

Jb
2 

- 4ac 

has its usual interpretation, but if the discriminant is negative, then 

Jb2 -4ac means iJ-(b
2 

+ 4ac) 

... Exercises 191 

where i = or equivalently, i2 -1. 

Write a program that reads in values for a, b, and c and prints the value of the 
square root of the discriminant. For example, if the values 1, 2, and 3 are read in, 
then i *2.828427 should be printed. 

Write a program that repeatedly reads in values for a, b, and c and finds the roots 
of the polynomial 

ax2+bx+c 

Recall that the roots are real or complex numbers that solve the equation 

ax2 +bx+c=O 

When both a = ° and b 0, we consider the case "extremely degenerate" and leave 
it at that. When a ° and b!= 0, we consider the case "degenerate." In this case 
the equation reduces to 

bx+ c= ° 
and has one root given by x = c / b . 

When a i::. 0 (the general case), the roots are given by 

1 
root l = 2a(-b+ 

The expression under the square root sign is the discriminant. If the discriminant is 
positive, then two real roots exist. If the discriminant is zero, then the two roots are 
real and equaL In this case we say that the polynomial (or the associated equation) 
has mUltiple real roots. If the discriminant is negative, then the roots are complex. 
For each set of values for a, b, and c, your program should print the computed 
root(s) along 'with one of the following messages: 

degenerate 
degenerate 

two real roots extremely 
two complex roots multiple real roots 



192 Chapter 4 T Flow of Control 

For example, if the values 1, 2, and 3 are read in for a, b, and c, respectively, then 
the following should be printed: 

two complex roots: root1 
root2 

-1.000000 + i*1.414214 
-1.000000 - i*1.414214 

25 A truth table for a boolean function is a table consisting of all possible values for its 
variables and the corresponding values of the boolean function itself. In Section 
4.10, "An Example: Boolean Variables," on page 170, we created a truth table for the 
majority function and two other functions. In that table we used 1 and ° to repre
sent true and false, respectively. Create separate truth tables for the following bool
ean functions: 

(a) b1 I I b2 I I b3 I I b4 

(b) b1 && b2 && b3 && b4 

(c) ! (!b1 II b2) && (!b3 II b4) 

Use the letters T and F in your truth tables to represent true and false, respectively. 
Hint: Use the #defi ne mechanism to define a BOOLEX, and write your program to 
operate on an arbitrary BOOLEX. 

26 Write a program to check the proper pairing of braces. Your program should have 
two variables: one to keep track of left braces, say 1 eft_cnt, and the other to keep 
track of right braces, say ri ght_cnt. Both variables should be initialized to zero. 
Your program should read and print each character in the input file. The appropri
ate variable should be incremented each time a brace is encountered. If ri ght_cnt 
ever exceeds the value of 1 eft_cnt, your program should insert the character pair 
?? at that point in the output. After all the characters in the input file have been 
processed, the two variables 1 eft_cnt and ri ght_cnt should have the same value. 
If not, and 1 eft_cnt is larger than ri ght_cnt, then a message should be printed 
that includes the number of right braces missing as a series of that many }'s. For 
example, 

ERROR: Missing right braces: }}} 

Use the macros getcharO and putcharO for input/output. Test your program by 
processing some files containing your own C code. 

T Exercises 193 

27 Extend the program that you wrote in the previous exercise so that it deals with 
both braces and parentheses Simultaneously. 

In Section 4.8, "The whi 1 e Statement," on page 165, we presented a program that 
counts blanks, digits, and letters. Modify the program so that lower- and uppercase 
letters are counted separately. 

Rewrite the following two pieces of code to avoid using break or conti nue: 

while (c = getchar()) { 
if (c == 'E') 

} 

break; 
++cnt; 
if (c >= '0' && c <= '9') 

++di gi Lcnt; 

i -5; 
n 50; 
while (i < n) { 

++i; 

} 

if (i == 0) 
continue; 

total += i; 
printf("i = %d and total = %d\n", i, total); 

30 Show how a whi 1 e statement can be rewritten as a goto statement and an if state
ment. Which is the better construct, and why? 



194 Chapter 4 V Flow of Control 

31 Because it leads to "spaghetti code," the go to is seldom used in today's program
ming world. The following code illustrates how just a few goto statements can 
make the flow of control incoherent: 

d = b * b - 4.0 * a * c; 
if (d == 0.0) 

gata Ll; 
else if (d > 0.0) { 

if (a 1= 0.0) { 

} 

rl = (-b + sqrt(d)) I (2.0 * a); 
r2 = (-b sqrt(d)) I (2.0 * a); 
got a L4; 

else 

} 
else 

gata L3; 

gata L2; 
11: 
if (a 1= 0.0) 

r1 = r2 = -b I (2.0 * a); 
else 

gato L3; 
gata L4; 
L2 : 
if (a 1= 0.0) { 

printf("imaginary roots\n"); 
goto L4; 

} 
L3: 
L4: 

printf("degenerate case\n"); 

Note how the programmer kept adding different cases and had to repatch the code 
until the program logic became obscure. Rewrite this code without using gata 
statements. 

32 Here is a simple way to test the effect of a conti nue statement in the body of a for 
loop. What gets printed? 

for (putchar('I'); putchar('2'); putchar('3')) { 
putchar('4'); 
continue; 
putchar('S'); 

} 

V Exercises 195 

The mathematical operation mi n (x, y) can be represented by the conditional 
expression 

(x < y) ? x : y 

In a similar fashion, using only conditional expressions, describe the mathematical 
operations 

min(x, y, z) and max(x, y, z, w) 

Which of the following two statements is legal? Study the syntax for a switch state
ment to answer this, then write a test program to see if your compiler complains. 

switch (1); 
switch (1) switch (1); 

I"'version 1 *1 
I'~ versi on 2 ~'I 

In ANSI C, labels have their own name space, whereas in traditional C, they do not. 
This means that in ANSI C, the same identifier can be used for a variable and a 
label, although it is not considered good programming practice to do so. Write a 
test program containing the following code and execute it on your ANSI C compiler: 

int L = -3; 
if (L < 0) 

goto L; 
printf("L = %d\n", L); 
L: printf("Exiting label test!\n"); 

1* L is a variable *1 

1* L is a label *1 

If a traditional C compiler is available to you, check to see that your program will 
not compile. 

(Advanced) Let a be a positive real number, and let the sequence of real numbers 
x i be given by 

1 a 
Xo = 1, xi + 1= 2-(xi + -) for i 0, 1, 2, ... 

X. 
I 

It can be shown mathematically that 
Xi -c> Ja as i -c> 00 

This algorithm is derived from the Newton-Raphson method in numerical analysis. 
Write a program that reads in the value of a interactively and uses this algorithm to 
compute the square root of a. As you will see, the algorithm is very efficient. (None
theless, it is not the algorithm used by the sq rt 0 function in the standard library.) 



196 Chapter 4" Flow of Control 

Declare x0 and xl to be of type double, and initialize xl to 1. Inside a loop do the 
following: 

x0 = xl; 
xl = 0.5 * (xl + a / xl); 

/* save the current value of xl */ 
/* compute a new value of xl */ 

The body of the loop should be executed as long as x0 is not equal to xl. Each time 
through the loop, print out the iteration count and the values of xl (converging to 
the square root of a) and a xl;' xl (a check on accuracy). 

37 (Advanced) Modify the program you wrote in the previous exercise, so that the 
square roots of 1, 2, ... ,n are all computed, where n is a value that is entered inter
actively. Print the number, the square root of the number, and the number of itera
tions needed to compute it. (You can look in a numerical analysis text to discover 
why the Newton-Raphson algorithm is so efficient. It is said to be "quadratically 
convergent.") 

38 (Advanced) The constant e, which is the base of the natural logarithms, is given to 
41 significant figures by 

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 

Define 

( 1)1l 
II + -

n for n = 1, 2, ... 

It can be shown mathematically that 

Investigate how to calculate e to arbitrary precision using this algorithm. You will 
find that the algorithm is computationally ineffective. (See exercise 36, on page 
195.) 

39 (Advanced) In addition to the algorithm given in the previous exercise, the value 
for e is also given by the infinite series 

1 1 1 1 
e 1 + 11 + 2! + 3i + 4! + '" 

The above algorithm is computationally effective. Use it to compute e to an arbi
trary precision. 

hapter 5 

unctions 

the heart of effective problem solving is problem decomposition. Taking a problem 
and breaking it into small, manageable pieces is critical to writing large programs. In C, 
the function construct is used to implement this "top-down" method of programming. 

A program consists of one or more files, "\lith each file containing zero or more func
tions, one of them being a mai n 0 function. Functions are defined as individual objects 
that cannot be nested. Program execution begins with ma in 0, which can call other 
functions, including library functions such as p ri ntfO and sq rt O. Functions operate 
with program variables, and which of these variables is available at a particular place in 
a function is determined by scope rules. In this chapter we discuss function definition, 
function declaration, scope rules, storage classes, and recursion. 

5.1 Function Definition 

The C code that describes what a function does is called the function definition. It must 
not be confused with the function declaration. A function definition has the following 
general form: 

type function_name( parameter list) { declarations statements } 

Everything before the first brace comprises the header of the function definition, and 
everything between the braces comprises the body of the function definition. The 
parameter list is a comma-separated list of declarations. An example of a function defi
nition is 



198 Chapter 5 T Functions 

int factorial (int n) 
{ 

} 

int i, product = 1; 
for (i = 2; i <= n; ++i) 

product ~'= i; 
return product; 

F' header ~(/ 
/* body starts here */ 

The first i nt tells the compiler that the value returned by the function will be con
verted, if necessary, to an i nt. The parameter list consists of the declaration i nt n. 
This tells the compiler that the function takes a single argument of type i nt. An 
expression such as facto ri a 1 (7) causes the function to be invoked, or called. The 
effect is to execute the code that comprises the function definition, with n having the 
value 7. Thus, functions act as useful abbreviating schemes. Here is another example of 
a function definition: 

void wrt_address(void) 
{ 

printf("%s\n%s\n%s\n%s\n%s\n\n", 
I' 't, 'i" "k 'ok .,', "k 'ok 'k "'k 'i" "k"k "i" 'i" ')', '"t', 'i" 'k 'i" '1( 'f 

" 
" 
" 

SANTA CLAUS 
NORTH POLE 
EARTH , 

" '1( 'i" 'i" 'J'( ';'( 'k'i'( '}( 'i" 'i',"k "k 'ok 'k ,)', 'i'( 'i" 'i" "I" ')'< II) ; 
} 

The first voi d tells the compiler that this function returns no value; the second voi d 
tells the compiler that this function takes no arguments. The expression 

causes the function to be invoked. For example, to call the function three times we can 
write 

for (i = 0; i < 3; ++i) 
wrt_address 0 ; 

A function definition starts with the type of the function. If no value is returned, then 
the type is voi d. If the type is something other than voi d, then the value returned by 
the function will be converted, if necessary, to this type. The name of the function is 
followed by a parenthesized list of parameter declarations. The parameters act as 
placeholders for values that are passed when the function is invoked. Sometimes, to 
emphasize their role as placeholders, these parameters are called the formal parame
ters of the function. The function body is a block, or compound statement, and it too 
may contain declarations. Some examples of function definitions are 

void nothing(void) { } 

double twice(double x) 
{ 

return (2.0 * x); 
} 

int all_add(int a, int b) 
{ 

int c; 

return (a + b + c); 
} 

5.1 T Function Definition 199 

/* this function does nothing */ 

If a function definition does not specify the function type, then it is i nt by default. For 
example, the last function definition could be given by 

all_add(int a, int b) 
{ 

However, it is considered good programming practice to specify the function type 
explicitly. (See exercise 5, on page 236, for further discussion.) 

Any variables declared in the body of a function are said to be "local" to that func
tion. Other variables may be declared external to the function. These are called "global" 
variables. An example is 

#include <stdio.h> 

i nt a = 33; /* a is external and initialized to 33 */ 

int main(void) 
{ 

i nt b = 77; 

} 

printf("a 
printf("b 
return 0; 

%d\n", a); 
%d\n", b); 

/* b is local to maine) */ 

/* a is global to maine) */ 

In traditional C, the function definition has a different syntax. The declarations of the 
variables in the parameter list occur after the parameter list itself and just before the 
first brace. An example is 



200 Chapter 5.... Functions 

void f(a, b, c, x, y) 
int a, b, c; 
double x, y; 
{ 

The order in which the parameters are declared is immaterial. If there are no p 
ters, then a pair of empty parentheses is used. ANSI C compilers will accept this 
tional syntax as well as the newer syntax. Thus, traditional code can stilI be compiled 
an ANSI C compiler. 

There are several important reasons to write programs as collections of many 
functions. It is simpler to correctly write a small function to do one job. Both the writ
ing and debugging are made easier. It is also easier to maintain or modify such a 
gram. One can readily change just the set of functions that need to be rewritten, 
expecting the rest of the code to work correctly. Also, small functions tend to be self
documenting and highly readable. A useful heuristic for writing good programs is to 
write each function so that its code fits on a single page. 

5.2 The retu rn Statement 

The retu rn statement mayor may not include an expression. 

return_statement 

Some examples are 

return; 
return ++a; 
retu rn (a ,/, b); 

. '.. - return; retu rn expression ; 

The expression being returned can be enclosed in parentheses, but this is not required. 
When a retu rn statement is encountered, execution of the function is terminated 

and control is passed back to the calling environment. If the return statement contains 
an expression, then the value of the expression is passed back to the calling environ
ment as well. Moreover, this value will be converted, if necessary, to the type of the 
function as specified in the function definition. 

5.3 .... Function Prototypes 201 

a, char b, char c) 

i nt i; 

return i; /* value returned will be converted to a float */ 

can be zero or more retu rn statements in a function. If there is no r~tu rn state
then control is passed back to the calling environment when the, closmg ~race of 
d . tered This is called "falling off the end." The followmg functIOn def-bo y IS encoun . 
illustrates how two retu rn statements might be used: 

double absolute_value(double x) 
{ 

} 

if (x >= 0.0) 
return x; 

else 
return -x; 

though a function returns a value, a program does not need to use it. 

whi 1 e ( ..... ) { 
getcharO; 
c = getchar 0 ; 

} 

/* get a char, but do nothing with it */ 
/* c will be processed */ 

5.3 Function Prototypes 

Functions should be declared before they are used. ANSI C provides for a new funct~on 
declaration syntax called the function prototype. A function prototyp~ tells the compIle~ 
the number and type of arguments that are to be passed to t~e functIOn and the type 0 

the value that is to be returned by the function. An example IS 

double sqrt(double); 

This tells the compiler that sq rt 0 is a function that tak~s a single arg,ument of type 
doub 1 e and returns a daub 1 e. The general form of a fUllctIOll prototype IS 

type function_name ( parameter type list) ; 



202 Chapter 5 'f Functions 

The parameter type list is typically a comma-separated list of types. Identifiers 
optional; they do not affect the prototype. For example, the function prototype 

void f(char c, int i); is equivalent to 

The identifiers such as c and i that occur in parameter type lists in function ",>,."Tn,h",~~' 
are not used by the compiler. Their purpose is to provide documentation to the 
grammer and other readers of the code. The keyword vo; d is used if a function 
no arguments. Also, the keyword vo; d is used if no value is returned by the function. 
a function takes a variable number of arguments, then the ellipses ( ... ) are used. See, 
for example, the function prototype for pri ntfO in the standard header file stdio.h. 

Function prototypes allow the compiler to check the code more thoroughly. Also, val
ues passed to functions are properly coerced, if possible. For example, if the function 
prototype for sq rt 0 has been specified, then the function call sq rt (4) will yield the 
correct value. Because the compiler knows that sq rt 0 takes a doub 1 e, the i nt value 4 
will be promoted to a dou b 1 e and the correct value will be returned. (See exercise 5, on 
page 236, for further discussion.) 

In traditional C, parameter type lists are not allowed in function declarations. For 
example, the function declaration of sq rt 0 is given by 

double sqrt(); /* traditional C style */ 

Even though ANSI C compilers will accept this style, function prototypes are preferred. 
With this declaration, the function call sq rt (4) will not yield the correct value. (See 
exercise 5, on page 236.) 

Function Prototypes in C++ 

In C++, function prototypes are required, and the use of voi d in the parameter type list 
in both function prototypes and function definitions is optional. Thus, for example, in 
C++ 

void fO is equivalent to void f(void) 

Note carefully that this results in a conflict with traditional C. In traditional C, a func
tion declaration such as 

int fO; 

means that fO takes an unknown number of arguments. In traditional C, vo; d is not a 
keyword. Thus, it cannot be used in a parameter list in a function declaration or func
tion definition. 

5.4 'f An Example: Creating a Table of Powers 203 

An Example: Creating a Table of Powers 

thiS section, we give an example of a program that is written using a ~umber ~f func
. For simplicity, we will write all the functions one after another m one fIle. The 

of the program is to print a table of powers. 

#include <stdio.h> 

#define N 7 

long power(in~, int~; 
void prn_headlng(vold);. 
void prn_tbl_of_powers(lnt); 

i nt rnai n (vo; d) 
{ 

} 

prn_headi ngO; 
prn_tbl_of_powers(N); 
return 0; 

void prn_heading(void) 

{ pri ntf("\n: : : :: A TABLE OF POWERS ::::: \n\n"); 
} 

void prn_tbl_of_powers(int n) 
{ 

} 

int i, j; 

for (i = 1; ; <= n; ++i) ~ 
for (j = 1; j <= n; ++J) 

if (j === 1) 
printf("%ld", power(i, j)); 

else 
printf(I%9ld", power(;, j)); 

putchar('\n'); 
} 



204 Chapter 5 V Functions 

long power(int m, 
{ 

i nt 
long 

i -, 
product 

i nt n) 

1-, 

for (i = 1; i <= n; ++i) 
product ,~= m; 

} 
return product; 

Here is the output of the program: 

"""" " .. "" ... 

1 
2 
3 

A TABLE OF POWERS 

1 
4 
9 

1 
8 

27 

1 
16 
81 

1 
32 

243 

1 
64 

729 

1 
128 

2187 

Note that the first column consists of integers raised to the first power, the second col
umn consists of integers raised to the second power, and so forth. In our program we 
have put the function prototypes near the top of the file. This makes them visible 
throughout the rest of the file. We used the type 1 ong so that the program will produce 
the same output whether the machine has 2- or 4-byte words. Note that the function 
powerO computes the quantity mn, which is m raised to the nth power. 

Our program illustrates in a very simple way the idea of top-down deSign. The pro
grammer thinks of the tasks to be performed and codes each task as a function. If a 
particular task is complicated, then that task, in turn, can be subdivided into other 
tasks, each coded as a function. An additional benefit of this is that the program as a 
whole becomes more readable and self-documenting. 

5.5 Function Declarations from the Compiler's 
Viewpoint 

To the compiler, function declarations are generated in various ways: by function invo
cation, by function definition, and by explicit function declarations and function proto
types. If a function call, say f(x), is encountered before any declaration, definition, or 
prototype for it occurs, then the compiler assumes a default declaration of the form 

5.5 V Function Declarations from the Compiler's Viewpoint 205 

fO; 

is assumed about the parameter list for the function. Now suppose that the fol
function definition occurs first: 

int f(x) 
double x; 
{ 

/* traditional C style */ 

provides both declaration and definition to the compiler. Again, however, nothing 
assumed about the parameter list. It is the programmer's responsibility to pass only 

single argument of type double. A function call such as f (1) can be expected to fail 
e 1 is of type i nt, not double. Now suppose that we use, instead, an ANSI C style 

int f(double x) 
{ 

/* ANSI C style */ 

The compiler now knows about the parameter list as well. In this case, a function call 
such as f(l) can be expected to work properly. When an i nt gets passed as an argu
ment, it will be converted to a daub 1 e. 

A function prototype is a special case of a function declaration. A good programming 
style is to give either the function definition (ANSI C style) or the function prototype or 
both before a function is used. A major reason for including standard header files is 
because they contain function prototypes. 

Limitations 

Function definitions and prototypes have certain limitations. The function storage class 
specifier, if present, can be either extern or stati c, but not both; auto and regi ster 
cannot be used. (See Section 5.11, "Storage Classes," on page 216.) The types "array of 
... " and "function returning ... " cannot be returned by a function. However, a pointer 
representing an array or a function can be returned. (See Section 6.6, "Arrays as Func
tion Arguments," on page 256.) The only storage class speCifier that can occur in the 
parameter type list is regi ster. Parameters cannot be initialized. 



206 Chapter 5 T Functions 

5.6 An Alternate Style for Function Definition Order 

Suppose we want to write a program in a single file. If our program contains more than 
one function definition, we usually put #i ncl udes and #defi nes at the top of the file, 
other program elements such as templates of enumeration types (Section 7.5, "Enumer
ation Types," on page 345) and templates of structures and unions (Section 9.4, "Using 
Structures with Functions," on page 416) next, then a list of function prototypes, and 
finally the function definitions, starting with ma; nO. Because function definitions also 
serve as function prototypes, an alternate style is to remove the list of function proto
types and to put the function definition of any function that gets called before the func
tion definition of its caller. In particular, rna; nO goes last in the file. 

Let us illustrate this alternate style by modifying the tbLof_powers program that we 
wrote in Section 5.4, "An Example: Creating a Table of Powers," on page 203. Here is 
another way of writing that program: 

#include <stdio.h> 

#define N 7 

void prn_heading(void) 
{ 

} 

long power(int rn, int n) 
{ 

} 

printf("%ld", power(i, j))j 

} 

;nt main(vo;d) 
{ 

} 

p rn_headi ng 0 ; 
prn_tbl_of_powers(N)j 
return 0; 

5.7 T Function Invocation and Call-by-Value 207 

Because power 0 is called by prn_tb l_of _powers 0, the function definition for 
powe r 0 must come first. Similarly, the function definitions of the two functions called 
by mai nO must come before the function definition of rna; nO. (See exercise 10, on 

. page 238, for further discussion.) 
Although we favor the top-down style that puts rna; nO first, we ""ill occasionally use 

this alternate style as well. 

5.7 Function Invocation and Call-by-Value 

A program is made up of one or more function definitions, with one of these being 
mai nO. Program execution always begins with rna in O. When program control encoun
ters a function name, the function is called, or invoked. This means that program con
trol passes to that function. After the function does its work, program control is passed 
back to the calling environment, which then continues with its work. 

Functions are invoked by writing their name and an appropriate list of arguments 
within parentheses. Typically, these arguments match in number and type (or compati
ble type) the parameters in the parameter list in the function definition. The compiler 
enforces type compatibility when function prototypes are used. All arguments are 
passed "call-by~value." This means that each argument is evaluated, and its value is 
used locally in place of the corresponding formal parameter. Thus, if a variable is 
passed to a function, the stored value of that variable in the calling environment will 
not be changed. Here is an example that clearly illustrates the concept of "call-by
value": 

#include <stdio.h> 

int cornpute_sum(int n); 

int rnain(void) 
{ 

} 

int n 3, sum; 

pri ntf("%d\n", n); 
sum = compute_surn(n); 
printf("%d\n", n); 
printf("%d\n", sum); 
return 0; 

1* 3 is printed *1 

1* 3 is printed *1 
1ft 6 is printed *1 



208 Chapter 5" Functions 

int compute_sum(int n) 
{ 

} 

int sum 0; 

for ( ; n > 0; --n) 
sum += n; 

return sum; 

/* sum the integers from 1 to n */ 

/* stored value of n is changed */ 

Even though n is passed to compute_sumO and the value of n in the body of that func
tion is changed, the value of n in the calling environment remains unchanged. It is the 
value of n that is being passed, not n itself. 

The "call-by-value" mechanism is in contrast to that of "call-by-reference." In Section 
6.3, "Call-by-Reference," on page 252, we will explain how to accomplish the effect of 
"call-by-reference." This is a way of passing addresses (references) of variables to a 
function that then allows the body of the function to make changes to the values of 
variables in the calling environment. 

Function invocation means: 

1 Each expression in the argument list is evaluated. 

2 The value of the expression is converted, if necessary, to the type of the formal 
parameter, and that value is assigned to its corresponding formal parameter at 
the beginning of the body of the function. 

3 The body of the function is executed. 

4 If a retu rn statement is executed, then control is passed back to the calling envi
ronment. 

5 If the retu rn statement includes an expression, then the value of the expression 
is converted, if necessary, to the type given by the type specifier of the function, 
and that value is passed back to the calling environment, too. 

6 If the retu rn statement does not include an expression, then no useful value is 
returned to the calling environment. 

7 If no return statement is present, then control is passed back to the calling envi
ronment when the end of the body of the function is reached. No useful value is 
returned. 

8 All arguments are passed "call-by-value." 

5.8 ... Developing a Large Program 209 

Developing a Large Program 

Typical1y, a large program is ""Titten in a separate directory as a collection of .h and .c 
files, with each .c file containing one or more function definitions. Each .c file can be 
recompiled as needed, saving time for both the programmer and the machine. (See Sec
tion 11.17, "The Use of make," on page 532 for further discussion.) 

Let us suppose we are developing a large program called pgm. At the top of each of 
our .c files we put the line 

#include "pgm.h" 

When the preprocessor encounters this directive, it looks first in the current directory 
for the file pgm.h. If there is such a file, then it gets included. If not, then the preproces
sor looks in other system-dependent places for the file. If the file pgm.h cannot be 
found, then the preprocessor issues an error message and compilation stops. 

Our header file pgm.h may contain #i ncl udes, #defi nes, templates of enumeration 
types, templates of structure and union types, other programming constructs, and 
finally a list of function prototypes at the bottom. Thus, pgm.h contains program ele
ments that are appropriate for our program as a whole. Because the header file pgm.h 
occurs at the top of each .c file, it acts as the "glue" that binds our program together. 

main.e 

Create a .h file that is included in all the .c files 

pgm.h 

#includes 
#defines 

list of fet prototypes 

fet.e prn.e 

#include "pgm.h" #include "pgm.h" #include "pgm.h" 



210 Chapter 5 'f Functions 

Let us show a very simple example of how this works. We will write our program in a 
separate directory. It will consist of a .h file and three .c files. Typically, the name of the 
directory and the name of the program are the same. Here is our program: 

In file pgm.h 

#include <stdio.h> 
#include <stdlib.h> 

#define N 3 

void fctl(int k)j 
void fct2(void)j 
void wrt_info(char 

In file main.c 

#include "pgm.h" 

i nt mai n (vo; d) 
C 

} 

char anSj 
int i, n = N; 

pri ntf("%s" , 
"This program does not do very much.\n" 
"00 you want more information? H); 

scanf(" %c", &ans); 
if (ans == 'y' I I ans == 'Y') 

wrt_info("pgm"); 
for (i = 0; i < n; ++i) 

fctlCi) ; 
printfCHBye!\n"); 
return 0; 

In file fct.c 

#include "pgm.h" 

void fctl(int n) 
{ 

i nt i; 

pri ntf("Hello from fctlO\n") j 
for Ci 0; i < n; ++i) 

fct20 ; 
} 

5.8 'f Developing a Large Program 

void fct2Cvoid) 
{ 

printf("Hell0 from fct20\n"); 
} 

#include "pgm.h" 

void wrt_infoCchar '~pgm_name) { 
printf("Usage: %s\n\n", pgm_name); 
printfC"%s\n", 

"This program illustrates how one can write a program\n" 
"in more than one file. In this example, we have a\n" 
"single .h file that gets included at the top of our\n" 
"three .c files. Thus, the .h file acts as the \"glue\"\n" 
"that binds the program together.\n" 
If\n" 
"Note that the functions fctlO and fct20 when called\n" 
"only say \"hello.\" When writing a serious program, the\n" 
"programmer sometimes does this in a first working\n" 
"version of the code.\nH); } 

211 

that we used the type char ,~ (pointer to char). (We will discuss pointers in Sec-
6.2, "Pointers," on page 248.) We compile the program with the command 

-0 pgm main.e fet.e pm.e 

compiler makes the executable file pgm along with three .0 files that correspond to 
.c files. (In MS-DOS, they are .obj files.) The .0 files are called object files. (For further 

sion about these object files and how the compiler can use them, see Section 
1.13, "The C Compiler," on page 522.) 
For a more interesting example of a program written in separate files, see Section 7.6, 

An Example: The Game of Paper, Rock, Scissors," on page 348. Other examples are 
available via ftp and the Internet. If you are connected to the Internet, try the following 
command: 

ftp be.aw.eom 

you have made a connection, you can change directory (cd) to bc, and then cd to 
kelley_pohl, and then look around. A large program is much easier to investigate if you 

the source code. Then you can print out whatever is of interest and, with the help 
of a debugger, you can step through the program if you wish to do so. (See Section 
11.19, "Other Useful Tools," on page 539.) 



212 Chapter 5 V Functions 

What Constitutes a Large Program? 

For an individual, a large program might consist of just a few hundred lines of code. 
Which lines get counted'? Usually all the lines in any READ_ME ~iles (there ~hould be at 
least one), the .h files, the .c files, and the makefile. (See SectIOn 11.17, ~he Use of 
make," on page 532.) In UNIX, the word count utility wc can be used to do thIS: 

we READ_ME *.h *.e makefile 

In industry, programs are typically written by teams of progra.mmers, and a large pro-
gram might be considered anything over a hundred thousand hnes: . 

The style of writing a program in its own directory as a collectIOn of .h and :c flIes 
works well for any serious program, whether it is large or small, and all experIenced 
programmers follow this style. To become proficient in ~he style, t~e programmer ha~ 
to learn how to use make or some similar tool. (See SectIOn 11.17, The Use of make, 
on page 532.) 

5.9 Using Assertions 

The C system supplies the standard header file assert.h, which the programmer can 
include to obtain access to the assertO macro. (See Section 8.11, "The assertO 
Macro," on page 388, for further discussion.) Here, we want to show ~ow the progr~m
mer can use assertions to facilitate the programming process. ConsIder the followmg 
code: 

#include <assert.h> 
#include <stdio.h> 

int 
i nt 

feint a, int b); 
g(int c); 

int main(void) 
{ 

} 

int a, b, c; 

scanf("%d%d", &a, &b); 

c = f(a, b); 
assert(c> 0); 

5.10 V Scope Rules 213 

/* an assertion */ 

If the expression passed as an argument to assertO is false, the system will print a 
message, and the program will be aborted. In this example, we are supposing that fO 
embodies an algorithm that is supposed to generate a positive integer, which gets 
returned. Perhaps someone else wrote the code for the function definition of fO, and 
you just want to be sure that the value returned by f 0 is positive. In the function defi
nition for fO, it may be important that the arguments a and b satisfy certain condi
tions. Let us suppose that we expect a to have either 1 or -1 as its value and that we 
expect b to lie in the interval [7, 11]. We can use assertions to enforce these conditions. 

int feint a, int b) 
{ 

} 

assert(a -- 1 I I a-I); 
assert(b >= 7 && b <= 11); 

Assertions are easy to write, add robustness to the code, and help other readers of the 
code understand its intent. The use of assertions is considered good programming 
methodology. 

Scope Rules 

The basic rule of scoping is that identifiers are accessible only Within the block in which 
they are declared. They are unknown outside the boundaries of that block. This would 
be an easy rule to follow, except that programmers, for a variety of reasons, choose to 
use the same identifier in different declarations. We then have the question of which 
object the identifier refers to. Let us give a simple example of this state of affairs. 



214 Chapter 5 V Functions 

{ 
outer block a *1 i nt a = 2; 1* 

printf("%d\n", a); I" 2 is printed "I 
{ 

inner block a *1 i nt a = 5; I~' 
printf("%d\n", a) ; I~' 5 is printed ~'I 

} I~' back to the outer 
printf("%d\n", ++a); Ii' 3 is pri nted "'1 

} 

An equivalent piece of code would be 

{ 

} 

int a_outer = 2; 
printf("%d\n", a_outer); 
{ 

int a_inner 5; 
printf("%d\n", Linner); 

} 
printf("%d\n", ++a_outer); 

block '~I 

Each block introduces its own nomenclature. An outer block name is valid unless an 
inner block redefines it. If redefined, the outer block name is hidden, or masked, from 
the inner block. Inner blocks may be nested to arbitrary depths that are determined by 
system limitations. The following piece of code illustrates hidden variables in three 
nested blocks: 

{ 
int a == 1, b = 2, c = 3; ,', I printf("%3d%3d%3d\n", a, b, c) ; I~' 1 2 3 
{ 

int b = 4; 
float c 5.0; 

,~ I printf(I%3d%3d%5.1f\n", a, b, c) ; 1* 1 4 5.0 
a = b; 
{ 
int c; 
c = b; 
printf("%3d%3d%3d\n", a, b, c) ; I'~ 4 4 4 ,~ I 

} 
c); 1* 4 4 5.0 '1'1 printf("%3d%3d%5.lf\n", a, b, 

} 
I'" 4 2 3 '1'1 printf("%3d%3d%3d\n", a, b, c); 

} 

5.1 0 V Scope Rules 215 

i nt variable a is declared in the outer block and is never redeclared. Therefore, it is 
ble in both nested inner blocks. The variables band care redeclared in the first 
block, thus, hiding the outer block variables of the same name. Upon exiting this 
both band c are again available as the outer block variables, with their values 
from the outer block initialization. The innermost block again redeclares c, so 

both c (juner) and c (outer) are hidden by c (innermost). 

rallel and Nested Blocks 

blocks can come one after another, in which case the second block has no knowl
of the variables declared in the first block. Such blocks, residing at the same level, 

called parallel blocks. Functions are declared in parallel at the outermost level. The 
code illustrates two parallel blocks nested in an outer block: 

{ 
int a, b; 

{ I'~ inner block 1 i'l 
float b' , 

1* int a is known, but not int b "'1 
} 

{ I'" inner block 2 'i'/ 
float a; 

I'" int b is known, but not int a *1 
1* nothing in inner block 1 in known 'i'l 

} 

} 

Parallel and nested blocks can be combined in arbitrarily complicated schemes. The 
chief reason for blocks is to allow memory for variables to be allocated where needed. If 
memory is scarce, block exit will release the storage allocated locally to that block, 
allowing the memory to be used for some other purpose. Also, blocks associate names 
in their neighborhood of use, making the code more readable. Functions can be viewed 
as named blocks with parameters and return statements allowed. 



216 Chapter 5 'f Functions 

Using a Block for Debugging 

One common use for a block is for debugging purposes. Imagine we are in a section 
code where a variable, say v, is misbehaving. By inserting a block temporarily into 
code, we can use local variables that do not interfere v\lith the rest of the program. 

{ /* debugging starts here */ 
static int cnt 0; 
printf(""n'd, debug: cnt %d v = %d\n", ++cnt, v); 

} 

The variable cnt is local to the block It will not interfere with another variable of 
same name in an outer block. Because its storage class is stati c, it retains its old 
when the block is reentered. Here, it is being used to count the number of times 
block is executed. (Perhaps we are inside a for loop.) We are assuming that the 
v has been declared in an outer block and is therefore known in this block. We 
printing its value for debugging purposes. Later, after we have fixed our code, 
block becomes extraneous, and we remove it. 

5.11 Storage Classes 

Every variable and function in C has two attributes: type and storage class. The 
storage classes are automatic, external, register, and static, with corresponding 
words 

auto extern register static 

By far the most common storage class for variables is automatic. However, the 
grammer needs to know about all the storage classes. They all have important uses. 

The Storage Class auto 

Variables declared within function bodies are automatic by default. Thus, automatic 
the most common of the four storage classes. If a compound statement starts with 
able declarations, then these variables can be acted on within the scope of the 
compound statement. A compound statement with declarations is called a block to 
tinguish it from one that does not begin with declarations. 

5.11 'f Storage Classes 217 

Declarations of variables within blocks are implicitly of storage class automatic. The 
auto can be used to explicitly specify the storage class. An example is 

a, b, c; 
f; 

the storage class is automatic by default, the keyword auto is seldom used. 
When a block is entered, the system allocates memory for the automatic variables. 

that block, these variables are defined and are considered "local" to the block. 
the block is exited, the system releases the memory that was set aside for the 

tic variables. Thus, the values of these variables are lost. If the block is reen
the system once again allocates memory, but previous values are unknown. The 

of a function definition constitutes a block if it contains declarations. If it does, 
each invocation of the function sets up a new environment. 

e Storage Class extern 

method of transmitting information across blocks and functions is to use external 
s. When a variable is declared outside a function, storage is permanently 

"nF,u .... ~ to it, and its storage class is exte rn. A declaration for an external variable can 
just the same as a declaration for a variable that occurs inside a function or block 
a variable is considered to be global to all functions declared after it, and upon 

from the block or function, the external variable remains in existence. The follow
program illustrates these ideas: 

#include <stdio.h> 

int a = 1, b = 2, c 
int f(void); 

int main(void) 
{ 

3 ; 

printf("%3d\n", fO); 
printf("%3d%3d%3d\n", a, b, c); 
return 0; 

} 

int f(void) 
{ 

} 

i nt b, c; 

a = b c 4; 
return (a + b + c); 

/* global variables */ 
/* function prototype */ 

/* 12 is printed */ 
/* 4 2 3 is printed */ 

/* band c are local */ 
/* global b, c are masked */ 



21 8 Chapter 5 T Functions 

Note that we could have written 

extern int a = 1, b = 2, c = 3; /* global variables *1 

This use of extern will cause some traditional C compilers to co~plain. In ANSI C, " 
use is allowed but not required. Variables defined outside ~ functIOn hav~ extern~a,,,I,mnH' 

'f h k d te rn is not used. Such vanables cannot ave au 
age class, even I t e eywor ex . n be used but its use is special, 
or register storage class. The keyword stat: c ca " ' 
explained in Section 5.12, "Static External Vanables, on page 221: . h 

The keyword extern is used to tell the compiler to "look for ~t elsewher~~t ~r 
this file or in some other file." Let us rewrite the last program to Illustrate a lca 
of the keyword exte rn. 

In file filel.c 

#include <stdio.h> 

int a = 1, b = 2, c 3 ; /* external variables *1 
int f(void); 

int main(void) 
{ 

printf("%3d\n", f()); 
printf("%3d%3d%3d\n", a, b, c); 
return 0; 

} 

In file file2.c 

int f(void) 
{ , 

extern int 
i nt 

a; 1* look for it elsewhere *1 
b, c; 

a = b = c = 4; 
return (a + b + c); } 

h f xtern in the second file The two files can be compiled separately. T e use 0 e, , .. . 
the compiler that the variable a will be defined elsewhere, either ~1. thIS file or m 
other. The ability to compile files separately is important when wrltmg large tion 

External variables never disappear. Because they exist through~ut t~~hexecu 
of the program, they can be used to transmit values acros~ funct~o~s. e~t:~ai 
ever be hidden if the identifier is redefined. Another way of concelvmg of e h 
able~ is to think of them as being declared in a block that encompasses t e 
program. 

5.1 1 T Storage Classes 219 

Information can be passed into a function two ways: by use of external variables and 
use of the parameter mechanism. Although there are exceptions, the use of the 

ara.nlt~lt::j mechanism is the preferred method. It tends to improve the modularity of 
code, and it reduces the possibility of undesirable side effects. 

One form of side effect occurs when a function changes a global variable from within 
body rather than through its parameter list. Such a construction is error prone. Cor

practice is to effect changes to global variables through the parameter and return 
lUC,Lu,",u,sms. Adhering to this practice improves modularity and readability, and 
ut:~,uw.'J~ changes are localized, programs are typically easier to write and maintain. 

All functions have external storage class. This means that we can use the keyword 
ern in function definitions and in function prototypes. For example, 

extern double sin(double); 

a function prototype for the si nO function; for its function definition we can write 

extern double 
{ 

sin(double x) 

Storage Class reg; ster 

storage class regi ster tells the compiler that the associated variables should be 
in high-speed memory registers, provided it is physically and semantically possi

to do so. Because resource limitations and semantic constraints sometimes make 
impossible, this storage class defaults to automatic whenever the compiler cannot 

te an appropriate physical register. Typically, the compiler has only a few such 
tel'S available. Many of these are required for system use and cannot be allocated 

BaSically, the use of storage class reg; ster is an attempt to improve execution 
. When speed is a concern, the programmer may choose a few variables that are 
frequently accessed and declare them to be of storage class reg; ster. Common 

,uuu ... "u .. tes for such treatment include loop variables and function parameters. Here is 
example: 

{ 
register i nt i ; 

for (i = 0; i < LIMIT; ++i) { 

} 
} I'if block exit wi 11 free the register ,~ I 



220 Chapter 5 l' Functions 

The declaration 

regi ster i j is equivalentto regi ster i nt i; 

If a storage class is specified in a declaration and the type is absent, then the type 

i nt by default. . 
Note that in our example the register variable i was declared as :lose t~ Its place of 

use as possible. This is to allow maximum availability of the phys:cal ~egisters, 
them only when needed. Always remember that a register declaratIon IS taken only as 

advice to the compiler. 

The Storage Class static 

Static declarations have two important and distinct uses. The more elementaryr~~e ~s to 
allow a local variable to retain its previous value when the block is reentered. lhi~ IS 
contrast to ordinary automatic variables, which lose their value up~n blo.ck exit and 
must be reinitialized. The second and more subtle use is in connectIOn WIth external .. 
declarations. We vvill discuss this in the next section. . 

As an example of the value-retention use of stati c, w~ will.write the outlme of 
function that behaves differently depending on how many times It has been called. 

void f(void) 
{ 

static int cnt = 0; 

++cnt; 
0) 

something ,', / /1' do 
if (ent % 2 

else 
/1' do something different ,', / 

} 

The first time the function is invoked, the variable ent is initialized to ~ero: ~n 
tion exit, the value of cnt is preserved in memory. Whenever the functIOn IS mvoke 
again, ent is not reinitialized. Instead, it retains its previ?u~ val~e :rom the last 
the function was called. The declaration of ent as a statl e 1 nt mSlde of fq keeps 
private to f (). If it were declared outside of the function, then other functIOns 

access it, too. 

5.12 l' Static External Variables 221 

Static External Variables 

The second and more subtle use of stati c is in connection ""ith external declarations. 
With external constructs it provides a "privacy" mechanism that is very important for 

_~r'''''''rY\ modularity. By privacy, we mean visibility or scope restrictions on otherwise 
ssible variables or functions. 

At first glance, static external variables seem unnecessary. External variables already 
retain their values across block and function exit. The difference is that static external 
UU,,~",~s are scope-restricted external variables. The scope is the remainder of the 

source file in which they are declared. Thus, they are unavailable to functions defined 
earlier in the file or to functions defined in other files, even if these functions attempt 
to use the extern storage class keyword. 

void f(void) 
{ 

/* v is not available here */ 
} 

static int v' , /* static external variable */ 

void g(void) 
{ 

} 
/* v can be used here */ 

Let us use this facility to provide a variable that is global to a family of functions but, 
at the same time, is private to the file. We will write two pseudo random-number gener
ators, both of which use the same seed. (The algorithm is based on linear congruential 
methods; see The Art of Computer Programming, 2d ed., vol. 2, Seminumerical Algo
rithms, by Donald Ervin Knuth (Reading, MA: Addison-Wesley, 1981.) 

/* A family of pseudo random number generators. */ 

#define 
#define 
#define 
#define 
#define 

INITIAL_SEED 
MULTIPLIER 
INCREMENT 
MODULUS 
FLOATING_MODULUS 

17 
25173 
13849 
65536 
65536.0 

static unsigned seed = INITIAL_SEED; /* external, but */ 
/* private to this file */ 



222 Chapter 5 '" Functions 

unsigned random(void) 
{ seed (MULTIPLIER ,', seed + INCREMENT) % MODULUS; 

return seed; 
} 

double probability(void) 
{ seed (MU L TI PLIER ,', seed + INCREMENT) % MODULUS; 

return (seed I FLOATING_MODULUS); 
} 

The function randomO produces an apparently random sequence of integer values 
between 0 and MODULUS. The function probabi 1 i tyO produces an apparently random 

sequence of floating values between 0 and l. 
Notice that a call to randomO or probabi 1 it yO produces a new value of the vari-

able seed that depends on its old value. Because seed is a static external variable, it is 
private to this file, and its value is preserved between function calls. We can now create 
functions in other files that invoke these random-number generators without worrying 

about side effects. 
A last use of stati c is as a storage class specifier for function definitions and proto-

types. This use causes the scope of the function to be restricted. Static functions are 
visible only within the file in which they are defined. Unlike ordinary functions, which 
can be accessed from other files, a stati c function is available throughout its own file, 
but no other. Again, this facility is useful in developing private modules of function def-

initions. 

static int g(void); I'~ function prototype '~I 

void fCint a) I'" function definition #1 

{ 
I~' gO is available here, ~, I 

I~' but not in other files ;'1 

} 

static int g(void) r' function definition #1 

{ 

} 

5.13 '" Default Initialization 22 3 

5.13 Default Initialization 

In C, both external variables and static variables that ar ... .. . 
programmer are initialized to zero by the system Th' e .no~ e:Phcltl

y ImtIa~lZed by the 
ers, structures, and unions. For arrays and strings' thi

lS 
me u es arrays, strmgs, point

tialized to zero; for structures and unions it m ' t~ means that each element is ini
zero. In contrast to this, automatic and re~ster e:r~abl~~ ~s~a~ember is ~~it.ial.ized to 
the system. This means they start with "garba " I Y are not mltlahzed by 
initialize automatic variables to zero this fe!~ va ~es. ~though so~e C systems do 
makes the code nonportable. ' ure s ou not be relIed on; doing so 

Recursion 

A function is said to be recursive if it c II 't If' . 
functions can be used recursively In its :i~ 1 se ,eIther dl.rectly or indirectly. In C, all 
forward. Try the following progra~: plest form, the Idea of recursion is straight-

#include <stdio.h> 

int main(void) 
{ 

} 

printf(" The universe is never ending! 
mainO j 
return 0; 

H) ; 

~~: ~t:~~:~er example of a recursive function. It computes the sum of the first n pos-

i nt sum(i nt n) 
{ 

} 

if (n <= 1) 
return nj 

else 
return Cn + sumCn 1)); 



224 Chapter 5 'f Functions 

The recursive function sumO is analyzed as illustrated in the following table. The base 
case is considered, then working out from the base case, the other cases are considered. 

Function call Value returned 

sum(1) 1 

sum(2) 2 + sum(1) or 2 + 1 

sum(3) 3 + sum(2) or 3 + 2 + 1 

sum(4) 4 + sumO) or 4 + 3 + 2 + 1 

Simple recursive routines follow a standard pattern. Typically, there is a base case (or 
cases) that is tested for upon entry to the function. Then there is a general recursive 
case in which one of the variables, often an integer, is passed as an argument in such a 
way as to ultimately lead to the base case. In sum 0 I the variable n was reduced by 1 
each time until the base case with n equal to 1 was reached. 

Let us write a few more recursive functions to practice this technique. For a nonnega
tive integer n, the factorial of n, written n !, is defined by 

o 1= 1, n != n(n - 1) ... 3 . 2 . 1 for n > 0 

or eqUivalently, 

o != 1, n 1= n((n 1)!) for n > 0 

Thus, for example, 51 = 5 . 4 ' 3 . 2 . 1 120. Using the recursive definition of facto-
rial, it is easy to write a recursive version of the factorial function. . 

int factorial (int n) 
{ 

if (n <= 1) 
return 1; 

else 

/* recursive version */ 

return (n * factorial(n - 1»; 
} 

This code is correct and will work properly within the limits of integer precision avail
able on a given system. However, because the numbers n I grow large very fast, the 
function call factori a 1 (n) yields a valid result for only a few values of n. On our sys
tem the function call factor; al (12) returns a correct value, but if the argument to 
function is greater than 12, an incorrect value is returned. This type of programming. 
error is common. Functions that are logically correct can return incorrect values if the 

5.14 'f Recursion 225 

logical operations in the body of the function are beyond the integer preciSion availabl 
ro~~~ e 

As in su~O, when an in~eger n is passed to factori al 0, the recursion activates n 
nested caples of t~e functIOn before returning level by level to the original call. This 
means that n functIOn calls are used for tms computation. Most simple recursi e f _ 
. b 'I ' v unc nons can e eaSI y rewntten as iterative functions. 

int factorial(int n) 
{ 

} 

int product 1-, 

for ( ; n > 1; --n) 
product "'= n; 

return product; 

/* iterative version */ 

~or a given input,value, both f,actorial ~unctions return the same value over the positive 
mteger~, but the IteratIve verSIOn reqUIres only one function call regardless of the value 
passed m. 

~he next ex:uuple illustrates a recursive function that manipulates characters. It can 
easily be r.ewrltten as an equivalent iterative function. We leave this as an exercise, The 
?rog~am fIrst, prompts the llser to type in a line, Then by means of a recursive function 
It wrItes the hne backwards. ' 

/* Write a line backwards. */ 

#include <stdio.h> 

void wrt_it(void); 

int main(void) 
{ 

} 

printf("Input a line: 
wrt_itO; 
printf("\n\n"); 
return 0; 

void wrt_it(void) 
{ 

} 

int C' , 

if ((c ~ getchar() 
wrt_itO; 

putchar(c); 

") ; 

'\n') 



226 Chapter 5 'V Functions 

f si xpence when prompted, then the fol
If the user types in the line si ng a song a 
lowing appears on the screen: 

Input a line: sing a.song of sixpence 
ecnepxis fa gnos a gnls 

• Dissection of the wrLbkwrds Program 

III printf("Input a line: "); 
wrt_itO; 

.' h vvrites a line and terminates it by 
First, a prompt to the user IS prmted. T e\use~hen the recursive function wrt_ itO 
a carriage return, which is the character n. ' 

invoked. 

III void wrt_it(void) 
{ 

int c; 

This function has no test for EOF; thus, c could be of type char. 

III if ((c = getchar()) != '\n') 
wrt_itO; 

. . , . h wrt itO is invoked again, which 
If the character read 111 IS not, a newlme, t en E h call has its own local storage for 
another character to be read 111, an.d so f~rth. a~ of the function wrt_ itO, and 
variable c. Each c is local to a ~artlcu~ar mvocatlon The function calls are stacked 
c stores one of the characters 111 the 111put stream. 
the newline character is read. 

III putchar(c); 
, . thing get vvritten. Each invocation 

Only after the newline character IS rea,d ~oes a.~yvariable c. First the newline 
wrt_ it () now prints the value stored mlts I,OC d n until the first charac 
is printed, then the character just before It, an so a , 
printed. Thus, the input line is reversed. 

5.14 'V Recursion 227 

Efficiency Considerations 

Many algorithms have both iterative and recursive formulations. Typically, recursion is 
elegant and requires fewer variables to make the same calculation. Recursion 
care of its bookkeeping by stacking arguments and variables for each invocation. 

stacking of arguments, while invisible to the user, is still costly in time and space. 
some machines a simple recursive call with one integer argument can require eight 

2-bit words on the stack. 
Let us discuss efficiency with respect to the calculation of the Fibonacci sequence, a 

particularly egregious example. This sequence is defined recursively by 

fl = 1, for i = 1, 2, ... 

for fo and fb every element in the sequence is the sum of the previous two ele
The sequence begins 0, 1, 1, 2, 3, 5, .... Here is a function that computes 

onacci numbers recursively: 

int fibonacci (int n) 
{ 

} 

if (n <= 1) 
return n; 

else 
return (fibonacci(n 1) + fibonacc;(n - 2)); 

the following table shows, a large number of function calls is required to compute 
nth Fibonacci number for even moderate values of n: 

Value of Number of function calls required to 
Value of n fibonacci(n) recursively compute fibonacci(n) 

0 0 1 

1 1 1 

2 1 3 

23 28657 92735 

24 46368 150049 

42 267914296 866988873 

43 433494437 1402817465 



228 Chapter 5 T Functions 

Although it is seductive to use recursion, one must be careful about run-time limita
tions and inefficiencies. It is sometimes necessary to recode a recursion as an equiva
lent iteration. 

Some programmers feel that because the use of recursion is ineffiCient, it should not 
be used. The inefficiencies, however, are often of little consequence-as in the 
of the quicksort algorithm given in Section 8.5, "An Example: Sorting with qso rt () ," 
page 372. For many applications, recursive code is easier to write, understand, 
maintain. These reasons often prescribe its use. 

5.15 An Example: The Towers of Hanoi 

In the game called Towers of Hanoi, there are three towers labeled A, B, and C. The 
game starts with n disks on tower A. For simplicity, suppose n is 3. The disks are num
bered from 1 to 3, and without loss of generality we may assume that the diameter of 
each disk is the same as its number. That is, disk 1 has diameter 1 (in some unit of mea
sure), disk 2 has diameter 2, and disk 3 has diameter 3. All three disks start on tower A 
in the order 1, 2, 3. The object of the game is to move all the disks on tower A to 
C. Only one disk may be moved at a time. Any of the towers A, B, or C may be used for 
the intermediate placement of disks. After each move, the disks on each of the towers 
must be in order. That is, at no time can a larger disk be placed on a smaller disk. 

Towers of Hanoi 

B c 

5.15 T An Example: The Towers of Hanoi 229 

We will write a program that uses recursion to produce a list of moves that shows 
how to accomplish the task of transferring the n disks from tower A to tower C. Here is 
the program: 

#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 

extern i nt cntj /* count of the number of moves */ 

int get_n_from_user(void); 
void move(int n, char a, char b, char c); 

#include "hanoi.h" 

i nt cnt = 0; /* count of the number of moves */ 

i nt mai n (voi d) 
{ 

int n' , /* number of disks */ 

} 

n get_n_from_user(); 
assert(n > 0); 
I;' 
// Move n disks from tower A to tower C, 
// using tower B as an intermediate tower. 
;, / 
move (n , 'A', 'B', ' C ' ) ; /,. f H recurSlve ct */ 
return 0; 



230 Chapter 5... Functions 

In file get.c 

#include "hanoi.h" 

} 

int n' , 

printf("%s", 
"---\n" 
"TOWERS OF HANOI:\n" 
"\n" 
"There are three towers: A, B, and C. \n II 
U\n° 
"The disks on tower A 
"disk can be moved at 
"must be preserved at 
"or C can be used for 
n\nlt 

must be moved to tower c. Only one\n" 
a time, and the order on each tower\n" 
each step. Any of the towers A, B,\n" 
intermediate placement of a disk.\n" 

"The problem starts with n disks on Tower A.\n" 
fI\ntl 
"Input n: "); 

if (scanf("%d", &n) ! = 1 II n < 1) { 
printf("\nERROR: Positive integer not found 
exit(1); 

} 
printf("\n"); 
return n; 

bye!\n\n"); 

In file move.c 

#include "hanoi.h" 

void move(int n, char a, char b, char c) 
{ 

if (n == 1) { 
++cnt; 
printf("%5d: %s%d%s%c%s%c.\n", cnt, 

} 
"Move disk" 1," from tower" a, " to towe r ", c); 

} 

else { 
move(n 1, a, c, b) ; 

} 

++cnt; 
pri ntf("%5d: %s%d%s%c%s%c. \n", cnt, 

"Move disk TO, n, " from tower" a," to tower ,. 
move(n 1, b, a, c); 

c) ; 

5.15 v An Example: The Towers of Hanoi 231 

In our header file, we declare variable cnt to be of storage class extern, which 
means "look for it here or in some other file," and we provide two function prototypes 
at the bottom of the file. In main.e, just above the function definition for main 0, we 
declare the external variable cnt, and inside of ma i nO, we first get n from the user and 
then call the recursive function 

move(n, 'A', 'B', 'e') 

We read this as "move n disks from tower A to tower C, using tower B as an intermedi
ate tower." Alternatively, we can think of this as "move n disks from tower A through 
tower B to tower c." We want to explain in detail how the function moveO works, but 
before we do so, here is the output of the program if we enter 3 when prompted: 

TOWERS OF HANOI: 

There are three towers: A, B, and e. 

The disks on tower A must be moved to tower e. Only one 
disk can be moved at a time, and the order on each tower 
must be preserved at each step. Any of the towers A, B, 
or C can be used for intermediate placement of a disk. 

The problem starts with n disks on Tower A. 

Input n: 3 

1: Move disk 1 from tower A to tower C. 
2 : Move disk 2 from tower A to tower B. 
3 : Move disk 1 from tower C to tower B. 
4: Move disk 3 from tower A to tower C. 
5 : Move disk 1 from tower B to tower A. 
6: Move disk 2 from tower B to tower C. 
7: Move disk 1 from tower A to tower C. 



232 Chapter 5 'I/f Functions 

• • Dissection of the recursive function moveO 

• void move(int n, char a, char b, char c) 

This is the header to the function definition for move 0 . In main 0 , where we first call 
move 0, the arguments passed to the function are n, 'A', 'B', and 'C'. Thus, in this 
first call, the parameters a, b, and c in the function definition have the values 'A', 'B', 
and 'C', respectively. Note, however, that when move 0 calls itself within the body of 
move 0, this association need not hold. 

• if (n == 1) { 
++cnt; 
printf("%5d: %s%d%s%c%s%c.\n", cnt, 

"Move disk It, 1, II from tower If, a, " to tower" c); 
} 

If the number of disks on tower a is I, then we increment the counter and then move 
the disk from tower a to tower c. That is, we print the instructions to do so. 

• else { 
move(n - 1, a, c, b); 
++cnt; 
printf(II%5d: %s%d%s%c%s%c.\n", cnt, 

"Move disk II, n, II from tower II a, " to tower" c); 
move(n 1, b, a, c); 

} 

When there are n disks on tower a with n greater than 1, we first move n 
from tower a to tower b, using tower c as an intermediate tower. Second, we 
the counter and move the last disk on tower a, disk n, from tower a to tower c. That 
we print the instructions for doing this. Finally, we move the n - 1 disks on tower b 
tower c, using tower a as an intermediate tower. 

The code for the moveO function is elementary, but strikingly effective. However, 
actually see that the output provides valid instructions for solving the game, one 
to draw pictures that illustrate each move. This is, indeed, tedious to do. Later, after 
have learned about the use of arrays, we can rewrite our program so that the 
illustrates the disks on each tower at each step. Here is the output from the pro 
when n has the value 3: 

'I/f Summary 233 

Start: 1 2 3 
1: move di sk 1: 2 3 1 
2 : move disk 2: 3 2 1 
3 : move disk 1: 3 1 2 
4: move disk 3 : 1 2 3 
5 : move disk 1: 1 2 3 
6: move disk 2: 1 2 3 
7: move disk 1: 1 2 3 

To save space, the disks on each tower are written from left to right instead of verti
cally. From this output, we can tell at a glance that a larger disk is never placed on a 
smaller one. 

According to legend, each day one of the monks in the monastery that attends the 
three towers of Hanoi moves one of the disks. At the beginning of time, tower A started 
with 64 disks. V\'hen the last disk gets moved, according to legend, the world will come 
to an end. 

1 Functions are the most general structuring concept in C. They should be used to 
implement "top-down" problem solving-namely, breaking up a problem into 
smaller and smaller supproblems until each piece is readily expressed in code. 

2 A retu rn statement terminates the execution of a function and passes control back 
to the calling environment. If the return statement contains an expression, then 
the value of the expression is passed back to the calling environment as well. 

3 A function prototype tells the compiler the number and type of arguments that are 
to be passed to the function. The general form of a function prototype is 

type function_name ( parameter type list) ; 

The parameter type list is typically a comma-separated list of types, with optional 
identifiers. If a function takes no arguments, then the keyword vo; d is used. If the 
function returns no value, then the function type is voi d. 

Arguments to functions are passed by value. They must be type compatible with 
the corresponding parameter types given by the function definition or the function 
prototype. 



234 Chapter 5 V Functions 

5 The storage class of a function is always extern, and its type specifier is i nt unless 
otherwise explicitly declared. The retu rn statement must return a value compati
ble vvith the function type. 

6 The principal storage class is automatic. Automatic variables appear and disappear 
with block entry and exit. They can be hidden when an inner block redec1ares an 
outer block identifier. 

7 Scope rules are the visibility constraints associated with identifiers. For example, if 
in a file we have 

static void f(void) 
{ 

} 

static int a, b, c; 

then fO will be known throughout this file but in no other, and a, b, and c will be 
known only in this file and only below the place where they are declared. 

8 The external storage class is the default class for all functions and all variables 
declared outside of functions. These identifiers may be used throughout the pro
gram. Such identifiers can be hidden by redec1aration, but their values cannot be 
destroyed. 

9 The keyword extern is used to tell the compiler to "look for it elsewhere, either in 
this file or in some other file." 

10 The storage class reg; ster can be used to try to improve execution speed. It is 
semantically equivalent to automatic. 

11 The storage class stat; c is used to preserve exit values of variables. It is also used 
to restrict the scope of external identifiers. This latter use enhances modularization 
and program security by providing a form of privacy to functions and variables. 

12 External and static variables that are not explicitly initialized by the programmer 
are initialized to zero by the system. 

13 A function is said to be recursive if it calls itself, either directly or indirectly. In C, 
all functions can be used recursively. 

V Exercises 235 

1 Write a function double power(double x, int n) thatvvill compute xn, the nth 
power of x. Check to see that it computes 3.5 7 correctly. (The answer is 
6433.9296875.) 

2 Use the library function sqrtO to write a function that returns the fourth root of 
its i nt argument k. The value returned should be a double. Use your function to 
make a table of values. 

3 What gets printed? Explain. 

#include <stdio.h> 

i nt z; 

voi d f(i nt x) 
{ 

x 2 • , 
Z += x; 

} 

i nt rnai nevoid) 
{ 

} 

z = 5; 
fez); 
printf("z %d\n", z); 
return 0; 

In traditional C, the general form of a function definition is 

type function_name( parameter list) 
declarations of the parameters 
{declarations statements} 

See Section 5.1, "Function Definition," on page 198, for an example. Rewrite the 
function definition for fO in the previous exercise in this style. Check to see that 
your compiler will accept it. Does the program produce the same output? (It 
should.) 



236 Chapter 5 T Functions 

5 In this exercise, we want to experiment with function declarations. We will use the 
function powO from the mathematics library, but instead of including math.h, we 
will supply our own function declaration. Begin by executing the following program: 

#include <stdio.h> 

double pow(double, double); 

int main(void) 
{ 

printf(" pow(2.0, 3.0) = %g\n", pow(2.0. 3.0)); 
return 0; 

} 

Next, change the pri ntfO statement to 

printf("pow(2, 3) = %g\n", pow(2, 3)); 

and run the program again. Even though you have passed i nts to powO instead 
doubl es, do you get the correct answer? You should, because the compiler.' 
ing that double arguments are required, is able to coerce the values supplIed 
the right form. Next, replace the function prototype by 

double powOj /* traditional style */ 

What happens now? Finally, remove the function declaration completely. .? 

your program cannot be expected to run correctly, it should compile. Does It. It 
important to remember that even though the C system provides obje~t code 
functions in libraries, it is the responsibility of the programmer to proVIde 
function prototypes. 

6 In this exercise we want to experiment with an assertion. Execute the following 
gram so that you understand its effects. Note: This is not a typical use of 

#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

int main(void) 
{ 

} 

int a, b, cnt = 0, i; 

srand(time(NULL)); 
for (i = 0; i < 1000; ++i) { 

a = rand() % 3 + 1; 

} 

b = rand() % 30 + 1; 
if (b - a <= 1) 
continue; 

assert(b - a > 2); 
pri ntf("%3d\n", ++cnt); 

return 0; 

T Exercises 

/* from 1 to 3 */ 
/* from 1 to 30 */ 

237 

What values of a and b cause the assertion to fail? On average, how many times do 
you expect to go through the loopC? 

Use the function probabi 1 i tyO that we wrote in Section 5.12, "Static External 
Variables," on page 222, to create two files, one with 100 random numbers and the 
other with 1,000 random numbers. All the numbers will lie in the range from 0 to 1. 
If the numbers are truly randomly distributed, then we expect the average to 
approximate 0.5 as we look at larger and larger sets of them. Compute the average 
of the numbers in each of your files. Typically, the average of the numbers in the 
larger file will be closer to 0.5 than the average of the numbers in the smaller file. Is 
it? 

A polynomial of degree 2 in x is given by 

ax2 + bx + c 

Write the code for the function 

double f(double a, double b, double c, double x) 
{ 

that will compute the value of an arbitrary polynomial of degree 2. Use the identity 

(ax + b)x + c = ax2 + bx + c 

to minimize multiplications. Use your function to create a file of points that could 
be used to plot the polynomial x2 - 3x + 2 on the interval [0, 3]. The variable x 
should go from 0 to 3 in steps of 0.1. By examining your file, can you tell where the 
roots of the polynomial are? 



238 Chapter 5 'f' Functions 

9 Experiment with the tbLof_powers program presented in Section 5.4, "An Example: 
Creating a Table of Powers," on page 203. How many rows of the table can you com
pute before the powers that are printed become incorrect? Where appropriate, try 
using the type double. Can you get larger numbers this way? 

10 In the tbLof_powers program in Section "An Example: Creating a Table of Pow-
ers," on page 203, we wrote the function definition for ma; nO first. What 
if you remove the function prototypes and put ma; n 0 last? Your compiler should 
be happy with this new arrangement. Is it? What happens if you put main 0 first 
but do not include any function prototypes? Can you guess what your compiler 
complain about? One of our C compilers issues warnings but produces an execut 
able file, whereas our C++ compiler issues errors and refuses to compile the 
What happens on your system? 

11 Write a function; nt ; s_pri me Ci nt n) that returns 1 if n is a prime and 0 
wise. Hint: If k and n are positive integers, then k divides n if and only if n % 
value zero. 

12 Write a function, say i s_ fi b_p ri me 0, that checks whether the nth Fibonacci 
ber is prime. Your function should call two other functions: the iterative version 
fi bonacci 0 that was given in Section 4.l3, "An Example: Fibonacci Numbers," 
page 175, and the function i s_pri me 0 that you wrote in the previous exercise. 
n between 3 and 10, it is true that the nth Fibonacci number is prime if and only if 
is prime. Use your function i s_ fi b_pri me 0 to investigate what happens when n is 
bigger than 10. 

13 A famous conjecture, called the Goldbach conjecture, says that every even integer 
greater than 2 has the property that it is the sum of two prime numbers. Comtmters 
have been used extensively to test this conjecture. No counterexample has 
been found. Write a program that will prove that the conjecture is true for all 
even integers between the symbolic constants START and FINISH. For example, 
you write 

#define 
#define 

START 
FINISH 

700 
1100 

T Exercises 

then the output of your program might look like this: 

Every even number greater than 2 is the sum of two primes: 

700 17 + 683 
702 11 + 691 
704 3 + 701 

1098 5 + 1093 
1100 = 3 + 1097 

Hint: Use the function i s_pri meO that you wrote in exercise ll, on page 238. 

Write a function that finds all factors of any particular number. For example, 

9 = 3 x 3, 17 = 17 (prime), 52 = 2 x 2 x 13 

239 

Factoring small numbers is easy, and you should have no trouble writing a program 
to do this. Note, however, that factoring in general is very difficult. If an integer 
consists of a few hundred digits, then it may be impossible to factor it, even "',lith a 
very large computer. 

This exercise gives you practice on understanding the scope of identifiers. What 
gets printed by the following code? First, hand simulate the code and record your 
answers. Then write a program to check your answers. 

i nt a = 1, b = 2, c 3; 

a += b += ++c; 
printf("%5d%5d%5d\n", a, b, c); 
{ 

float 
i nt 

b = 4.0; 
c' , 

a += C = 5 * b; 
printf(,,%5d%5.1f%5d\n", a, b, c); 

} 
printfC"%5d%5d%5d\n", a, b, c); 

Rewrite "The universe is never ending'" recursion so that it terminates after 17 
calls. Your program should consist of a single mai n 0 function that calls itself 
recursively. Hint: Use a static variable as a counter. 



240 Chapter 5 "( Functions 

17 The following function produces incorrect values on some systems: 

int factorial(int n) 
{ 

if (n == 0 I I n == 1) 
return 1; 

else 

r wrong */ 

return (n * factorial(--n)); 
} 

Test the function on your system. Explain why the values produced by the function 
are system-dependent. 

18 The greatest common divisor of two positive integers is the largest integer that is a 
divisor of both of them. For example, 3 is the greatest common divisor of 6 and 15, 
and 1 is the greatest common divisor of 15 and 22. Here is a recursive function that 
computes the greatest common divisor of two positive integers: 

int gcd(int p, int q) 
{ 

} 

i nt r; 

if ((r = p % q) == 0) 
return q; 

else 
return gcd(q, r); 

First, write a program to test the function. Then write and test an equivalent itera
tive function. 

19 In some systems the keyword extern is used in function declarations and proto
types in the standard header files. This was a cornmon practice in traditional C sys
tems, but it is usually not done in ANSI C systems. Is this done in your system? 
Hint; Look, for example, in math.h. 

"( Exercises 241 

In the program that follows, we have purposely declared some external variables at 
the bottom of the file. What gets printed? 

#include <stdio.h> 

int main(void) 
{ 

extern int a, b, c; /* look for them elsewhere */ 

} 

int 

printf(1%3d%3d%3d\n", a, b, c); 
return 0; 

a 1, b = 2, c = 3; 

Now change the last line of the program to 

static int a = 1, b 2, c = 3; 

The variables at the bottom of the file are now static external, so they should not be 
available in main O. Because the external variables referred to in ma in 0 are not 
available, your compiler should complain. Does it? (We find that most compilers get 
confused.) 

When declaring a variable in traditional C, it is permissible to write the storage class 
specifier and the type specifier in any order. For example, we can write 

register int i ; or int register i ; 

In ANSI C, the storage class specifier is supposed to come first. Nonetheless, most 
ANSI C compilers will accept either order. (If they did not, then some traditional 
code would not compile.) Check to see if the reverse order works on your compiler. 

Describe the behavior of the following program: 

#include <stdio.h> 
#include <stdlib.h> 

#define 
#define 

FOREVER 
STOP 

1 
17 



242 Chapter 5" Functions 

; nt rna; n(vo; d) 
{ 

} 

void f(void); 
while (FOREVER) 

fO; 
return 0; 

void f(void) 
{ 

} 

static int cnt 0; 
printf("cnt = %d\n", ++cnt); 
if (cnt STOP) 

exit(0); 

23 Let no be a given positive integer. For i = 0, 1, 2, ... define 

ni + 1 = ni / 2 if ni is even; 3 n + 1 if ni is odd; 

The sequence stops whenever ni has the value 1. Numbers that are g~nerated this 
way are called "hailstones." Write a program that generates some hailstones. The 

function 

void hailstones(int n) 
{ 

should be used to compute and print the sequence generated by n. The output of 
your program might look as follows: 

Hailstones generated by 77: 

77 232 116 58 29 88 

44 22 11 34 17 52 

26 13 40 20 10 5 

16 8 4 2 1 

Number of hailstones generated: 23 

You will find that all the sequences you generate are finite. Whether this is true in 
general is still an open question. 

,. Exercises 243 

Write a coin-tossing program that uses the random-number generator rand 0 in 
the standard library to simulate the toss. Use the expression rand 0 % 2 to gener
ate the i nt value 0 or L Let "heads" be represented by 1 and "tails" by O. Run the 
program for 1,000, 10,000, and 100,000 tosses, and keep track of the longest 
sequence of heads and the longest sequence of alternating heads and tails-that is, 
101010 .... If you know some probability theory, see if this simulation is in line with 
theory. Caution: In some traditional C systems, the function rand () is notoriously 
bad. All you will get is one long sequence of alternating heads and tails. If your 
ANSI C system has borrowed that particular function, then this exercise, although 
informative, \",ill not be too interesting. 

If a random-number generator other than rand 0 is available to you, use it to redo 
the previous exercise. Are the results of your experiments substantially different? 

Simulations that involve the repeated use of a random-number generator to repro
duce a probabilistic event are called Monte Carlo Simulations, so called because 
Monte Carlo has one of the world's most famous gaming casinos. Let us use this 
technique to find the break-even point in a variation of the birthday game. (See 
exercise 36, on page 324 in Chapter 6, "Arrays, Pointers, and Strings.") In a roomful 
of people, at least two of them can be expected to have birthdays on the same day 
of the year. A common party game is to see if this is true. We wish to find the prob
ability that any two people in a room with n people will have been born in the same 
month. (To do the analYSis for the same day rather than the same month requires 
the use of an array; otherwise, the ideas are the same.) It is clear that the probability 
is ° if there is only one person in the room. For two people the probability is 1/12. 
(We are assuming that it is equally likely for a person to be born in any month. In 
reality this is only an approximation.) Simulate the probability by running, say, 
1,000 trials with 2, 3, ... , 20 people in the room. (Is 20 too many?) Use 12 variables 
to count the number of people in the room that were born in each of the 12 months. 
You can use the expression 

randO % 12 + 1 

to compute the month of birth for each person. (Use a better random-number gen
erator, such as 1 rand48 0, if one is available to you.) This expression generates an 
integer that is randomly distributed in the range from 1 to 12. When any variable 
gets to 2, that trial is true, meaning that at least two people in the room were born 
in the same month. The number of true trials divided by 1,000 is the computed sim
ulated probability. What value of n yields the break-even point'? That is, find the 
least n for which the probability is 1/2 or more. 



• 

244 Chapter 5 v Functions 

. How many moves are required to 
27 Experiment with the Towers of HanOI program.? If . 64 and one disk is moved 

h t 'th n disks on tower A n IS , solve a game t at star s WI . '.. . move all the disks to tower C? If 
each day, how many billions of years w1.ll ~t ta,ke to ve one disk each second, 
the monks attending the towers of HanOI manage to m~ 
will they complete all moves before the end of the world. 

Chapter 6 

Arrays, Pointers, and Strings 

An array is a data type that uses subscripted variables and makes possible the repre
sentation of a large number of homogeneous values. In C, arrays and pointers are 

sely related concepts. An array name by itself is treated as a constant pointer, and 
pointers, like arrays, can be subscripted. A distinguishing characteristic of C is its 
sophisticated use of pointers and pointer arithmetic. Some languages provide "caU-by

so that variables in the calling environment can be changed. In C, pointers 
used as parameters in function definitions to obtain the effect of "call-by-refer

" Strings are one-dimensional arrays of characters. They are sufficiently important 
be treated as a special topic. 

One-dimensional Arrays 

VF>L'-UL.hJ often use homogeneous data. For example, if we want to manipulate some 
, we might declare 

grade0, gradel, grade2; 

the number of grades is large, representing and manipulating the data by means of 
identifiers will be cumbersome. Instead, an array, which is a derived type, can be 

d. An array can be thought of as a simple variable with an index, or subscript, 
The brackets [] are used to contain the array subscripts. To use grade [0] . 

rade [1]. and grade [2] in a program, we would declare 

int grade[3]; 



246 Chapter 6'" Arrays, Pointers, and Strings 

h b of elements in the array. The 
The integer 3 in the declaration represents t e num er 
indexing of array elements always starts at O. 'd tif' wl'th a brack-

, , t e followed by an 1 en ler 
A one-dimensional array declaratIOn IS a yp 'hi 'h must be positive 

eted constant integral express~~~. The value of t~e rpr~~~~:'t:e a~ray, The array sub~ 
is the size of the array, It spe~lhes th: number ~ e e:~f the array subscripts is 0 and 
scripts can range from 0 to sIze - I, rhe lower our:, , 
the upper bound is size L Thus, the following relatlonships hold. 

i nt a [size] ; l" space for a[0J, ... , a[size 

lower bound == 0 
upper bound == size - 1 
size == upper bound + 1 

IJ allocated */ 

, 'f an array as a symbolic constant. 
It is good programming practice to defme the SIze a . 

#define N 100 

f r a[0] a[99] is allocated */ 
i nt a [N] ; /* space 0 , ••• , 

, 'd' m for processing array elements 
Given this declaration, the standard programmmg 1 10 . -

is with a fo r loop. For example: 

for (i == 0;[~]~ N; ++i) /* process element a[i] 
sum += a 1 , 

] d 't tively processes each element 
This iteration starts w~th t,he elem~r:t a ~0 ,an 1 era id the error of falling off 
turn. Because the termmatlOn condltlon IS 1 < N, we avo 
end of the array. The last element processed is, correctly, a [N - 1]. 

Initialization 
. al or static but not register. In 

Arrays may be of storage class ,automatIC, ex~er~i~ialized u~ing an array initializer. 
tional C, only external and statlc arrays can e 
ANSI C, automatic arrays also can be initialized. 

one_dimensionaLarray_initializer :,:, . {. initializer_list } 
initializeLlist :: == initializer { , lmtlall~er 10+ 
initializer :: constanUntegraLexpresslOn 

Consider the example 

float f[5] {0.0, 1.0, 2.0, 3.0, 4.0}; 

6.1 ... One-dimensional Arrays 247 

This initializes f[0] to 0.0, f[l] to 1.0, and so on. When a list of initializers is shorter 
than the number of array elements to be initialized, the remaining elements are initial
ized to zero. For example, 

int a[100] = {0}; 

initializes all the elements of a to zero. If an external or static array is not initialized 
explicitly, then the system initializes all elements to zero by default. In contrast, auto

arrays are not necessarily initialized by the system. Although some compilers do 
, others do not. Programmers should assume that uninitialized automatic arrays 

start with "garbage" values. 
If an array is declared without a size and is initialized to a series of values, it is 

.. implicitly given the size of the number of initializers. Thus, 

int a[] == {2, 3, 5, -7}; and int a[4] = {2, 3, 5, -7}; 

equivalent declarations. This feature works with character arrays as well. However, 
character arrays an alternate notation is available. A declaration such as 

char s[J = "abc"; 

taken by the compiler to be equivalent to 

char s [] == {' a', • b', • c', • \0 '}; 

a is an array, we can write a [expr] , where expr is an integral expression, to access an 
of the array. We call expr a subscript, or index, of a. Let us assume that the dec-

i, a [N] ; 

been made, where N is a symbolic constant. The expression a [; ] can be made to 
to any element of the array by assignment of an appropriate value to the subscript 

A single array element a[;] is accessed when i has a value greater than or equal to 0 
less than or equal to N - 1. If i has a value outside this range, a run-time error will 

when a [i] is accessed. Overrunning the bounds of an array is a common pro
am:millg error. The effect of the error is system-dependent, and can be quite confus

One frequent result is that the value of some unrelated variable will be returned or 
.VUIU<O'Cl. It is the programmer's job to ensure that all subscripts to arrays stay within 



248 Chapter 6... Arrays, Pointers, and Strings 

Recall that a parenthesis pair 0 following an identifier tells the compiler that 
identifier is a function name. Examples of this are mai nO and fea, b). In C, the 
thesis pair that follows an identifier is treated as an operator. In a similar fashion, 
bracket pair [] also is treated as an operator. Both operators 0 and [] have the 
est precedence and have left to right associativity. 

6.2 Pointers 

A simple variable in a program is stored in a certain number of bytes at a 
memory location, or address, in the machine. Pointers are used in programs to 
memory and manipulate addresses. 

If v is a variable, then &v is the location, or address, in memory of its stored 
The address operator & is unary and has the same precedence and right to left 
tivity as the other unary operators. Addresses are a set of values that can be 
lated. Pointer variables can be declared in programs and then used to take addresses 
values. The declaration 

i nt 1<p; 

declares p to be of type pointer to i nt. Its legal range of values always includes the 
cial address 0 and a set of positive integers that are interpreted as machine 
on the given C system. Some examples of assignment to the pointer pare 

p 0; 
P NULL; 1* equivalent to p 0; 1'1 
P &i; 
P (int *) 1776; 1* an absolute address in memory *1 

In the third example, we think of p as "referring to i" or "pointing to i" or 
the address of i." In the fourth example, the cast is necessary to avoid a compiler 

The indirection or dereferencing operator ,', is unary and has the same prec 
and right to left associativity as the other unary operators. If p is a pointer, then 
the value of the variable of which p is the address. The name "indirection" is taken 
machine language programming. The direct value of p is a memory location, whereas 
is the indirect value of p-namely, the value at the memory location stored in p. In a 
tain sense ,,( is the inverse operator to &. We want to give an explicit, yet .... H .. LU .... UW 

example of how the pointer mechanism works. Let us start with the declaration 

6.2 T Pointers 249 

int a = 1, b = 2, *p; 

At this point, we can think of the variables a b and p stored . , , In memory as 

a 

8 
b 

~ ? 

We think of the pOint~r p a.s an arrow, but because it has not yet been aSSigned a value 
do not know what It pomts to. Suppose that our next line of code is ' 

read this as lip is assigned the address of a," and we have the following picture: 

b 

let us make the assignment 

read this as lib is assigned the value pointed to by p." Because the painter p . t 
a, the statement pam s 

b = *p; is equivalent to b =: a; 

Le: us write a Simple program t~at illustrates the distinction between a pointer value 
Its dereferenced value. We will use the %p format to print the value of a pointer, 
~n most systems produces a hexadecimal number. On ANSI C systems the % 
IS preferred. (See exercise 6, on page 312.) , P 



250 Chapter 6 'If Arrays, Pointers, and Strings 

In file locate.c 

1* Printing an address, or location. *1 

#include <stdio.h> 

int main(void) 
{ 

} 

int i = 7, *p = &ij 

printf("%s%d\n%s%p\n" , " 
"Location of i: " 

return 13; 

Value of i: 
p) ; 

The output of this program on our system is 

Value of i: 7 
Location ~f i: effffb24 

*p, 

A pointer can be initialized in a declaration. The variable p is of type i nt ~'and its 
tial value is &i. Also, the declaration of i must occur before we take its address. 
actual location of a variable in memory is system-dependent. The operator ~, 

ences p. That is, p contains an address, or location, and the expression '~p has the 
of what is stored at this location appropriately interpreted according to the type 
ration of p. 

The following table illustrates how some pointer expressions are evaluated: 

Declarations and initializations 

i nt i = 3, j = 5, * P = &i, ~'q = &j, i'r; 
double x; 

Expression Equivalent expression Value 

• p == & i p == (& i) 1 

* i, & p ,~ ('" (& p» 3 

r = & x r = (& x) I~' illegal *1 
7 '~'~p/'" q + 7 (((7 * C'" p))) I (* q) + 7 11 

* (r = & j) *= ,~ p (* (r = (& j»)) ,~= (* p) 15 

In this table, we attempted to assign r the value &x. Because r is a pointer to i nt 
the expression &x is of type pointer to doub 1 e, this is illegal. Also, note that in the 
we used the expression 

6.2 'If Pointers 251 

7 * * P I * q + 7 

If instead we had written 

7 ,!, ", p 1* q + 7 I'" trouble? *1 

would find that the compiler treats 1* as the start of a comment. This can result in a 
l.U""~V'L' bug. 

In traditional C, conversions during assignment between different pointer types usu
are allowed. In ANSI C, such conversions are not allowed unless one of the types is 

pointer to voi d, or the right side is the constant O. Thus, we can think of voi d ,~ as a 
pointer type. This is an important point. (See Section 6.8, "Dynamic Memory 

1",.,,,1'1(\11 With callocO andmallocO," on page 262".) 

Declarations 

i nt *p; 
float '~q ; 
void *v; 

i Legal assignments Illegal assignments 

p == 13; P l' , 
P = (int i,) l' v 1; , 

P v = q; p = q; 
Ip = (i nt *) q; 

Of course, not every value is stored in an accessible memory location. It is useful to 
in mind the follOwing prohibitions: 

Constructs not to be pointed at 

.. Do not point at constants. 
&3 1* illegal */ 

.. Do not point at ordinary expressions. 
&(k + 99) /* illegal *1 

.. Do not point at register variables. 
register v; 
&v 1* ill ega 1 i'l 

address operator can be applied to variables and array elements. If a is an array, 
expressions such as &a[@] and &a[i+j+3] make sense. 

a 



252 Chapter 6 T Arrays, Pointers, and Strings 

6.3 Call*by*Reference 
t t a function their values are copied to 

Whenever variables are passed as argumen so, bi themselves are not '-UL'U5"U, 

the corres~ondin? function Pha:a~e~~~~, :~u~e~:~~an~:m is strictly adhered to in C. 
in the callmg envlronment. T IS ca Y hies ",,,,,,,,,,.-. 
To change the values of variables in the, callin~ environme~~:~h:r u::~~:~dresses 
the "call-by-reference" mechani~m. In thls sedctlont~e s~~~ of "call-by-reference." 
variables as arguments to functions can pro uce e e , 

For a function to effect "call-by-reference," fPoint:rs ~us~l~~ ~~~~~s:~eof 
, f ' d f' '1' Then when the unchon IS ca , 

list m the unctIon e III lOn. , I f this let us write a function that swaps 
must be passed as arguments. As an examp ~ 0 , 

the values of two variables in the calling envlronment. 

void swap(int *p, int *q) 
{ 

int tmpi 

tmp = ~'Pi 
>"p '~q i 
*q = tmpi 

} 

To test our function, we can write 

#include <stdio.h> 

void swap(int * int *); 

i nt ma; n (voi d) 
{ 

int i = 3, j = 5; 

swap(&i, &j); 
printf("%d %d\n", i, j); 
return 0; 

} 

/* 5 3 is printed */ 

h ed addresses as arguments to 
Note that in the calling environment we ave pass d 't s This is a 
function, and that in the function definition we have use pam er . 

pattern. 

6.4 T The Relationship Between Arrays and Pointers 

Function 

void swap(int *p, int *q) 
{ 

int tmp; 

253 

This function takes two arguments of type pointer to i nt and returns nothing. The vari
tmp is local to this function and is of type i nt. As the name indicates, we think of 

this as temporary storage. 

tmp = ~'P; 
*p = >"q; 
*q = tmpi 

variable tmp is assigned the value pointed to by p. The object pointed to by p is 
assigned the value pointed to by q. The object pointed to by q is assigned the value tmp. 

has the effect of interchanging in the calling environment the stored values of 
",hat'"",,>, p and q are pointing to. 

The effect of "call-by-reference" is accomplished by 

1 Declaring a function parameter to be a pointer 

2 Using the dereferenced pointer in the function body 

3 Passing an address as an argument when the function is called 

• • 

The Relationship Between Arrays and Pointers 

An array name by itself is an address, or pointer value, and pointers, as well as arrays, 
can be subscripted. Although pointers and arrays are almost synonymous in terms of 
how they are used to access memory, there are differences, and these differences are 
subtle and important. A pointer variable can take different addresses as values. In con
trast, an array name is an address, or pointer, that is fixed. 

Suppose that a is an array and that i is an i nt. It is a fundamental fact that the 
expression 



254 Chapter 6... Arrays, Pointers, and Strings 

a[; ] i s equivalent to *(a + i) 

The expression a [i ] has the value of the ith element of the array (counting from 0), 
whereas ~'(a + i) is the dereferencing of the expression a + i, a pointer expression 
that points i element positions past a. If p is a pointer, then in a similar fashion the 
expression 

p [i ] is equivalent to *(p + i) 

This means that we can (and do) use array notation with pointers. Expressions such as 
a + i and p + i are examples of pointer arithmetic. The expression a + i has as its 
value the ith offset from the base address of the array a. That is, it points to the ith ele
ment of the array (counting from 0). In a similar manner, p + i is the ith offset from 
the value of p. The actual address produced by such an offset depends on the type that 
p points to. 

When an array is declared, the compiler must allocate a sufficient amount of contigu
ous space in memory to contain all the elements of the array. The base address of the 
array is the initial location in memory where the array is stored; it is the address of the 
first element (index 0) of the array. Consider the following declarations: 

#define N 100 

i nt a[N], i, *p, sum = 0; 

Suppose that the system assigns 300 as the base address of the array and that memory 
bytes numbered 300, 304, 308, ... ,696 are allocated as the addresses of a[0], a[l], 
a [2J, ... , a [99], respectively. We are assuming that each byte is addressable and that 4 
bytes are used to store an i nt. This is system-dependent. The statement 

p = a; i s equivalent to p == &a[0]; 

It causes 300 to be assigned to p. Pointer arithmetic provides an alternative to array 
indexing. The statement 

p == a + 1; is equivalent to p = &a[l]; 

It causes 304 to be assigned to p. Assuming that the elements of a have been assigned 
values, we can use the following code to sum the array: 

for (p = a; p < &a[N]; ++p) 
sum +== *p; 

First p is initialized to the base address of the array. In the body of the loop, the vari
able sum is incremented by the value pointed to by p. Each time through the loop, pis 

6.5 ... Pointer Arithmetic and Element Size 255 

incremented, so its successive values are &a[0J, &a[l], ... , &a[N-lJ. Here is another 
way of summing the array: 

for (i = 0; i < N; ++i) 
sum +== ;'(a + i); 

In the body of the loop the pointer value a is offset by i and then dereferenced. This 
produces the value a [; J. Finally, here is a third way of summing the array: 

p a; 
for (i == 0; i < N; ++i) 

sum +== p[iJ; 

Note that because a is a constant pointer, expressions such as 

a == p ++a a +== 2 &a 

are illegal. We cannot change the value of a. 

6.5 Pointer Arithmetic and Element Size 

Pointer arithmetic is one of the powerful features of C. If the variable p is a pointer to a 
particular type, then the expression p + 1 yields the correct machine address for stor
ing or accessing the next variable of that type. In a similar fashion, pointer expressions 
such as p + i and ++p and p += i all make sense. If p and q are both pointing to ele
ments of an array, then p - q yields the i nt value representing the number of array 
elements between p and q. Even though pointer expressions and arithmetic expressions 
have a similar appearance, there is a critical difference in interpretation between the 
two types of expressions. The following code illustrates this: 

double a[2] , "I'p, *q; 

P == a; /1' points to base of array ;'1 
q == p + 1; 1'# equivalent to q = &a[lJ "i'l 
pri ntf("%d\n" , q - p); 1''< 1 is pri nted i'l 
printf("%d\n" , (i nt) q (i nt) p) ; 1* 8 is printed "1'1 

On most machines, a double is stored in 8 bytes. Because p points to a daub 1 e and q 
points to the next double, the difference in terms of array elements is 1, but the differ
ence in memory locations is 8. 



256 Chapter 6 T Arrays, Pointers, and Strings 

6.6 Arrays as Function Arguments 

In a function definition, a formal parameter that is declared as an array is actually 
pointer. Corresponding to this, when an array is passed as an argument to a 
the base address of the array is passed "call-by-value." The array elements lH<;:"U<>Cl 

are not copied. As a notational convenience, the compiler allows array bracket 
to be used in declaring pointers as parameters. To illustrate these ideas, we write a 
function that sums the elements of an array of type doubl e. 

double sum(double a[], int n) 
{ 

} 

i nt i; 
double sum 0.0; 

for (i = 0; i < n; ++i) 
sum += a[i]; 

return sum; 

/* n is the size a[] */ 

Note carefully that in the header to the function definition the declaration of the 
parameter a as an array is equivalent to its declaration as a pointer. This means that 
equivalent function definition is given by 

double sum(double *a, int n) 
{ 

/* n is the size a[] */ 

Although an array declaration is equivalent to a pointer declaration in a parameter list, . 
this equivalence does not hold for external declarations or for declarations within the 
body of a function. 

Suppose that in mai nO we have an array, or vector, v declared with 100 elements. 
After the elements of the vector have been assigned values, we can use the above func
tion sumO to add various of the elements of v. The following table illustrates some of 
the possibilities: 

6.7 T An Example: Bubble Sort 257 

Various ways that sumO might be called 

Invocation What gets computed and returned 

sum(v, 100) v[0] + vel] + ... c ... + v[gg] 

sum(v, 88) v[0] + v[l] + ... c ... + v[87] 

sum(&v[7] , k 7) v[7] + v[8] + ... c ... + v[k 1] 

sum(v + 7, 2 * k) v[7] + v[8] + ... c ... + v[2 ,~ k + 6] 

last call illustrates again the use of pointer arithmetic. The base address of v is off
set by 7, causing the local pointer variable a in sumO to be initialized to this value. This 

all address calculations inside the function call to be similarly offset. 

An Example: Bubble Sort 

Although we presented a bubble sort in Section 1.8, "Arrays, Strings, and Pointers," on 
37, we ,"vill do so again here and illustrate in some detail how the function works 

on a particular array of integers. We will use the function swapO from the previous 
section. 

void swap(int'~, int i'); 

void bubble(int a[], int n) 
{ 

i nt i, j; 

for (i 0; i < n 1; ++i) 

/* n is the size of a[] */ 

for (j n 1; j > i; -j) 
if (a[j 1J > a[j]) 

swap(&a[j-1], &a[jJ); 
} 

Because of pointer arithmetic, the expressions a + i and &a [i] are equivalent. Thus, 
the function call to swap 0 could have been written 

swap(a + i, a + j); 



258 Chapter 6 T Arrays, Pointers, and Strings 

Now we describe how the bubble sort works. Suppose that in main 0 we have 

int a[J = {7, 3, 66, 3, -5, 22, 77, 2}; 

bubbleCa, 8); 

The following table shows the elements of a [] after each pass of the outer loop in 
function bubbleO: 

Unordered data: 7 3 66 3 -5 22 -77 2 

First pass: -77 7 3 66 3 -5 22 2 

Second pass: -77 -5 7 3 66 3 2 22 

Third pass: -77 -5 2 7 3 66 3 22 

Fourth pass: -77 -5 2 3 7 3 66 22 

Fifth pass: -77 -5 2 3 3 7 22 66 

Sixth pass: -77 -5 2 3 3 7 22 66 

Seventh pass: -77 -5 2 3 3 7 22 66 

At the start of the first pass, a [6J is compared with a [7]. Because the values are 
order, they are not exchanged. Then a [5 J is compared with a [6 J, and because 
values are out of order, they are exchanged. Then a [4 J is compared with a [5], and 
on. Adjacent out-of-order values are exchanged. The effect of the first pass is to 
bIe" the smallest value in the array into the element a[0J. In the second pass a[0J 
left unchanged and a [6 J is compared first vvith a [7] , and so on. After the second p 
the next to the smallest value is in a [lJ. Because each pass bubbles the next ':H1JLUU'-"c

C 

element to its appropriate array position, the algorithm will, after n - 1 passes, have 
the elements ordered. Notice that in this example all the elements have been 
after the fifth pass. It is possible to modify the algorithm so that it terminates earlier 
adding a variable that detects if no exchanges are made in a given pass. We leave this 
an exercise. 

A bubble sort is very inefficient. If the size of the array is n, then the number of 
parisons performed is proportional to n2• The merge sort discussed in Section 6.9, 
Example: Merge and Merge Sort," on page 266, is much more efficient; it is an n log 
algorithm. 

6.8 l' Dynamic Memory Allocation With eallocO and mal1ocO 

Dynamic Memory Allocation With calloc() 
and malloc() 

259 

provides the functions ca 11 oc 0 and mall oc 0 in the standard library, and their 
prototypes are in stdlib.h. The name call oc stands for "contiguous alloca-

and the name mall oc stands for "memory allocation." 
The programmer uses call oc 0 and ma 11 oc 0 to dynamically create space for 

structures, and unions. (See Chapter 9, "Structures and Unions," and Chapter 10, 
es and List Processing," for structures and unions.) Here is a typical example 

shows how call oc 0 can be used to allocate space dynamically for an array: 

#include <stdio.h> 
#include <stdlib.h> 

int main(void) 
{ 

int "'a; 
i nt n; 

a = callocCn, sizeof(int)); 

/* to be used as an array */ 
/* the size of the array */ 
/* get n from somewhere, perhaps 

interactively from the user */ 
/* get space for a */ 
/* use a as an array */ 

function calloeO takes two arguments, both of type size_to In ANSI C, ze_t 
be an unsigned integral type. Typically, a typedef is used in stdlib.h to make 

ze_t equivalent to the type unsi gned i nt. A function call of the form 

tes contiguous space in memory for an array of n elements, with each element 
eLsize bytes. The space is initialized with all bits set to zero. If the call is suc
, a pointer of type vo; d ,', that points to the base of the array in memory is 

. otherwise, NULL is returned. Note that the use of the si zeof operator makes 
code appropriate for machines having either 2- or 4-byte words. 



260 Chapter 6 V Arrays, Pointers, and Strings 

The programmer uses rna 11 oc 0 in a similar fashion. This function takes a single 
argument of type si ze_t. If the call is successful, it returns a pointer of type vo; d * 
that points to the requested space in memory; otherwise, NULL gets returned. Instead of 
y"'Titing 

a = ca11oc(n, s;zeof(int)); 

we could have written 

a = rna11oc(n * sizeof(int)); 

Unlike call oc (), the function rna 11 oc 0 does not initialize the space in memory that it 
makes available. If there is no reason to initialize the array to zero, then the use 
either call oc () or rna 11 oc 0 is acceptable. In a large program, rna 11 oc 0 may take les 
time. 

Space that has been dynamically allocated with either call oc 0 or rna 11 oc 0 
not get returned to the system upon function exit. The programmer must use freeO 
explicitly to return the space. A call of the form 

free(ptr) 

causes the space in memory pointed to by pt r to be deallocated. If pt r is NULL, 
function has no effect. If ptr is not NULL, it must be the base address of space 
ously allocated by a call to call oc 0, rna 11 oc 0, or rea 11 oc 0 that has not yet 
deallocated by a call to freeO or reallocO. Otherwise, the call is in error. The effect 
of the error is system-dependent. 

Let us V\Tite a small program that illustrates the ideas we have presented in this 
tion. The first pri ntfO statement in the program tells the user exactly what the 
gram does. 

#inc1ude <stdio.h> 
#include <stdlib.h> 
#include <tirne.h> 

void fill_array(int *a, int n); 
int surn_array(int ""a, int n); 
void wrt_array(int *a, int n); 

} 

6.8 V Dynamic Memory Allocation With cal locO and rnallocO 

i nt rna; n (voi d) 
{ 

int "a, n; 

srand(tirne(NULL)); 
printf("\n%s\n", 

1* seed the random number generator *1 

"This program does the following repeatedly:\n" 
"\n it 

" 1 f c~eate space or.an array of size n\n" 
:: 23 fl! 1 the array wlth randoml y di stri buted di gi ts\n" 

prlnt the array and the sum of its element\n" 
" 4 release the space\n"); 

for ( , , ) { 
pri ntf("Input n: "); 
if (scanf("%d", &n) 1= 1 II n < 1) 

break; 
putchar('\n'); 
a = calloc(n, sizeof(int))· 
fill_array(a, n); , 
wrt_array(a, n); 

1* allocate space for a[] *1 

printf("sum = %d\n\n", sum_array(a, n)); 
free(a); 

} 
printf("\nByel\n\n"); 
return 0; 

void fil1_array(int *a, int n) 
{ 

i nt i; 

for (i = 0; i < n' Hi) , 
a[iJ = randO % 19 9; 

} 

i nt 
{ 

sum_array(int *a, int n) 

int i , sum = 0; 

for (i 0; i < n; Hi) 
sum += a[i]; 

return sum; 
} 

261 



262 Chapter 6... Arrays, Pointers, and Strings 

void wrt_array(int *a, int n) 
{ 

} 

i nt i . , 

pri ntf("a = ["); 
for (i = 0; i < n; ++i) 

printf(H%d%s", a[iJ, ((i < n 

Offsetting the Pointer 

1) ? 11 
II "J\nH)); 

For arrays (vectors) intended for mathematical use, we often want to index the 
from 1 instead O. In a small program we can do something like the following: 

int n; 
double "a; 

a calloc(n + 1, sizeof(double)); 

Because the size of a is one more than n, we can disregard a[0J and use a[1J, ... , a[ 
as needed. This is certainly an acceptable scheme. However, an alternative scheme is 
do the following. First we write 

a calloc(n, sizeof(double)); 

At this point, here is what we have in memory: 

o 1 2 "-1 

Next, we write 

--a; /* offset the pointer */ 

6.9 ... An Example: Merge and Merge Sort 263 

picture of what is in memory changes to the following: 

o 1 2 " 
that the shaded area indicates memory the programmer does not own. Thus, 

[0J should not be accessed: neither written to nor read. The elements a [1], ... , a [n], 
, are now accessible for use by the programmer. To deallocate the space, we 

write free(a + 1). 
In Section 12.6, "Dynamic Allocation of Matrices," on page 5 71, we will expand on the 

ideas presented in this section when we deal with mathematical matrices. 

An Example: Merge and Merge Sort 

Suppose we have two ordered arrays of integers, say a [J and b [J. If we want to merge 
them into another ordered array, say c [], then the algorithm to do so is simple. First, 
compare a [0J and b [0J. Whichever is smaller, say b [0J, put into c [0J. Next, compare 
a[0J and b [1J. Whichever is smaller, say b [1J, put into c [1]. Next, compare a [0] and 
b [2J. Whichever is smaller, say a [0J, put into c [2]. Next, compare a [1] and b [2], and 
so on. Eventually one of the arrays a [J or b [] will be exhausted. At that point, the 
remainder of the elements in the other array are simply copied into c [] . Here is a func
tion that does this, along with a header file that will get used in a program that tests 
our functions: 

In file mergesort.h 

#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 

void merge(int a[], int b[], int c[], int m, int n); 
void mergesort(int key[J, int n); 
void wrt(int key[] , int sz); 



264 Chapter 6 T Arrays, Pointers, and Strings 

In file merge.c 

/* Merge a[] of size m and b[] of size n into c[]. */ 

#include "mergesort.h" 

void merge(int a[], int be], int c[], int m, int n) 
{ 

} 

int i = 0, j == 0, k = 0; 

while (i < m && j < n) 
if (a[i] < b[j]) 

c[k++] == a[i++]; 
else 

c[k++] == b[j++]; 
whil e (i < m) 

.c[k++J = a[i++J; 
Whll e (j < n) 

c[k++J == b[j++J; 

/* pick up any remainder */ 

The array c [J is assumed to contain enough space to hold both a [] and b []. The pro
grammer must make certain that the bounds on c [] are not overrun. Observe that one, 
or possibly both, of the last two whi 1 e statements that are used to pick up any remain
der do not get executed. This is because at least one of the two conditions i < m and 
j < n will not be true. 

Next, we will write a mergesortO function that calls mergeO. In contrast to a bub
ble sort, a merge sort is very efficient. Our function mergesortO will act on an array 
key [J, which has a size that is a power of 2. The "power of 2" requirement will help to 
make the explanation simpler. In exercise 16, on page 315, we indicate how this restric. 
tion can be removed. To understand how merge sort works, let us Suppose that key [J 
contains the following 16 integers: 

4 3 1 67 55 8 0 4 -5 37 7 4 2 9 1 -1 

6.9 T An Example: Merge and Merge Sort 265 

algorithm will work on the data in a number of passes. The following table shows 
we want the data to look after each pass: 

4 3 1 67 55 8 0 4 -5 37 7 4 2 9 1 -1 

3 4 1 67 8 55 0 4 -5 37 4 7 2 9 -1 1 

1 3 4 67 0 4 8 55 -5 4 7 37 -1 1 2 9 

0 1 3 4 4 8 55 67 -5 -1 1 2 4 7 9 37 

-5 -1 0 1 1 2 3 4 4 4 7 8 9 37 55 67 

er the first pass, we want each successive pair of integers to be in order. After the 
"D_o.vu~ pass, we want each successive quartet of integers to be in order. After the third 

s we want each successive octet of integers to be in order. Finally, after the fourth 
, we want all 16 of the integers to be in order. At each stage mergeO is used to 

. accomplish the desired ordering. For example, after the third pass we have the two sub-

o 1 3 4 4 8 55 67 and -5 -1 1 2 4 7 9 37 

which are both in order. By merging these two subarrays, we obtain the completely 
ordered array given in the last line of the table above. Surprisingly, the code that 
accomplishes this is quite short and it illustrates the power of pointer arithmetic. 



266 Chapter 6 V Arrays, Pointers, and Strings 

In file mergesort.c 

• 

1* Mergesort: Use merge() to sort an array of size n. *1 

#include flmergesort.hfl 
void mergesort(int key[] , int n) 
{ 

} 

int j, k, m, *w; 

for (m = 1; m < n; m *= 2) I'" m is a power of 2 'i'l 
, 

if (n < m) { 
printf(,'ERROR: Array size not a power of 2 - bye!\nfl); 
exit(1); 

} 
w = ca110c(n, sizeof(int)); 
assert(w !- NULL); 
for (k = 1; k < n; k *- 2) { 

I'~ allocate workspace "'1 
1* check that call0c() worked *1 

for (j - 0; j < n - k; j +- 2 * k) 
1'1, 
II Merge two subarrays of key[] into a subarray of we]. 
'''I 
merge(key + j, key + j + k, w + j, k, k); 

for (j - 0; j < n; ++j) 
key[j] - w[j]; 

} 
free(w); 

1* write w back into key *1 

1* free the workspace *1 

Dissection of the mergesortO Function 

• for (m - 1; m < n; m *- 2) 

After this loop, the value of m is the smallest power of 2 that is greater than or equal to 
n. If n is a power of 2, then n will be equal to m. 

• if (n < m) { 

} 

printf(flERROR: Array size not a power of 2 
exit(1); 

bye!\n"); 

We test to see if n is a power of 2. If it is not a power of 2, we exit the program with an 
appropriate message. 

6.9 v An Example: Merge and Merge Sort 267 

w - cdalloc(n, sizeof(;nt)); 1* allocate workspace *1 

function call oc 0 is in the standard library, and its function prototype is in the 
ader file stdlib.h. The function is used to allocate space in memory for an array 
llU<i~~~.~J' The first argument to the function specifies the number of elements in the 

, and the second argument specifies the size in bytes needed to store each ele
ment. The function returns a pointer of type voi d ,~to the allocated space. Because its 
type is voi d "', the pointer can be assigned to w without a cast. In traditional C, we 
would have written 

w - (int *) calloc(n, sizeof(int)); 

Although w is a pointer to i nt, we can now use it just as we would an array. Even 
though mergesort 0 is very efficient, the fact that additional workspace is needed to 
sort an array is a disadvantage. In Chapter 8 we will discuss the use of quicksortO, 
which does not require additional workspace. 

assert(w! NULL); 1* check that calloc() worked *1 

If ca 11 oc 0 fails to allocate space-for example, the system free store (heap) is 
exhausted-then NULL is returned. We used the assertO macro in assert.h to make 
sure this did not happen. If the expression w ! - NULL is false, then the program will be 
aborted at this point. 

for (k = 1; k < n; k '''- 2) { 
for (j = 0; j < n k; j +- 2 * k) 

I;' 
II Merge two subarrays of key[] into a subarray of w[]. 
" I 
merge(key + j, key + j + k, w + j, k, k); 

for (j 0; j < n; ++j) 
key[j] = w[j]; 1* write w back into key *1 

} 

This is the heart of the algorithm. Suppose we start with key [] having the data given as 
unordered in the table above. In the first pass of the outer loop, k is 1. Consider the 
first inner loop 

for (j - 0; j < n k; j +- 2 * k) 
1'1, 
II Merge two subarrays of key[] into a subarray of w[]. 
;'1 
merge(key + j, key + j + k, w + j, k, k); 



268 Chapter 6 'f Arrays, Pointers, and Strings 

The first call to me rge 0 is equivalent to 

merge(key + 0, key + 0 + 1, w + 0, 1, 1); 

The arrays based at key and key + 1, both of size 1, are being merged and put into a 
subarray of size 2 of w that is based at w + 0. This will result in w [0J and w [1J being in 
order. The next call to mergeO is equivalent to 

merge(key + 2, key + 2 + 1, w + 2, 1, 1); 

The arrays based at key + 2 and key + 3, both of size 1, are being merged and put 
into a sub array of size 2 of w that is based at w + 2. This will result in w[2J and w[3] 
being in order. The next call ... , and so on. After the first pass of the outer loop, each 
successive pair of elements in w [J is in order; see the preceding table. At this point, the 
array w[J is copied into key []. 

In the second pass of the outer for loop, k is 2, and the next call to mergeO is equiv
alent to the following: 

merge(key + 0, key + 0 + 2, w + 0, 2, 2); 

The arrays based at key and key + 2, both of size 2, are being merged and put into a 
subarray of size 4 of w that is based at w + 0. This will result in w [0J, w [1J, w [2J, w [3J 
being in order. The next call to me rge 0 is equivalent to 

merge(key + 4, key + 4 + 2, w + 4, 2, 2); 

The arrays based at key + 4 and key + 6, both of size 2, are being merged and put 
into a sub array of size 4 of w based at w + 4. This will result in w[ 4J, w[5J, w[6J, w[7J 
being in order. The next call ... , and so on. After the second pass of the outer loop, each 
successive quartet of elements in w [J is in order; see the preceding table. At this point 
the array w [J is copied into key []. In the third pass of the outer loop, k is 4, and the 
next call to mergeO ... , and so on. 

• free(w); /* free the workspace */ 

This function is in the standard library, and its function prototype is in stdlib.h. It 
causes the space pointed to by w to be deallocated. The system is then able to use this 
space for some other purpose. Unlike automatic storage, space allocated by call oc 0 
or mall oc 0 is not relinquished automatically upon exit from a function. The program
mer must explicitly free this space. 

• • 

6.9 'f An Example: Merge and Merge Sort 269 

want to write a program to test the functions mergeO and mergesortO. The inter
reader should modify the program to print out the array key [] after each pass of 

the outer loop in mergesortO to check that the preceding table is reproduced. Here 
are the remaining two functions that comprise our program: 

/* Test merge() and mergesort(). */ 

#inc1ude "mergesort.h" 

int mai,n(void) 
{ 

int sz, key[J = { 4, 3, 1, 67, 55, 8, 0, 4, 
-5, 37, 7, 4, 2, 9, 1, -1 }; 

} 

sz = sizeof(key) / sizeof(int); 
printf("Before mergesort:\n"); 
wrt(key, sz); 
mergesort(key, sz); 
printf("After mergesort:\n"); 
wrt(key, sz); 
return 0; 

In file wrt.c 

#include "mergesort.h" 

void wrt(int key[J, int sz) 
{ 

i nt i; 

for (i = 0; i < sz; ++i) 

/* the size of key[J */ 

printf("%4d%s", key[iJ, ((i < sz - 1) ? "" : "\n")); 
} 

The amount of work that a merge sort does when sorting n elements is proportional 
to n log n. Compared to a bubble sort, this is a very significant improvement. Sorting is 
often critical to the efficient handling of large amounts of stored information. However, 
it is beyond the scope of this text to discuss the topic in detail; see The Art of Computer 
Programming, vol. 3, Sorting and Searching, by Donald Ervin Knuth (Reading, MA: Add
ison-Wesley, 1973). 



270 Chapter 6,. Arrays, Pointers, and Strings 

6.10 Strings 

Strings are one-dimensional arrays of type char. By convention, a string in C is 
nated by the end-of-string sentinel \0, or null character. The null character is a 
with all bits off; hence, its decimal value is zero. Because dealing with strings has 
own flavor, we :re~t the topic separately. It is useful to think of strings as having a 
ab~e length, ~elllmted by \0, but with a maximum length determined by the size of 
strmg. The SIze of a string must include the storage needed for the end-of-string 
nel. As with all arrays, it is the job of the programmer to make sure that st~ing 
are not overrun. ~~'.uJ.LI" 

String constants are written between double quotes. For example, "abc" is a 
tel' array of siZe 4, with the last element being the null character \0. Note that string 
constants are different from character constants. For example, "a" and 'a' are not th 
same. The array II a II has two elements, the first with value 'a' and the second wit~ 
value '\0'. 

A strin~ constant, like an array name by itself, is treated by the compiler as a pointer. 
Its value IS the base address of the string. Consider the follOwing code: 

char "'p =; "abc"; 

printf(lI%s %s\n", p, p + 1); /* abc be is printed */ 

Th.e variable p is assigned the base address of the character array II abc ". When a 
pomter,to char is printed in the format of a string, the pointed-at character and each 
su~cesslve character are printed until the end-of-string sentinel is reached. Thus, in the 
pn ntfO, state~ent, the expression p causes abc to be printed, and the expression 
p + ,I, whIch pomts to the letter b in the string "abc", causes be to be printed, Because 
a strmg constant such as "abc" is treated as a pointer, expressions such as 

"abc" [1] and *("abc" + 2) 

are possible. (See exercise 22, on page 317.) Such expressions are not used in serious 
code, but they help to emphasize that string constants are treated as pointers. 

As we have already seen, arrays and pointers have similar uses. They also have differ
ences. Let us consider the two declarations 

char '~p =; "abcde"; and char s [J Habcde" ; 

6.10 " Strings 271 

the first declaration, the compiler allocates space in memory for p, puts the string 
tant II abcde" in memory somewhere else, and initializes p with the base address of 

string constant. We now think of p as pointing to the string. The second declaration 
equivalent to 

s[] {'a', 'b', 'c', 'd', 'e', '\0'}; 

the brackets are empty, the compiler allocates 6 bytes of memory for the array 
s. The first byte is initialized with 'a', the second byte is initialized with 'b' , and so 
on. Here is how we think of these objects stored in memory: 

~ s 
1 ~ a~1 b~1 c--'I-d"-I e--r.1 \:--0-1 

A char is always stored in 1 byte, and on most machines a pointer is stored in a word. 
Thus, on our machine, p is stored in 4 bytes, and s is stored in 6 bytes. Of course, p con
tains the address of a string that requires another 6 bytes of storage. (See exercise 24, 
on page 319, for further discussion.) 

For technical reasons, it is better not to print null characters. If null characters are 
put into a file and then another utility is used to process the file, the result can be con
fusing. (See exercise on page 319.)However, the printing of null strings is perfectly 
acceptable. One natural instance of this occurs when dealing with plurals: 

char 
i nt 

~'s ; 
nfrogs; 

s "" (nfrogs == 1) ? "" : "s"; 
/* get nfrogs from somewhere */ 

printf("We found %d frog%s in the pond.\n", nfrogs, s); 

To illustrate string processing, we will write a function that counts the number of 
words in a string. We assume that words in the string are separated by white space. Our 
function will use the macro iss pace 0, which is defined in the standard header file 
ctype.h. This macro is used to test whether a character is a blank, tab, newline, or some 
other white-space character. If the argument is a white-space character, then a nonzero 
(true) value is returned; otherwise, zero (false) is returned. 

I 



272 Chapter 6 'f Arrays, Pointers, and Strings 

/* Count the number of words in a string. */ 

#include <ctype.h> 

int word_cnt(const char *s) 
{ 

int cnt = 0; 

while (1's! '\0') { 
while (isspace(*s)) /* skip white space 

++s; 
if (*s! '\0') { /'( found a word 

++cnt; 
whi 1 e (! i sspace (~'s) && ~'s (= '\0') /~, ski p the word 

++s; 
} 

} 
return cnt; 

} 

This is a typical string-processing function. Pointer arithmetic and dereferencing 
used to search for various characters or patterns. Often a character pointer is used 
march along a string while parsing it or interpreting it in some way. 

6.11 String-Handling Functions in the Standard Libra 

ANSI C provides the programmer with numerous string-handling functions; see App 
dix A, "The Standard Library," for details. In this section we want to illustrate the use 
a few selected string-handling functions and describe how they work. The function 
totypes for string-handling functions are given in the standard header file string.h. 

We will see that some of the parameters in the function definitions of the string 
dUng functions have the type const char;'. The type qualifier const in this context 
telling the compiler that the character pointed to in memory should not be 
(See exercise 28, on page 321.) The pointer itself, however, can be changed. 

6.11 'f String-Handling Functions in the Standard Library 273 

• 
e String-Handling Functions in the Standard Library 

char *strcat(char *s1, canst char *s2); 

function takes two strings as arguments, concatenates them, and puts the result in 
The programmer must ensure that s1 points to enough space to hold the result. The 

s1 is returned. 

int strcmp(const char *s1, const char *s2); 

strings are passed as arguments. An integer is returned that is less than, equal to, 
than zero, depending on whether s1 is lexicographically less than, equal to, 

greater than s2. 

char *strcpy(char *s1, const char *s2); 

characters in the string s2 are copied into s1 until \0 is moved. Whatever exists in 
is overwritten. It is assumed that s1 has enough space to hold the result. The pointer 
is returned. 

size_t strlen(const char *s); 

count of the number of characters before \0 is returned. ANSI C requires the type 
ze_t to be an integral unsigned type. Typically, on systems with 4-byte i nts it is 

alent to unsi gned i nt, and on systems with 2-byte i nts it is equivalent to 
si gned long. 

• 
is nothing special about these functions. They can be written in C, and are all 

short. Variables in them are often declared to have storage class regi ster in an 
t to make them execute more quicldy. Here is one way the function strl enO 

be written: 

size_t strlen(const char *s) 
{ 

for (n 0; *s != '\0'; ++s) 
++n; 

return n; 
} 



274 Chapter 6." Arrays, Pointers, and Strings 

The loop continues counting until the end-of-string character' \0' is detected. 
example, strl en("abc lf ) returns the value 3, and strl ene'lf) returns the value 0. 

The function definition for strcpyO is also simple, but it contains a C idiom 
needs to be explained in detail. 

• 

char *strcpy(char *sl, register const char *s2) 
{ 

} 

register char 

whil e ('~p++ 
, 

return sl; 

~'p '" sl; 

~'s2++) 

Dissection of the strcpyO Function 

II register char ~'p "" sl; 

Observe that p is being initialized, not "'p. The pointer p is initialized to the 
value s1. Thus, p and s1 point to the same memory location. 

II while (*p++ "" *s2++) 

As long as the expression ~'p++ ~'s2++ is true (not zero), the body of the whi 1 e loop 
gets executed. The body, however, is empty, so its execution has no effect. All the 
action talces place in the side effects of the expression controlling the whi 1 e loop. 

II *p++ 

Because the unary operator ++ is in postfix position, it has higher precedence than the ~, 
operator. Thus, *p++ is equivalent to '~(p++), which means that p itself is being incre
mented. In contrast, the expression C"'p)++ would increment what p is pointing to, leav
ing the value of p itself unchanged. (See exercise 17, on page 316.) The value of the 
expression p++ is the current value of p. This value is dereferenced; then the value of p 
in memory is incremented, causing it to point to the next character in the string. 

6.11 ." String-Handling Functions in the Standard Library 275 

"'P++ "'52++ 

P is pointing to a character in one string, and suppose s2 is pointing to a char
in a different string. (See exercise 18, on page 316, for another scenario.) The 
pointed to by s2 is assigned to the value pointed to by p, and this is the value of 

expression as a whole. Then both p and s2 get incremented, which causes them to 
to the next character in each of the two strings. 

while (*p++ "" *s2++) 

character pointed to by p gets assigned the value of the character pointed to by 52. 
both p and s2 get incremented so that they each point to the next character. This 
ss continues until s2 points to the null character \0, which has the value 0. At that 
the value 0 is assigned to what p is pointing to, putting an end-of-string sentinel 

place, and the value of the expression as a whole is 0, causing the flow of control to 
the whi 1 e loop. The effect of all of this is to copy the string s2 into the string s1. 

• 
The function strcatO is also quite simple. It can be written in a number of ways. 

Here is one of them: 

char *strcat(char *s1, register const char *s2) 
{ 

} 

register char 

whi 1 e ("'p) 
++p; 

whi 1 e C'~p++ 
, 

return sl; 

*p 

'~s2++ ) 

s1; 

/* go to the end */ 

/~, copy '~/ 



276 Chapter 6'" Arrays, Pointers, and Strings 

• Dissection of the strcatO Function 

II register char ~'p = 51; 

Observe that p is being initialized, not *p. The pointer p is initialized to the IJUllllHl 

value 51. Thus, p and 51 point to the same memory location. 

II whi 1 e (1'p) 
++p; 

As long as the value pointed to by p is nonzero, P is incremented, causing it to point 
the next character in the string. When p points to the end-of-string sentinel \0, 
expression 1,p has the value O. This causes control to exit the whi 1 e statement. No 

that we could have written 

while C'p! '\0') instead of while (>~p) 

to achieve the same effect. Functions often are written in a sparse manner. rU'UH.H'" 

one might think that sparse C code produces faster running object code, most C 
pilers produce the same object code for both forms of this whi 1 e statement. 

II while (*p++ = *52++) 

At the beginning of this whi 1 e statement, p points to the null character at the end 
the string pointed to by 51. Thus, the characters in 52 get copied one after another 
memory, overwriting the null character at the end of 51 and whatever follows it. 
overall effect of this whi 1 e statement is to concatenate 52 to the end of 51 . 

• 
String-handling functions are illustrated in the next table. Note carefully that it is 
programmer's responsibility to allocate sufficient space for the strings that are 
as arguments to these functions. 

6.12 .., Multidimensional Arrays 277 

Declarations and initializations 

char sl[] = "beautiful big sky country", 
52 [] "how now brown cow"; I 

Expression Value 
I 

strl en(sl) 25 I 
strlen(s2 + 8) 9 

strcmp(s1, 52) negative integer 

Statements What gets printed 

printf("%s" , 51 + 10); big 5ky country 

strcpy(sl + 10, 52 + 8); 

15trcat(sl, liS!"); 

printf("%s", sl) ; beautiful brown COW5! 

Multidimensional Arrays 

C language allows arrays of any type, including arrays of arrays. With two bracket 
w~ obta~n a t",:o-dimensional arr~y. This idea can be iterated to obtain arrays of 
dImenSIOn. WIth each bracket paIr, we add another array dimension. 

I Examples of declarations of arrays 

int a[100]; 

int b[2][7]; 

i nt c[S] [3] [2]; 

Remarks 

a one-dimensional array 

a two-dimensional array 

a three-dimensionaJ array 

k-dim:nsi.anal.array ~as a size for each of its k dimensions. If we let si represent the 
of Its lth dImenslOn, then the declaration of the array will allocate space for 

x s2 x ... x sk elements. In the preceding table, b has 2 x 7 elements, and c has 
x 3 x 2 ele~ents. St~rting at the base address of the array, all the array elements are 

stored contIguously III memory. Caution: The multidimensional array mechanism 



278 Chapter 6 T Arrays, Pointers, and Strings 

described here is often unsuitable for dealing with mathematical matrices. (See Section 
12.6, "Dynamic Allocation of Matrices," on page 571, for further discussion.) 

Two-dimensional Arrays 

Even though array elements are stored contiguously one after the other, it is usually 
convenient to think of a two-dimensional array as a rectangular collection of elements 
v-lith rows and columns. For example, if we declare 

i nt a [3 J [5] ; 

then we can think of the array elements arranged as follows: 

coil col 2 col 3 col 4 col 5 

row 1 a[0][0] a [0J[1] a[0][2J a[0] [3] a[0] [4] 

row 2 a[1][0J a[lJ [l.J a [1J [2] a[1][3J a [1][4J 

row 3 a [2J [0] a [2J [1] a[2][2] a [2] [3J a[2][4] 

Because of the relationship between arrays and pointers, there are numerous ways 
access elements of a two-dimensional array. 

Expressions equivalent to a[i J [j] 

"'(a[i] + j) 

('~(a + i)) [jJ 

*«*(a + i)) + j) 

*(&a[0][0J + 5*i + j) 

The parentheses are necessary because the brackets [] have higher precedence 
the indirection operator i'. We can think of a[i] as the ith row of a (counting from 
and we can think of a [i J [j] as the element in the ith row, jth column of the 
(counting from 0). The array name a by itself is equivalent to &a [0]; it is a pointer to 
array of 5 i nts. The base address of the array is &a [0J [0J, not a. Starting at the 
address of ,the array, the compiler allocates contiguous space for 15 i nts. 

6.12 T Multidimensional Arrays 279 

Storage Mapping Function 

For any array, the mapping between pointer values and array indices is called the 
"",.,.-n"IO mapping (unction. Consider the declaration 

a[3] [5] ; 

the array a, the storage mapping function is specified by noting that 

is equivalent to i, (&a [0] [0] + 5''<i + j) 

rmal Parameter Declarations 

When a multidimensional array is a formal parameter in a function definition all 
s except the first must be specified so that the compiler can determine the cor~ect 

mapp~g function. ~Because of this, multidimensional arrays are often inappro
for use m mathematIcal programming; see Section 12.6, "Dynamic Allocation of 

luun""o," on page 5 71.) Consider the declaration 

a[3] [5] ; 

allocates space for a 3 x 5 matrix. Its row size is 3, and its column size is 5. After 
elements of the matrix a have been assigned values, the following function can be 

to sum the elements of the matrix. Note carefully that the column size must be 
me<:me:d.. 

int sum(int a[][SJ) 
{ 

} 

int i, j, sum = 0; 

for (i = 0; i < 3; ++i) 
for (j 0; j < 5; ++j) 

sum += a[iJ [j]; 
return sum; 

the header of the function definition, the following three parameter declarations are 

int a[3](5] int (*a)[S] 

the second declaration, the constant 3 acts as a reminder to human readers of the 
but the compiler disregards it. In the third declaration, the parentheses are neces-



280 Chapter 6 V Arrays, Pointers, and Strings 

sary because of operator precedence. Caution: These three declarations are 
only in a header to a function definition. 

These ideas are related to what happens with respect to one-dimensional 
Recall that in a header to a function definition, the following three parameter de 
tions are equivalent: 

i nt b [J int b[3J int *b 

In the second declaration, the 3 serves as a reminded to human readers of the code, 
the compHer disregards it. Caution: These three declarations are equivalent only in 
header to a function definition. 

There is nothing special about the type i nt. For example, in the header to a 
definition the following three declarations are equivalent: 

char 'i'argv [] char "'argv [3J char >H<argv 

Although one bracket pair can be replaced by a 'I" the rule does not generalize. 
example, in a header to a function definition 

char x [J [J is not equivalent to char '~'i(x 

Three-dimensional Arrays 

Arrays of dimension higher than two work in a similar fashion. Let us describe 
three-dimensional arrays work. If we declare 

int a[7][9J[2J; 

then the compiler will allocate space for 7 x 9 x 2 contiguous i nts. The base address 
the array is &a [0] [0] [0J, and the storage mapping function is specified by noting 

a[iJ [j] [k] is equivalent to *(&a[0J[0][0] + 9*2*; + 2*j + k) 

If an expression such as a [i J [j J [k] is used in a program, the compiler uses the 
age mapping function to generate object code to access the correct array element 
memory. Here is a function that will sum the elements of the array. Note carefully 
all the sizes except the first must be specified. 

int sum(int a[J[9J[2]) 
{ 

} 

int i, j, k, sum = 0-, 
for (i 0; i < 7; ++i) 

for (j = 0; j < 9; ++j) 
for (k = 0; k < 2; ++k) 

sum += a[i][j][k]; 
return sum; 

6.12 V Multidimensional Arrays 
281 

the header of the function definition the foIl ' hr 
t: ' owmg t ee parameter declarations are 

i nt a [7J [9] [2] i nt (*a) [9] [2J 
the second declaration, the constant 7 acts as a remin 

, but the compiler disregards it The th der to human readers of the 
to generate the correct storage' map;in e~ two ~onstants are needed by the com
are equivalent only in a header to a fu gt' undctfl?~. ,Caution: These three dec1ara-

nc IOn e ImtlOn. 

are a number of ways to initialize a multid' . 
russion by considering the follOwing thre . 't'al~e~slOnal ~rray. Let us begin our dis-

int 
int 
int 

. e 1m 1 lzatlOns, which are equivalent: 

a[2] [3] = 
a[2] [3J = 
a[ ][3] = 

{I, 2, 3, 4, 5, 6}' 
{{I, 2, 3}, {4, 5,' 6}}; 
{{I, 2, 3}, {4, 5, 6}}; 

there a:-e .n? .in~er braces, then each of the array elements a 
(1] [2] IS mltlalIzed in turn. Note that the indexin i [0] [0], a [0] [1], .... , 

than elements in the array then th . .g s by rows. If there are fewer mi-
the first bracket pair is empty then th e re~~ng elements are initialized to zero. 

brace pairs. In any case, an' sizes ex~e~~~:; ;.r :akes the size from. the number of 
If we are willing to put in all the bra th lrst must always be gIVen explicitly. 

Consider the initialization ces, en we do not have to specify all the zeros. 

i nt a[2J[2][3] { 
i{l, 1, 0}, {2, 0, 0}}, 

}; {3, 0, 0}, {4, 4, 0}} 



282 Chapter 6 V Arrays, Pointers, and Strings 

An equivalent initialization is given by 

int a[][2][3] == {{{I, I}, {2}}, {{3}, {4, 4}}}; 

If the initializers are fully and consistently braced, then wherever there are not 
initializers listed, the remaining elements are initialized to zero. 

In general, if an array of storage class automatic is not explicitly initialized, 
array elements start with "garbage" values. Here is a simple way to initialize all 
elements to zero: 

int a[2J[2][3J == {0}; /* all element initialized to zero 

Unlike automatic arrays, all static and external arrays are initialized to zero by 

The Use of typedef 

Let us illustrate the use of typedef by defining a small number of functions that 
ate on vectors and matrices. 

#define 

typedef 
'typedef 
typedef 

N 3 

double 
scalar 
scalar 

/* the size of all vectors and matrices */ 

scalar; 
vector[N]; 
mat ri x [N] [N] ; 

We have used the typedef mechanism to create the types scal ar, vector, and matri 
which is both self-documenting and conceptually appropriate. Our programming 
guage has been extended in a natural way to incorporate these new types as a ""',,"'''ou" 
Notice how typedef can be used to build hierarchies of types. For example, we 
have written 

typedef vector matrix[N]; 

in place of 

typedef scalar matrix[N][N]; 

The use of typedef to create type names such as scalar, vector, and matri x allowS 
the programmer to think in terms of the application. Now we are ready to create 
tions that provide operations over our domain. 

6.12 V Multidimensional Arrays 

void add(vector x, vector y, vector z) 
{ 

int i; 

for (i 0; i < N; ++i) 
xCi] == y[;J + z[i]; 

} 

scalar dot_product(vector x, vector y) 
{ 

int 
scalar 

i ; 
sum = 0.0; 

for (i 0; i < N; ++i) 
sum +== xCi] * y[;]; 

return sum; 

/,~ x y + z "'/ 

283 

} 

void multiply(matrix a, 
{ 

matrix b, matrix c) /* a b ,~ c >~/ 

} 

i nt i, j, k; 

for (i = 0; i < N; ++i) { 
for (j = 0; j < N; ++j) { 

a[i] [j] 0.0; 
for (k = 0; k < N; ++k) 

} 
a[;J[j] += b[i][kJ ,~ c[k][j]; 

} 

:outines are not generic because they work only with vectors and matrices of a 
SIze. We show how this limitation can be removed in Section 12.6, "Dynamic Allo
of Matrices," on page 571. 



284 Chapter 6 T Arrays, Pointers, and Strings 

6.13 Arrays of Pointers 

In C, array elements can be of any type, including a pointer type. Arrays of r _.~,~, 

have many uses. In this section we will write a program that uses an array of pointers 
sort words in a file lexicographically. As we will see, an array with elements of 
char ;, can be thought of as an array of strings. 

To explain how our program works, we need to imagine first how we are going to 
it. Let us create the file input "vith the following two lines in it: 

A is for apple or alphabet pie 
which all get a slice of, come taste it and try. 

To sort the words in this file, we will give the command 

sorL words < input 

This is supposed to cause the following to be printed on the screen: 

A 
a 
all 
alphabet 

which 

Now we are ready to write our program. It will consist of header file and a number of 
files. Here is the header file and the function mai nO: 

In file sort.h 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

#define MAXWORD 50 
#define N 300 

/" max word size ,~/ 
/* array size of w[] */ 

void 
void 
void 
void 
void 
void 

error_exit_calloc_failed(void); 
error_exit_too_many_words(void); 
error_exit_word_too_long(void); 
sort_words (char >"w[] lint n); 
swap(char **p, char **q); 
wrt_words(char *w[], int n); 

/* Sort words lexicographically. */ 

#include "sort.h" 

int main(void) 
{ 

6.13 T Arrays of Pointers 

char word[MAXWORD]; 
char *w[N]; 

/* work space */ 

} 

i nt n; 
i nt i; 

/* an array of pointers */ 
/* number of words to be sorted */ 

for (i = 0; scanf("%s", word) == 1; ++i) { 
if (i >= N) 

} 

error_exit_too_many_words(); 
if (strlen(word) >= MAXWORD) 

error_exit_word_too_long(); 
wei] = calloc(strlen(word) + 1, sizeof(char)); 
if (w[i] == NULL) 

error_exit_calloc_failed(); 
strcpy(w[i], word); 

n = 1; 
sort_words(w, n); 
wrt_words(w, n); 
return 0; 

/* sort the words */ 
/* write sorted list of words */ 

• 
Dissection of main( ) in the sorL words Program 

• #define MAXWORD 50 
#define N 300 

/* max word s1 ze ,,< / 

/* array size of we] */ 

285 

These two lines in the header file define the symbolic constants MAXWORD and N, which 
get used in mai n 0 and in other functions. We are assuming that no word in the input 
file has more than 50 characters and that there are at most 300 words in the file. 



286 Chapter 6 T Arrays, Pointers, and Strings 

• char word[MAXWORD]; /* work.space */ 
/* an array of pointers */ char '~w[N] ; 

We will use the array word to temporarily store each word that is read from th~ 
file, and we expect each word to have less than MAXWORD characters. The declaratlOn 

char "'w[N]; is equivalent to char >"(w[N]); 

Thus, w is an array of pointers to char. This array will eventually store all the 
that we read from the input file. 

• for (; = 0; scanf("%s". word) == 1; ++i) { 

As long as scanfO is able to read characters from the standard input file and 
them in word, the body of the for loop is executed. Recall that scanfO takes as. 
ments a control string followed by addresses that are matched with the formats l.n 
control string. Here, the second argument to scanfO is the array name wor~ by Itself' 
Because an array name by itself is treated an address, we do not need to wnte &word. 
Technically, it would be an error to do so. Some compilers will warn the pr()gr'arr.lmt~r 
about this kind of error; others will not. 

• if (i >= N) 
error_exit_too_rnany_words(); 

if (strlen(word) >= MAXWORD) 
error_exit_word_too_long()j 

If there are too many words, we print an error message and exit. If there are .too many 
characters in the word read in by scanfO, we print an error message and eXit. By call
ing error functions to do this, we reduce the clutter in rnai nO· 

• wei] = ca11oc(str1en(word) + 1, s;zeof(char)); 

The function callocO is in the standard library, and its function prototype is in 

stdlib. h. A function call such as 

ca11oc(n, sizeof( ... )) 

dynamically allocates space for an array of n elements, with each element :equir~n~ 
si zeof( ... ) bytes in memory, and returns a pointer to the allocated space. r~e rmm
mum number of bytes needed to store the string word, including the end-of-strIng sen
tinel \0, is str1 en(word) + 1. (The + 1 is important, and unfortunately it is ea~y to 
forget.) The function call oc () dynamically allocates this space and returns a pomter 
to it. The pointer is assigned to w [i ]. 

6.13 T Arrays of Pointers 287 

We could have invoked rna 11 oc 0 instead of call oc O. Either of the following state
would have worked just as well: 

wei] = rna110c((strlen(word) + 1) i( s;zeof(char)); 
wei] = rna11oc((strlen(word) + 1)); 

statements are equivalent because si zeof(char) has value 1. The reason for writ
it is to remind readers of the code that space for an array of chars is being 

sted. With call oc 0, the allocated space is initialized to zero, but with rna 11 oc 0 
initialization takes place. Because we are going to overwrite the space, initialization 

is not needed. 

if (w[i] == NULL) 
error_exit_calloc_fai1ed(); 

Good programming practice requires that we check the return value from call oc 0 
rna 11 oc O. If the requested memory is unavailable, NULL is returned. If that is the 

case, we print an error message and exit. 

strcpy(w[i], word); 

After space has been allocated, the function strcpyO is used to copy word into mem
ory starting at the address w [i]. We can think of w as an array of words. 

17 

sort_words(w, n); 
wrt_words(w, n); 

o 

2 

3 

w 
L_-,....~ 

Ii 1 s 1\01 
Iflolrl\01 
!alplplllel\01 

l!frl yl.1 \01 

/* sort the words */ 
/* wri te sorted 1 i st of words if / 

The function sort_wordsO is used to sort the words in the array w lexicographically. 
Then wrt_wo rds 0 is used to write the sorted list of words on the screen. 

• • 



288 Chapter 6 T Arrays, Pointers, and Strings 

Now we want to look at the function so rt_wo rds O. It uses a transposition sort 
is similar in flavor to a bubble sort. 

In file sort.c 

#include "sort.h" 

void sort_words(char '1'w[J, int n) !* n elements are to be sorted 
{ 

} 

i nt i, j; 

for (i = 0; i < n; ++i) 
for (j = i + 1j j < n; ++j) 

if (strcmp(w[i], w[j]) > 0) 
swap(&w[i], &w[j]); 

Notice that strcmpO is used to compare the two strings pointed to by wei ] and w[j]. 
If they are out of order, we use the function swapO to interchange the two pointer val
ues. The addresses of the pointers are passed so that the pointer values themselves can 
be changed in the calling environment by the function call. The underlying character 
strings in memory do not get swapped; only the pointers to them are interchanged. 

wei] 

w[j] 

wei] i 

w[j] . 

w 

w 

Before swapping 

If I 01 rl \01 
lalplplllel\01 

After swapping 

#include "sort.hl! 

void swap(char **p, char **q) 
{ 

char >"tmpj 

tmp = "'pj 
'~p >"q; 
"'q = tmp; 

} 

6.13 T Arrays of Pointers 289 

of the two arguments &w[i ] and &w[j ] that get passed to swapO is an address of 
pointer to char, or equivalently, a pointer to pointer to char. Hence, the formal para

in the function definition of swapO are of type char >','1'. The swap() function 
very similar to the one we ""Tote previously; only the types are different. Consider the 

e p is a pointer to pointer to char, the expression >"p that dereferences p is of 
type char "'. Hence, we declared tmp to be of type char 'I, 

#include "sort.h" 

printf("%s" , 
"ERROR: The call to callocO failed to\n" 
I! allocate the requested memory - bye!\ntl); 

} 

} 

exit(l); 

printf("ERROR: At most %d words can be sorted 
exit(l); 

bye!\n", N)j 



290 Chapter 6 T Arrays, Pointers, and Strings 

printf("%s%d%s" , 
"ERROR: A word with more than ", MAXWORD, H\nH 
" characters was found - bye!\n"); 

exit(l); 
} 

In file wrt.c 

#include Hsort.h" 

void wrt_wordsCchar "'w[] , int n) 
{ 

} 

int i . , 

for Ci = 0; i < nj ++i) 
printfC"%s\n", w[i]); 

Of course, if the sorL words program were intended for serious work on a large amount 
of data, we would use a more efficient sorting algorithm. We could, for example, modify 
our mergeO and merge_sortO functions to work on arrays of pointers to char >,,,thol·· 

than on arrays of i nts. (See exercise 37, on page 325.) Also, we would want to count the 
words in the file and then allocate space for w [J dynamically, rather than using some 
arbitrarily large value N for the array size. (See Chapter 11, "Input/Output and the 
Operating System.") 

6.14 Arguments to maine) 

Two arguments, conventionally called argc and argv, can used with mai nO to com
municate with the operating system. Here is a program that prints its command line 
arguments. It is a variant of the echo command in MS-DOS and UNIX. 

6.14 T Arguments to mainO 

/* Echoing the command line arguments. */ 

#include <stdio.h> 

int main(int argc, char *argv[]) 
{ 

} 

i nt i; 

printf(Hargc %d\n", 
for (i 0; i < argc; 

pri ntfCHargv [%c1] 
return 0; 

argc); 
++i) 
%s\n", i, argv[i]) ; 

291 

The variable argc provides a count of the number of command line arguments. The 
array argv is an array of pointers to char that can be thought of as an array of strings. 
The strings are the words that make up the command line. Because the element 
argv [0J contains the name of the command itself, the value of argc is at least 1. 

Suppose we compile the above program and put the executable code in the file 
my_echo. If we give the command 

my_echo a is for apple 

the following is printed on the screen: 

argc 5 
argv[0] 
argv[l] 
argv[2] 
argv[3] 
argv[4] 

my_echo 
a 
is 
for 
apple 

On an MS-DOS system, the string in argv [0J consists of the full pathname of the com
mand, and it is capitalized. As we will see in Section 11.12, "Environment Variables," on 
page 521, file names are often passed as arguments to main O. 



292 Chapter 6 T Arrays, Pointers, and Strings 

6.15 Ragged Arrays 

We want to contrast a two-dimensional array of type char with a one-dimensional array 
of pointers to char. Both similarities and differences exist between these two con
structs. 

#include <stdio.h> 

int main(void) 
{ 

} 

char a[2][15]:, {"abc:", "a is for apple"}; 
char *p[2] :; {"abc:", "a is for apple"}; 

pri ntf("%c%c%c %s %s\n", a[0][0], a[0][1], a[0][2], a[0], a[I]); 
printf("%c%c%c %s %s\n", p[0][0], p[0][1], p[0][2], p[0], pEl]); 
return 0; 

The output of this program is the follov\'ing: 

abc abc: a is for apple 
abc abc: a is for apple 

The program and its output illustrate similarities in how the two constructs are used. 
Let us consider the program in some detail. 

The identifier a is a two-dimensional array, and its declaration causes space for 30 
chars to be allocated. The two-dimensional initializer is equivalent to 

{{'a', 'b', 'e', ':', '\0'}, {'a', ' " 'i', '5', ... }} 

The identifier a is an array, each of whose elements is an array of 15 chars. Thus, a[0] 
and a[lJ are arrays of 15 chars. Because arrays of characters are strings, a[0] and 
a [IJ are strings. The array a [0J is initialized to 

{'a', 'b', 'e', ':', '\0'} 

and because only five elements are specified, the rest are initialized to zero (the null 
character). Even though not all elements are used in this program, space has been allo
cated for them. The compiler uses a storage mapping function to access a [i] [jJ. Each 
access requires one multiplication and one addition. 

6.16 T Functions as Arguments 293 

The identifier p is a one-dimensional array of pointers to char. Its declaration causes 
space for two pointers to be allocated (4 bytes for each pointer on our machine). The 
element P [0J is initialized to point at "abc: ", a string that requires space for 5 chars. 
The element p [IJ is initialized to point at "a is ... ", a string that requires space for 
15 chars, including the null character \0 at the end of the string. Thus, p does its work 
in less space than a. Moreover, the compiler does not generate code for a storage map
ping function to access p [i J [j J, which means that p does its work faster than a. Note 
that a [0:1 [14] is a valid expression, but that p [0] [14 J is not. The expression 
p[0J [14J overruns the bounds of the string pointed to by p[0J. Of course, a[0] [14J 
overruns the string currently stored in a [0], but it does not overrun the array a [0]. 
Hence, the expression a[0J [14] is acceptable. 

Another difference is that the strings pointed to by p [0J and p [1] are constant 
strings, and, hence, cannot be changed. In contrast to this, the strings pointed to by 
a[0] and a[l] are modifiable. 

An array of pointers whose elements are used to point to arrays of varying sizes is 
called a ragged array. Because, in the preceding program, the rows of p have different 
lengths, it is an example of a ragged array. If we think of the elements p [i] [j ] 
arranged as a "rectangular" collection of elements in rows mid columns, the disparate 
row lengths give the "rectangle" a ragged look. Hence the name "ragged array." 

6.16 

o 
1 

A ragged array 

p 

-t----.....lalblcl\01 

-t----eoo-Ial lilsl Iflolrl lalplplllel\01 

Functions as Arguments 

In C, pointers to functions can be passed as arguments, used in arrays, returned from 
functions, and so forth. In this section we describe how this facility works. 

Suppose we want carry out a computation with a variety of functions. Consider 

n 

k III 



294 Chapter 6 T Arrays, Pointers, and Strings 

where in one instance f(k) = si n (k), and in another instance f(k) 
lowing routine accomplishes the task: 

In file sum_sqr.c 

#include "sum_sqr.h" 

double sum_square(double f(double x), int m, int n) 
{ 

} 

int 
double 

k; 
sum = 0.0; 

for (k = m; k <= n; ++k) 
sum += f(k) * f(k); 

return sum; 

1/ k. The 

In the header to the function definition, the first parameter declaration tells the com
piler that f is a function that takes an argument of type dou b 1 e and returns a dou b 1 e. 
The identifier x is for the human reader; the compiler disregards it. Thus, we could 
have written 

double sum_square(double f(double), int m, ;nt n) 
{ 

When a function occurs in a parameter declaration, the compiler interprets it as a 
pointer. Here is an equivalent header to the function definition: 

double sum_square(double (tlf) (double) , int m, int n) 
{ 

We read the first parameter declaration as "f is a pOinter to function that takes a single 
argument of type double and returns a double." The parentheses are necessary 
because 0 binds tighter than t,. In contrast, consider the declaration 

double *g(double); 

This declares 9 to be a function that takes an argument of type doubl e and returns a 
pointer to doub 1 e. 

6.16 T Functions as Arguments 295 

In the body of the function definition for sum_square 0, we can either treat the 
pointer f as if it were a function, orwe can explicitly dereference the pointer. For exam
ple, we could have written 

sum += (*f)(k) * (*f)(k); instead of 

It is helpful to think of the construct (*f) (k) as follows: 

f 
"'f 
Uf) (k) 

the pointer to a function 
the function itself 
the call to the function 

sum += f(k) * f(k); 

To illustrate how the function sum_squareO might be used, let us write a complete 
program. In main 0, we will use si nO from the mathematics library and the function 
fO, which we will write ourselves. 

#include <math.h> 
#include <stdio.h> 

double 
double 

f(double x); 
sum_square(double f(double x), int m, int n); 

In file main.c 

#include "sum_sqr.h" 

i nt mai n (voi d) 
{ 

} 

printf("%s%.7f\n%s%.7f\n", 
II First computation:" sum_square(f, 1, 10000), 
"Second computation: ", sum_square(sin, 2, 13)); 

return 0; 

In file fct.c 

#include "sum_sqr.h" 

double f(double x) 
{ 

return 1.0 I x; 
} 



296 Chapter 6" Arrays, Pointers, and Strings 

The output of this program is 

First computation: 1.6448341 
Second computation: 5.7577885 

In mathematics it is known that the sum of 1/k2 from 1 to infinity is n;2/6. Notice 
the first number in the output of the program approximates this. 

Functions as Formal Parameters in Function Prototypes 

There are a number of equivalent ways to write a function prototype that has a 
as a formal parameter. To illustrate this, let us write a list of equivalent function 
types for s um_sq r 0 : 

double 
double 
double 
double 
double 
double 

sum_square(double f(double x), int m, int n)j 
sum_square(double f(double) , int m, int n)j 
sum_square(double f(double) , int, int); 
sum_square(double (*f) (double) , int, int); 
sum_square(double (*)(double) , int, int); 
sum_square(double g(double V), int a, int b); 

In the above list, the identifiers m and n are optional; if present, the compiler disregards 
them. In a similar fashion, the identifier f in the construct U<f) is optional. 

In C, a function can have multiple prototypes, provided that they are all equivalent. 
Thus, when we put the above list in the header file sum_sqr.h, our program '-'HULl"';'" 

and runs just as before. 

6.1 7 An Example: Using Bisection to Find the Root 
of a Function 

An important problem that arises in engineering, mathematics, and physics is to find 
the root of a given real-valued function. A real number x that satisfies the equation 
{(x) = 0 is called a root of f. In simple cases-for example, if fis a quadratic polyno
mial-a formula for the roots is known. In general, however, there is no formula and a 
root must be found by numerical methods. 

6.17 " An Example: Using Bisection to Find the Root of a Function 297 

Suppose that (is a continuous real-valued function defined on the interval [a, b]. If 
and f'(b) are of opposite sign, then the continuity of the function guarantees that it 
a root in the interval [a, b]. 

Finding a root by bisection 
y 

r 
graph of f 

midpoint 

I 
m b 

x 

f(b) 

Notice that the condition that ((a) and f'(b) have opposite sign is equivalent to the prod
uct f(a) x ((b) being negative. The method of bisection proceeds as follows. Let m be 
the midpoint of the interval. If f'(m) is zero, we have found a root. If not, then either f(a) 
and ((m) are of opposite sign or f(m) and f(b) are of opposite sign. Suppose that the 
first case holds. We then know that (has a root in the interval [a, m], and we now start 
the process over again. After each iteration, we obtain an interval that is half the length 
of the previous interval. When the interval is sufficiently small, we take its midpoint as 
an approximation to a root of t: In general, we cannot hope to find the exact root. For 
most functions the precise mathematical root will not have an exact machine represen
tation. Here is a program that finds an approximate root of the polynomial: 

In file find_root.h 

#include <assert.h> 
#include <stdio.h> 

typedef double dbl; 



298 Chapter 6 T Arrays, Pointers, and Strings 

extern int 
extern const dbl 

cnti 
epsi /* epsilon, a small quantity */ 

d
dbbll bisection(dbl f(dbl x), dbl a, dbl b)i 

f(dbl x); 

In file main.c 

/* Find a root of f() by the bisection method. */ 

#include Ifind30ot.h" 

i nt cnt 0; 
canst dbl eps 1e-13; /* epsilon, a small quantity */ 

int main(void) 
{ 

dbl a = -10.0; 
dbl b = +10.0; 
dbl root; 

assert(f(a) * feb) <= 0.0); 
ro?t = bisection(f, a, b); 
pn ntf("%s%d\n%s% .15f\n%s% .15f\n" 

liN ' o. of fct calls: ", cnt, 
"Approximate root: ", root 
" Function value: ", f(ro~t»; 

return 0; 

/* recursive fct call */ 

} 

In file bisection.c 

#include "find_root.h" 

~bl bisection(dbl f(dbl x), dbl a, dbl b) 

} 

dbl m = (a + b) / 2.0; 

++cnt; 
if (f(m) == 0.0 I I b - a < eps) 

return m; 
else if (f(a) * f(m) < 0.0) 

return bisection(f, a, m); 
else 

return bisection(f, m, b); 

/* mi dpoi nt it / 

/* # of fct calls */ 

6.17 T An Example: Using Bisection to Find the Root of a Function 

#include "find_root.h" 

dbl f(dbl x) 
{ 

return (x * x * x * x * x 
} 

7.0 ,', x 3.0) ; 

299 

In mathematics, the Greek letter "epsilon," written £, is often used to represent a small 
sitive quantity (number). In mathematical programming, the identifier eps is often 

to play the role analogous to £ in mathematics. 
In mai nO, a has value -10 and b has value +10. Thus, the interval [a, b] is the same 

as the interval [-10, +10]. Clearly, f(-10) is negative and f(+10) is positive. That is, f 
takes on values having opposite signs at the end points of the interval [a, b], which 
means that the bisection method can be used to find an approximate root of f. It so 
happens that f has three real roots and a pair of complex roots. The bisection method 
will only find a real root, and which one depends on the interval [a, b] initially chosen. 
Here is the output from the program: 

No. of fct calls: 49 
Approximate root: 1.719628091484431 

Function value: -0.000000000000977 

If we use 1e-15 instead of 1e-13 as the value for eps in ma; nO. then the function 
value printed out would be zero. We did not use 1e-15 in our program, because we did 
not want to give the reader the impression that an actual root was found. If we change 
our program to use long doubles instead of daub 1 es, change the value of eps from 
1e-13 to 1e-31, and change the formats % .16f in the pri ntfO statement to % .33f, 
then the following gets printed on our system: 

No. of fct calls: 109 
Approximate root: 1.719628091484457524492214890955915 

Function value: -0.000000000000000000000000000000555 

No matter how much work we do, we do not expect to get an exact decimal representa
tion of the root. Although we are not sure, the root is probably an irrational number. 

The blank space follOwing the % in the formats .causes a blank to be printed if the cor
responding argument is positive, but has no effect if the argument is negative. This pro
vides a mechanism for lining up positive and negative numbers. (See Section 11.1, "The 
Output Function pri ntfO," on page 493, for details about formats.) 



300 Chapter 6 T Arrays, Pointers, and Strings 

The Kepler Equation 

In the early 1600s Johannes Kepler wanted to solve the equation 

m x - e sin(x) 

for various values of the parameters m and e. One way to view the problem is to 

y=x and y m + e sin(x) 

together. A solution to the Kepler equation then corresponds to the point where 
two graphs intersect. . 

A. solution of the Kepler equation 

y 

y m + e sin x 

x 

We want to write a program that solves the Kepler equation when the parameters have 
the values m = 2.2 and e 0.5. Observe that solving 

m x e sin(x) is equivalent to solving x e sin(x) - m a 

Our program will solve the Kepler equation by using the method of dissection to find a 
root of the function x - e sin(x) m. Here is our program: 

6.17 T An Example: Using Bisection to Find the Root of a Function 301 

#include <assert.h> 
#include <math.h> 
#include <stdio.h> 

typedef double dbl; 

extern i nt cnt; 
extern const dbl 
extern const dbl 
extern const dbl 

eps; 
e; 
m; 

1* epsilon, a small quantity *1 
1* a parameter in the Kepler eqn *1 
1* a parameter in the Kepler eqn *1 

dbl 
dbl 

b1section(dbl f(dbl x), dbl a, dbl b); 
kepler(dbl x); 

1* Use bisection to solve the Kepler equation. *1 

#include "kepler.h" 

i nt cnt :=: 0; 
const dbl eps :=: 1e-15; 1* epsilon, a small quantity *1 

11( a paramete r in the Kep 1 e r eqn i( I 
1* a parameter in the Kepler eqn *1 

const dbl e 0.5; 
const dbl m :=: 2.2; 

int main(void) 
{ 

} 

dbl a :=: -100.0; 
dbl b :=: +100.0; 
dbl root; 

assert(kepler(a) * kepler(b) <= 0.0); 
root = bisection(kepler, a, b); 1* recursive fct call *1 
printf("%s%d\n%s% .15f\n%s% .15f\n", 

"No. of fct calls: ", cnt, 
"Approximate root: ", root, 
" Function value: " kepler(root)): 

return 0; 



302 Chapter 6 T Arrays, Pointers, and Strings 

In file kepler.c 

#include "kepler.h" 

dbl kepler(dbl x) 
{ 

} 
return (x - e * sin(x) - m); 

The bi secti on 0 function is the same as the one we wrote Section 6.17, "An t:x'll11ple 
Using Bisection to Find the Root of a Function," on page 298. Here is the output of 
program: 

No. of fct calls: 59 
Approximate root: 2.499454528163501 

Function value: 0.000000000000000 

6.18 Arrays of Pointers to Function 

In the kepler program that we discussed in the previous section, the bi secti on 0 
function takes as its first argument a function, or more precisely, a pointer to function. 
In C, a function name by itself is treated by the compiler as a pointer to the function. 
(This is analogous to the idea that an array name by itself is treated as a pointer to the 
base of the array in memory.) Technically speaking, when we pass kepler as an argu
ment to bi sect; on 0, it is the address of kep 1 e r 0 that gets passed. To make the 
pointer nature of the identifier kep 1 e r more evident, here is another way to write 
rna in 0 in the kepler program: 

int rnain(void) 
{ 

dbl a = -100.0; 
dbl b +100.0; 
dbl root; 
dbl (*pfdd)(dbl); 

pfdd = kepl er; 
assert(pfdd(a) * pfdd(b) <= 0.0); 
root = bisection(pfdd, a, b); 

1* ptr to fct taking dbl 
and returning dbl *1 

1* recursive fct call *1 

6.18 " Arrays of Pointers to Fu nction 303 

that pfdd is a pointer variable of type "pointer to function taking a single argu
of type double and returning a doub 1 e." Like other C pointers, pfdd is strongly 
and can only be assigned pointer values of the same type. Because kep 1 e r 0 is a 

taking a doubl e and returning a doubl e, we can assign kepl er to pfdd. 
I'Wl.CH,,",''''' the type for pfdd matches the type of the first parameter in the function defi

for bi sectionO, we can pass pfdd as an argument to bi sectionO. 
In our next program we create an array of pointers, each of type "pointer to function 

taking a double and returning a double." We then deal with each array element (flmc
tion pointer) in a fo r loop. Caution: In this program pfdd will be a type, not a pointer 
variable. 

#include <assert.h> 
#include <math.h> 
#include <stdio.h> 

#define N 4 

typedef double dbl; 

I'" 

1* size of array of ptrs to ~'I 

II Create 
~, I 

the type "ptr to fct taking a dbl and returning a dbl." 

typedef dbl (~'pfdd) (dbl); 

extern int 
extern const dbl 

cnt; 
eps; 1* epsilon, a small quantity *1 

dbl bisection(pfdd f, dbl a, dbl b); 
dbl f1(dbl x); 
dbl f2(dbl x); 
dbl f3(dbl x); 



304 Chapter 6 l' Arrays, Pointers, and Strings 

In file main.c 

1* Use bisection to find roots. *1 

#include "find_roots.h" 

int cnt 0; 
canst dbl eps = 1e-13; 
int main(void) 
{ 

begin_cnt; 
i ; 
nfct_calls; 
a = -100.0; 
b = +100.0; 
root; 
val; 

1* epsilon, a small quantity 

int 
int 
i nt 
dbl 
dbl 
dbl 
dbl 
pfdd feN] = {NULL, f1, f2, f3}; 

} 

for (i = 1; i < N; ++i) { 
assert(f[i](a) * f[i](b) <= 0.0); 
begin_cnt = cnt; 

} 

root = bisection(f[i], a, b); 
nfct_calls = cnt begin_cnt; 
val = f[iJ(root); 
printf("%s%d%s% .15f\n%s%d%s% . 15f\n%s%3d\n\n", 

"For f[", i, "](x) an approximate root is x0 =.: ", root, 
" Fct evaluation at the root: f[", i, "](x0) = ", val, 
" Number of calls to bisectionO =", nfct_calls); 

return 0; 

In file bisection.c 

#include "find_roots.hl! 

dbl bisection(pfdd f, dbl a, dbl b) 
{ 

} 

dbl m = (a + b) I 2.0; 

++cnt; 
if (f(m) == 0.0 I I b - a < eps) 

return m; 
se if (f(a) * f(m) < 0.0) 

return bisection(f, a, m); 
else 

return bisection(f, m, b); 

r midpoint -1<1 

1-1< # of fct calls *1 

#include "find_roots.h" 

dbl fl(dbl x) 
{ 

6.18 l' Arrays of Pointers to Function 

return (x*x*x - x-l<x + 2.0*x - 2.0); 
} 

dbl f2(dbl x) 
{ 

} 

dbl 
{ 

} 

return (sin(x) - 0.7*x*x*x + 3.0); 

f3(dbl x) 

return (exp(0.13*x) - x*x*x); 

When we execute this program, here is what gets printed: 

• 

For f[l] (x) an approximate root is x0 1.000000000000023 
Fct evaluation at the root: f[1](x0) = 0.000000000000069 

Number of fct calls to bisection() 52 

For f[2](x) an approximate root is x0 
Fct evaluation at the root: f[2](x0) 

Number of fct calls to bisection() 

For f[3](x) an approximate root is x0 
Fct evaluation at the root: f[3](x0) 

Number of fct calls to bisection() 

1.784414278382185 
0.000000000000169 

52 

1.046387173807117 
-0.000000000000134 
52 

Dissection of the find_Foots Program 

III I'" 

305 

II Create 
i'l 
typedef 

the type "ptr to fct taking a dbl and returning a dbl." 

dbl (*pfdd)(dbl); 

This typedef makes pfdd a new name for the type "pointer to function taking a single 
argument of type double and returning a double." We will see that the use of pfdd 
makes the code easier to write and easier to read. 



306 Chapter 6 'I/f Arrays, Pointers, and Strings 

1/1 db 1 bisection(pfdd f, dbl a, dbl b); 

This is the function prototype for bi secti on O. Because pfdd is a typedef, the p 
eter declaration pfdd f is equivalent to what one gets by substituting f for pfdd in 
typedef itself. Thus, pfdd f is equivalent to db 1 C"(f) (db 1), and two other 
function prototypes for bi secti onO are 

dbl bisection(dbl f(dbl), dbl a, dbl b); 
dbl bisection(dbl f(dbl x), dbl a, dbl b); 

Although these are longer, some programmers prefer them. Any of these styles 
acceptable; 

1/1 pfdd feN] = {NULL, fl, f2, f3}; 

We declare f to be an array of N elements, with each element having type pfdd. 
array is initialized with four pointer values, the first being NULL. The initialization 
causes f[0] to be assigned NULL, fell to be assigned to fl, f[2] assigned to f2, and 
so forth. We will not use f[0]. The following declarations are equivalent: 

III pfdd feN] {NULL, fl, f2, f3}; 
pfdd 
dbl 
dbl 

fEN] {NULL, &fl, &f2, &f3}; 
(*f[N])(dbl) = {NULL, fl, f2, f3}; 
(*f[N])(dbl) = {NULL, &fl, &f2, &f3}; 

We can choose anyone from this list to use as our declaration of f. A function name by 
itself, such as fl, can be thought of as a pointer. But we may also think of it as the 
name of a function vvith &fl being a pointer to the function. ANSI C allows ambiguous 
thinking in this matter. 

1/1 root = bisection(f[i], a, b); 

Here, the pointer f[i] is being passed as an argument to bisectionO. Equivalently, 
we could have vvritten 

root = bisection(*f[i], a, b); 

When we dereference the pointer, we get the function that it points to. But the compiler 
treats a function by itself as a pointer to the function, so the two ways of writing this 
are equivalent. The words "function by itself" mean that the function is not followed by 
parentheses. If a function name or a function pointer or a dereferenced function 
pointer is followed by parentheses, then we have a call to the function. 

6.19 'I/f The Type Qualifiers canst and volatile 307 

Hi ](a) f[i ](b) f[iJ (root) 

are calls to the function pointed to by f [i ] . If we wish, we can write 

("(f[i]) (b) (*f[i] )Croat) 

. The output shows that f[i ] (root) for each i is close to zero, as it should be. 

te that each of our functions fl 0, f2 0, and f30 happens to take on values with 
opposite signs at the end points of the interval [-100, 100]. Our calls to bisectionO 
would not work if this condition does not hold. 

The Type Qualifiers const and vol atil e 

The keywords const and vol ati 1 e have been added to the C language by the ANSI C 
committee. These keywords are not available in traditional C. They are called type qual
ifiers because they restrict, or qualify, the wayan identifier of a given type can be used. 

Let us first discuss how const is used. Typically, in a declaration const comes after 
the storage class, if any, but before the type. Consider the declaration 

static canst int k = 3; 

We read this as "k is a constant i nt with stati c storage class." Because the type for k 
has been qualified by canst, we can initialize k, but thereafter k cannot be assigned to, 
incremented, decremented, or otherwise modified. 

In C, even though a variable has been qualified with const, it still carmot be used to 
specify an array size in another declaration. In C++, however, it can be used for this 
purpose. This is one of the places 'where C and C++ differ. 

canst int n = 3; 
int v[n]; /* any C compiler should complain */ 

In some situations we can use a const-qualified variable instead of a symbolic con
stant; in other situations, we cannot. 

An unqualified pointer should not be assigned the address of a canst-qualified vari
able. The follmving code illustrates the problem: 



308 Chapter 6" Arrays, Pointers, and Strings 

const int a = 7; 1 . */ 
int *p = &a; /* the compiler will camp aln 

Here is the reason why the compiler complains. Since p is an ordinary pointer to i 
we could use it later in an expression such as ++"'p to change the stored value of a, 
lating the concept that a is constant. If, however, we write 

canst int a = 7; 
canst int *p &a; 

then the compiler will be happy. The last declaration is read ."p is ~ pointer to a 
stant i nt and its initial value is the address of a." Note that p 1ts:l[lS not const:nt. 
can assign to it some other address. We may not, however, assIgn a value to p. 

object pointed to by p should not be modified. ..' .. 
Suppose we want p itself to be constant, but not a. This IS achleved With the 

declarations: 

int a; 
int * const p = &a; 

We read the last declaration as "p is a constant pointer to i nt, and its initi~ value is 
address of a." Thereafter, we may not assign a value to p, but we may asslgn a value 

;'p. Now consider 

const int a = 7; 
const int * const p = &a; 

The last declaration tells the compiler that p is a constant pointer to a constant i 
Neither p nor "'p can be assigned to, incremented, or decremented. . 

In contrast to canst, the type qualifier vo 1 atil e is seldom used. A vo 1 atl1 ~ 
is one that can be modified in some unspecified way by the hardware. Now conslder 

declaration 

extern canst volatile int real_time_clocl<; 

. ..' h n" The The extern means "look for it elsewhere, either m thIS flle or m some ot er Ie. 
qualifier vo 1 at; 1 e indicates that the object may be acted on by the hardw~e. B~ause 
const is also a qualifier, the object may not be assigned to, incremente ,or ~:e
mented v-1thin the program. The hardware can change the clock, but the code cann . 

." Summary 309 

The brackets [] are used in a declaration to tell the compiler that an identifier is an 
array. The integral constant expression in the brackets specifies the size of the 
array. For example, the declaration 

int a[100]; 

causes the compiler to allocate contiguous space in memory for 100 i nts. The ele
ments of the array are numbered from a to 99. The array name a by itself is a con
stant pointer; its value is the base address of the array. 

A pointer variable takes addresses as values. Some typical values are NULL, 
addresses of variables, string constants, and pointer values, or addresses, returned 
from functions such as call oc O. If allocation fails-for example, the system free 
store (heap) is exhausted-then NULL is returned. 

The address operator & and the indirection or dereferencing operator ~, are unary 
operators with the same precedence and right to left associativity as other unary 
operators. If v is a variable, then the expression 

;'&v is equivalent to v 

Pointers are used as formal parameters in headers to function definitions to effect 
"call-by-reference." When addresses of variables are passed as arguments, they can 
be dereferenced in the body of the function to change the values of variables in the 
calling environment. 

In C, arrays and pointers are closely related topics. If a is an array and i is an i nt, 
then the expression 

a [;] is equivalent to '~(a + i) 

These expressions can be used to access elements of the array. The expression a + 
i is an example of pointer arithmetic. Its value is the address of the element of the 
array that is i elements beyond a itself. That is, a + i is equivalent to &a [i ] . 



310 Chapter 6 v Arrays, Pointers, and Strings 

6 In the header to a function definition, the declaration of a parameter as an array 
equivalent to its declaration as a pointer. For example, 

int a[] is equivalent to i nt >'a 

This equivalence does not hold elsewhere. 

7 When an array is passed as an argument to a function, a pointer is actually 
The array elements themselves are not copied. 

8 Strings are one-dimensional arrays of characters. By conve.ntion, t~ey are t 
nated with the null character \0, which acts as the end-of-strmg sentmel. 

9 The standard library contains many useful string-handling functions. For e~ample, 
strl en 0 returns the length of a string, and strcatO concatenates two strmgs. 

10 Arrays of any type can be created, including arrays of arrays. For example, 

double a[3] [7J; 

declares a to be an array of "array of 7 doub 1 es." The elements of a are accessed by 
expressions such as a [i ] [j]. The base address of the array is &a [0] [0 J , not a. The 
array name a by itself is equivalent to &a [0J. 

11 In the header to a function definition, the declaration of a multidin:ensional array 
must have all sizes specified except the first. This allows the compIler to generate 
the correct storage mapping function. 

12 Arguments to mai n 0 are typically called argc and argv. The value of argc is the 
number of command line arguments. The elements of the array argv ar~ addresses 
of the command line arguments. We can think of argv as an array of strmgs. 

13 Ragged arrays are constructed from arrays of pointers. The elements of the array 
can point to arrays with different sizes. 

14 Like an array name, a function name that is passed as an argument is treate~ as. a 
pointer. In the body of the function the pointer can be used to call the functlOn III 
the normal way, or it can be explicitly dereferenced. 

15 The type qualifiers const and vol ati 1 e have been added to ANSI C. They are not 
available in traditional C. 

v Exercises 311 

rcises 

Four values get printed when the following code is executed. How many of those 
values are the same? Explain. 

char *format = n%p %d %d %d\n"; 
int i = 3; 
int "'p = &i; 

printf(format, p, *p + 7, 3 * **&p + 1, 5 * (p (p - 2))); 

One of our compilers warned us about integer overflow for the expression p _ (p 
- 2) in the previous exercise. Modify the program that you wrote in the previous 
exercise so that it prints the integer values of both p and p - 2. Does it seem possi
ble that integer overflow can occur? (See the next exercise for further diSCUSSion.) 

Consider the follOwing program: 

#include <stdio.h> 
#include <stddef.h> 

int main(void) 
{ 

} 

int a, b, *p = &a, *q &b; 
ptrdiff_t diff p - q; 
printf(IJdiff = %d\nn, diff); 
return 0; 

In ANSI C, the difference of two pointer expressions must be a signed integral type. 
On most UNIX systems, the type is i nt, and on most MS-DOS systems the type is 
long. On all ANSI C systems, the type is given in the standard header file stddef.h 
by a type definition of the following form: 

typedef type ptrdifLt; 

Find this typedef in stddef.h on your system so that you will know the type for 
di ff. Note that %d is appropriate in the pri ntfO statement if di ff has type i nt 
and that %1 d is appropriate if d; ff has type long. Run the program so that you 
understand its effects. Then modify the program by adding the following two lines: 



312 Chapter 6" Arrays, Pointers, and Strings 

diff == p - Cint *) 0; 
printfC"diff %d\n", diff); 

Are you surprised by what gets printed now'? Do you understand the reason for 
compiler warning that was discussed in exercise 2, on page 311? Explain. If i nt ,~ 
replaced by pt rdi ff _ t ''', does the program act any differently? 

4 If i and j are i nts and p and q are pointers to i nt, which of the following 
ment expressions are not legal? 

P 
i 

p &"'&i 
i ;'&'''&j 

i :=: C; nt) p q == &p ~'q :=: &j 
i :=: *p++ + *q 

5 When variables are declared, are they located in memory contiguously? Write a 
gram with the declaration 

char a, b, c, "'p, r'q, ;'r; 

and print out the locations that are aSSigned to all these variables by your ---"""~~L' 
Are the locations in order? If the locations are in order, are they increasing or 
decreasing? Is the address of each pointer variable divisible by 4? If so, this prob 
bly means that each pointer value gets stored in a machine word. 

6 The follOwing program uses %p formats to print out some addresses: 

#include <stdio.h> 

int main(void) 
{ 

int a:=: 1, b :=: 2, c :=: 3; 

printfC"%s%p\n%s%p\n%s%p\n", 
"&a " &a 
"&b " &b: 
"&c "&c); 

return 0; 
} 

If the variables a, b, and c are not initialized, does the program produce the same 
output? What happens on your system if you change %p to %d? Does your compiler 
complain? (It should.) If possible, run your program on an MS-DOS system. Because 
a pointer is 4 bytes and an i nt is 2 bytes, the %d format is inappropriate and can 
cause a negative number to be printed. 

" Exercises 313 

If you want to see addresses printed as decimal numbers rather than hexadecimals 
it is usually safe to cast an address as an unsi gned long and use the %1 u format: 
Try this on your system by replacing the pri ntfO statement in exercise 6, on page 
312, by 

printfC"%s%lu\n%s%lu\n%s%lu\n", 
"&a == ", (unsigned long) &a, 
n&b :=: ", Cunsigned long) &b, 
n&c = ", (unsigned long) &c); 

What gets printed? Explain. 

#include <stdio.h> 

typedef unsigned long u1ong; 

int main(void) 
{ 

} 

char 
i nt 
double 
long double 

'''pc = NULL; 
'''pi = NULL; 
*pd == NULL; 
"'pld = NULL; 

printf("%51u%5lu\n%5lu%5lu\n%51u%5lu\n", 
Culong)(pc + i), (ulong)(pi + 1), 
(ulong)(pd + i), (ulong)(pld + I), 
(ulong)(pc + 3), (ulong)Cpld + 3)); 

return 0; 

The following array declarations have several errors. Identify each of them. 

#define N 4 

int 
int 
i nt 

a[N] = {0, 2, 2, 3, 4}; 
b[N 5]; 
c[3.0]; 



314 Chapter 6... Arrays, Pointers, and Strings 

10 In the following program,the invocation of change_itO seems to have no 

Explain. 

#include <stdio.h> 

void change_it(int []); 

int main(void) 
{ 

} 

int a[5], ~'p; 

p aj 
printf("p has the value %p\n", p); 
changLit(a); 
p = a; 
printf(ltp has the value %p\n lt , p); 
return 0; 

void change_it(int a[]) 
{ 

int i 777, *q =: &i; 
/* a is assigned a different value */ a := q; 

} 

11 What is wrong with the following program? Correct the program and explain 
meaning of its output. 

#include <stdio.h> 

int main(void) 
{ 

} 

int a[] {0, 2, 4, 6, 8}, 
'1'p = a + 3; 

printf(lt%s%d%s\n%s%d%s\n", 
"a[?] =",""p, O?", 
lta[?+lJ = fI, ~'P + 1, fI?"); 

return 0; 

12 A real polynomial p(x) of degree n or less is given by 

p(x) =a0 + alx +a2x2 + .. ' +anxn 

with the coefficients a0 , al, .. " an representing real numbers. If an! 0, then the 
degree of p(x) is n. Polynomials can be represented in a machine by an array such as 

#define 

double 

N 5 

peN + 1J; 

Write a function 

... Exercises 315 

/* N is the max degree */ 

double eval(double pC], double x, int n) 
{ 

/* n is max degree */ 

that returns the value of the polynomial p evaluated at x. Write two versions of the 
function. The first version should be written with a straightforward naive approach. 
The second version should incorporate Horner's Rule. For fifth-degree polynOmials, 
Horner's Rule is expressed by writing 

Hm" many additions and multiplications are used in each of your two versions of 
the eva 1 0 function? 

Write a function that adds two polynomials of at most degree n. 

/* f = g + h; n is the max degree of f, g, and h */ 

void add(double f[], double g[], double he], int n) 
{ 

Write an algorithm to multiply two polynOmials of at most degree n. Use your func
tion add 0 to sum intermediate results. This is not very efficient. Can you write a 
better routine? 

Modify the function bubb 1 e 0 so that it terminates after the first pass in which no 
two elements are interchanged. 

16 Modify mergesort 0 so that it can be used with an array of any size, not just with a 
size that is a power of 2. Recall that any positive integer can be expressed as a sum 
of powers of two-for example, 

27 16 + 8 + 2 + 1 

Consider the array as a collection of sub arrays of sizes that are powers of 2. Sort 
the subarrays, and then use me rge 0 to produce the final sorted array, 



316 Chapter 6 T Arrays, Pointers, and Strings 

17 If p is a pointer, then the two expressions ~'p++ and (~'p)++ have different effects. 
With the following code, what gets printed? Explain. 

char a[]:: "abc"; 
char >"p; 
i nt i; 

p = a; 
for (i 0; i < 3; ++i) 

printf("%c\n" , '~p++); 
printf("a = %s\n", a); 
p a; 
for (i = 0; i < 3; ++i) 

printfC'%c\n", (*p)++); 
printf(Ha = %s\n", a); 

18 Look carefully at the function definition for strcpyO given in Section 6.11: "String
Handling Functions in the Standard Library," on page 273, to see that ~t makes 
sense to copy the tail end of a string onto its beginning. With the followmg code, 

what gets printed? Explain. 

char a[] = "abcdefghijklmnopqrstuvwxyz"; 
char '~p = a; 
char *q = a + strlen(a) - 3; 

printf("a = %s\n", a); 
strcpy(p, q); 
printf("a = %s\n", a); 

Explain what would go wrong if we were to interchange P and q in the call to 

strcpyO. 

19 Write a program that will test the relative efficiency of the function bubb.' eO given 
in Section 6.7, "An Example: Bubble Sort," on page 257, versus the functIOn merge
sartO that you wrote in the previous exercise. Generate test data by using randO 
to fill arrays. Run your program on arrays of various sizes, say with 10, 100, 500, 
and 1,000 elements. Plot the running time for each sort versus the size of the. arra:. 
For large array sizes, you should see the growth indicated by the for~ulas gIven m 
the text. For small array sizes, there is too much overhead to detect this growth pat
tern. If you are unfamiliar with how to time program execution, see Section.1l.16, 
"How to Time C Code," on page 528. If you are on a UNIX system, you can gIve the 

following command to time a program: 

time pgm 

T Exercises 317 

20 A palindrome is a string that reads the same both forward and backward. Some 
examples are 

"AB(BA" "123343321" "otto" "i am ma i" "(" 

Write a function that takes a string as an argument and returns the i nt value 1 if 
the string is a palindrome and returns ° otherwise. If UNIX is available to you, how 
many palindromes can you find in the file /usr/dict/word1? 

21 Modify your palindrome function from the previous so that blanks and capitals are 
ignored in the matching process. Under these rules, the following are examples of 
palindromes: 

"Anna" "A man a plan a canal Panama" "ott 0" 

If UNIX is available to you, how many more palindromes can you find in the file / 
usr / diet/words? 

22 What gets printed? Explain. 

printf("%c%c%c%c%c!\n", 
"ghi"[IJ. "'("def" + 1), 
*"abc" + 11, "klmfl[l] , *"ghifl + 8); 

23 In Section 3.4, "The Data Type i nt," on page 116, we saw that the largest value that 
can be stored in along i nt is approximately 2 billion. In many applications, such 
numbers are not big enough. For example, the federal government has to deal with 
figures in the trillions of dollars. (Or is it quadrillions?) In this exercise, we want to 
explore, in a primitive fashion, how two large integers can be added. Here is a pro
gram that will do this: 

#include <assert.h> 
#include <stdio.h> 

#define N 20 /* size of all arrays */ 

typedef const char cchr; 

void 
void 

add(int sum[] , int a[], int be]); 
wrt(cchr *5, int a[]); 

/~( sum a + b "'/ 



318 Chapter 6... Arrays, Pointers, and Strings 

int main(void) 
{ 

i nt a[NJ {7, 5, 
int b[NJ {7, 7, 
int sum[N]; 
i nt ndigits; 

add(sum, a, b); 
wrt("Integer a: ", a); 
wrtC"Integer b: ", b); 

9, 
5, 

wrt(" Sum: ", sum); 
return 0; 

} 

8, 9, 
3, 1, 

7, 
2, 

void add(int sum[], int a[], int be]) 
{ 

} 

int carry 0; 
i nt i; 

for (i = 0; i < N; ++i) { 

} 

sum[i] = a[iJ + b[i] + carry; 
if Csum[i] < 10) 

carry = 0; 
else { 

} 

carry = sum[i] I 10; 
sum[iJ %= 10; 

void wrt(cchr *s, int a[J) 
{ 

i nt i; 

printfC"%s", s); 
1* 
II Print leading zeros as blanks. 
i'l 

5, 0, 
8, 8, 

for (i = N - 1; i > 0 && a[iJ == 0; --i) 

/1< 
putchar(' '); 

0, 9, 9, 0, 
9, 6, 7, 7}; 

II After a leading digit greater than zero is found, 
II print all the remaining digits, including zeros. 
i'l 

} 

for ( ; i >= 0; --i) 
printf("%d", a[iD; 

putchar('\n'); 

8, 8}; 

... Exercises 

When we execute this program, here is what appears on the screen: 

Integer a: 
Integer b: 

Sum: 

88099005798957 
776988213 5 77 

88875994012534 

319 

Note that the digits are stored in array elements going from element 0 to element 
N 1, but that the digits are printed in the opposite order. To understand this pro
gram, review how you learned to do addition in grade school. Write a similar pro
gram that computes the product of two integers. 

The si zeof operator can be used to find the number of bytes needed to store a 
type or an expression. When applied to arrays, it does not yield the size of the array. 
What gets printed? Explain. 

#include <stdio.h> 

void fCint a[]); 

int mainCvoid) 
{ 

char 
char 
int 
double 

s [] 
i'p 
a[3] ; 
d[5] ; 

"deep in the heart of texas"; 
"deep in the heart of texas"; 

printfC"%s%d\n%s%d\n%s%d\n%s%d\n" , 
"sizeof(s) " sizeof(s), 
"sizeof(p) " sizeof(p), 
"sizeof(a) "sizeof(a), 
"sizeof(d) " sizeof(d)); 

f(a); 
return 0; 

} 

void fCint a[J) 
{ 

pri ntf("In fO: s1 zeof(a) %d\n", sizeofCa)); 
} 

If UNIX is available to you and you are familiar with the diffutility, try the following 
experiment. Use the two statements 

printf("abc\n"); and pri ntfC"a%cb%cc\n", '\0', • \0') ; 

to write two versions of an elementary program that writes on the screen. Use redi
rection to put the printout of the respective programs into two files, say tmpl and 



320 Chapter 6.., Arrays, Pointers, and Strings 

tmp2. If you use the UNIX utility cal to print first one file on the screen and then 
other, you will not see any difference. Now try the command 

diff tmp 1 tmp2 

Do you see what the confusion is? Explain. Hint: Use the ad command with the 
option to get a more complete view of what is in the files. By the way, why did '''le 
use the %c format? Why not just print the string "a\0b\0c\n"? 

26 In traditional C, changing the contents of a string constant was allowed, although it 
was considered poor programming practice to do so. In ANSI C, the programmer it;; 
not supposed to be able to change a string constant. However, compilers vary in 
their ability to enforce this. Consider the following code: 

char "'p = "abc"; 

"'p = 'X'; 
printf("%s\n", p); 

/* illegal? "1:/ 
/* Xbc gets printed? */ 

On our system, one of our compilers does not complain and the program executes, 
whereas another compiler exhibits a run-time error. What happens on your system? 

27 Consider the following code: 

char ""p = "abc", "'q = "abc"; 

if (p == q) 
printf(flThe two strings have the same address!\n"); 

else 
printf(ltAs I expected, the addresses are different.\n"); 

Both p and q have been initialized to the base address in memory of a string con
stant--namely, "abc". Note that p == q tests whether two pointer values are the 
same; it is not a test for equality of the contents of the strings pointed to by p and 
q. Are there two string constants in memory or only one? This is compiler-depen
dent. Moreover, many compilers provide an option that determines whether all 
string constants with the same content get stored separately or as just one string. 
In traditional C, because string constants could be overwritten, string constants 
with the same content were usually stored separately. (See exercise 26, on page 
320.) In contrast to this, many ANSI C compilers store them in the same place. What 
happens on your system? 

.., Exercises 321 

The ANSI C committee has introduced the type qualifier canst as a new keyword in 
the C language. Here is an example of its use: 

const char "l:p; 

He:e, the type qualifier const tells the compiler that the character in memory 
pomted to by p should not be changed. (Read "p is a pointer to a constant char.") 
Compilers vary on their ability to enforce this. Try the following code: 

char 
const char 

s[] = "abc"; 
"'p = Sj 

""p = 'A'; 
printf("%s\n", s); 

1'" ill ega l? ,~ / 

Does your compiler complain? (It shOUld.) 

A lot of effort has been expended on the problem of machine translation. How suc
cessful is a naive approach? Go to a library to find out what the most common, say 
100, English words are. Consult, for example, The American Heritage Word Fre
quency Book by John Carroll et al. (Boston, MA: Houghton Mifflin, 1971). Write down 
the 100 words and, with the help of a foreign language dictionary, write down their 
translation. Write a program that uses two arrays such as 

char "l:foreign[100] , "l:english[100]; 

to translate foreign text to English. Test your program. (You may be surprised at the 
results.) Instead of 100 words, try 200. Does your program produce a Significantly 
better translation? 

30 A simple encryption scheme is to interchange letters of the alphabet on a one-to
one basis. This can be accomplished with a translatipn table for the S2 lower- and 
uppercase letters. Write a program that uses such a scheme to encode text. Write 
another program that will decode text that has been encoded. This is not a serious 
encryption scheme. Do you know why? If you are interested, learn about a more 
secure encryption system and then program it. If UNIX is available to you, read the 
on-line manual concerning crypt to get the flavor of some of the concerns in the 
area of encryption. 



322 Chapter 6 T Arrays, Pointers, and Strings 

31 What gets printed? Explain. 

#include <stdio.h> 

void try_rne(int [J[3J); 

int rnain(void) 
{ 

} 

i nt a[3J [3J 

try_rne(a); 
return 0; 

{{2, 5, 7}, {0, -1, -2}, {7, 9, 3}}; 

voi d try_rne(i nt (i'a) [3]) 
{ 

pri ntf("%d %d %d %d. i nfi ni ty\n" , 

} 
a[IJ [0J, -a[IJ [IJ, a[0J [0J, a[2J [2]); 

Now, change the declaration of the parameter in the header of the function defini
tion of try_rneO to 

int ~'a[3J 

and leave the rest of the code alone. Does your compiler complain? (It should.) 
Explain. 

32 Choose a character and use a two-dimensional array that matches the size of your 
screen to graph on the screen the functions sin 0 and cos 0 from 0 to 21t. Because, 
on most screens, the space in which a character is printed is not square, there is 
horizontal/vertical distortion. Experiment with your graphs to see if you can 
remove this distortion. 

33 Write out a dissection for the following program. An understanding of the storage 
mapping function is needed to explain it. A complete explanation of the last 
pri ntfO statement is rather technical and should be attempted only by advanced 
computer science students. 

T Exercises 

#include <stdio.h> 

int rnain(void) 
{ 

} 

int a[3][5J, i, j, 
*p = *a; /* a nice initialization! */ 

for (i = 0; i < 3; ++i) 
for (j = 0; j < 5; ++j) 

a[i][jJ = i ,', 5 + j; 
for (i = 0; i < 3; ++i) 

for (j = 0; j < 5; ++j) 
printf("%s%12d", (j 0)? "\n" : "", a[i][j]); 

pri ntf("\n"); 
for (i = 0; i < 15; ++i) 

printf("%s%12d", (i % 5 == 0) ? "\n" : "", "'(p + i)); 
printf("\n\n%12d%12d\n%12d%12d\n%12d%12d\n%12d%12d\n\n", 

~d'a, "d'(a + 1), 
*(a[0J + 1), *(*a + 1), 
*(a[IJ + 2), *(*(a + 1) + 2), 
*(a[2J + 3), *(*(a + 2) + 3)); 

printf("%-lls%s%12d\n%-lls%s%12d\n%-lls%s%12d\n\n", 
"(int) a", "=", (int) a, 
"(int) "'a", "=", (int) ~'a, 
"(int) ~d'a", "=", (int) ''''''a); 

return 0; 

323 

34 Modify the my_echo program in Section 6.14, "Arguments to rnai nO," on page 291, 
so that it will print out its arguments in capital letters if the option -c is present. Do 
not print out the argument that contains the option. 



324 Chapter 6 'f Arrays, Pointers, and Strings 

35 Complete the following table: 

Declarations and initialization 

char '''p[2] [3] '" { "abc", "defg", "hi", "jklmno", I 

"pqrstuvw", "xyz" }; 

; Expression Equivalent expression Value 

p[0] [0] [0J 'a' 

*/ 

36 Simulations that involve the repeated use of a random-number generator to repro
duce a probabilistic event are called Monte Carlo simulations, so called b 
Monte Carlo has one of the world's most famous gaming casinos. In this exercise 
want to find the probability that at least two people in a room with n people 
birthdays that fall on the same day of the year. Assume that there are 365 days in 
year, and assume that the chance of a person being born on each day of the year 
the same. A single trial experiment consists of filling an array of size n with 
gers that are randomly distributed from 1 to 365. If any two elements in the 
have the same value, then we say that the trial is "true." Thus, a true trial 
sponds to the case when at least two people in the room were born on the same 
of the year. Simulate the probability by running, say, 10,000 trials ",,1th n people 
the room. Do this for n 2,3, ... , 100. You can use the expression 

randO % 365 + 1 

to compute the day of birth for each person. (Use a better random-number Fo~'''~~'' 
tor, such as 1 rand48 0, if one is available to you.) The number of true trials divided 
by 10,000 is the computed simulated probability. What value of n Yields the break
even point? That is, find the least n for which the probability is 1/2 or more. 

'f Exercises 325 

37 Modify the function mergeO given in the text and th f . 
. . e unctIon mergeso t() h 

you wrote III exerCIse 16, on page 315, to work on arrays of' r t at 
than on a~rays of i nts. Modify the sore words program to us~~~:t::~ to c~ar ra~her 
both verSlOns of the program on a large file Th h unctIOns. TIme 
should run much faster. Does it? . e program t at uses mergesortO 

The following code can be used to reverse the characters in a string: 

} 

char *reverse(char *s) 
{ 

char "'p, '''q, tmp; 
n; int 

n = strlen(s); 
q = (n > 0) ? s + n - 1 : s; 
for (p = s; p < q; ++p, __ q) { 

tmp = '~p; 

"'p "'q; 

} 
'<q = tmp; 

return s; 

Test this function by writing a program that contains the following lines: 

ch,;t.r f ~;r [] If= "abcdefghi jklmnopqrstuvwxyz'" 
prlnt ( %s\n • reverse(str)); , 

~x:cute your program so that you understand its effects The foll . h 
IS m memory at the beginning of the for loop: . owmg sows what 



326 Chapter 6 T Arrays, Pointers, and Strings 

#include <stdio.h> 

int main(int argc, char **argv) 
{ 

} 

while (*argv != NULL) 
printf("%s ", >"argv++); 

putchar('\n'); 
return 0; 

Run the program so that you understand its effects. Give a detailed explanation of 
how it works. Hint: If a pointer to pointer to char is dereferenced, then the result is . 
a pointer to char. Also, reread the dissection of the strcatO function in Section 
6.11, "String-Handling Functions in the Standard Library," on page 276. 

40 In C, a function prototype can occur more than once. Moreover, equivalent function 
prototypes do not conflict. Modify the findJoots program that we wrote in Section 
6.18, "Arrays of Pointers to Function," on page 302, by replacing the function proto
type 

dbl bisection(dbl f(dbl x), dbl a, dbl b); 

with the following list of function prototypes: 

dbl bisection(pfdd, dbl, dbl); 
dbl bisection(pfdd f, dbl a, dbl b); 
dbl bisection(dbl (*)(dbl), dbl a, dbl b); 
dbl bisection(dbl (*f)(dbl), dbl a, dbl b); 
dbl bisection(dbl f(dbl), dbl a, dbl b); 
dbl bisection(dbl f(dbl x), dbl a, dbl b); 

Does your compiler complain? (It shouldn't.) 

41 In Section 6.18, "Arrays of Pointers to Function," on page 302, we saw that the 
findJoots program made 49 calls to root 0 each time a root of a function was 
computed. Use a hand calculator to explain why precisely 49 calls were made. 
Hint: Most of the calls to root 0 cut the interval in half. 

T Exercises 

42 Compile and execute the following program so that you understand its effects: 

#include <stdio.h> 
#include <string.h> 

void tell_me(int f(const char *, canst char *»; 

i nt mai n (vo; d) 
{ 

} 

tell_me(strcmp); 
telLme(main); 
return 0; 

void tell_me(int f(const char *, canst char *» 
{ 

} 

if (f == strcmp) 
pri ntf("Address of strcmpO: %p\n", f); 

else 
printf("Function address: %p\n", f); 

327 

Because the pointer being passed in the second call to tell_me 0 has the wrong 
type, your compiler should complain. Does it? Modify the program by changing the 
pointer type throughout to the generic voi d>" type. Does this make your compiler 
happy? 

43 (Advanced) The follovving program has an error in it: 

#include <stdio.h> 
#include <string.h> 

int main(void) 
{ 

char *pl "abc", >"p2 = "paci fi c sea"; 

printf("%s %s %s\n", pI, p2, strcat(pl, p2»; 
return 0; 

} 

On our system, what happens is compiler-dependent. With one of our compilers, 
the program exhibits a run-time error. With another compiler, we get the following 
written to the screen: 

abcpacific sea acific sea abcpacific sea 



328 Chapter 6 T Arrays, Pointers, and Strings 

This output makes sense and tells us something about the compiler. What program
ming error did we make? What does the output tell us about our compiler? Which is 
the preferred behavior: a compiler that produces executable code that exhibits a 
run-time error, or a compiler that produces (sometimes) logically incorrect output? 

44 A function name by itself is treated by the compiler as a pointer. This is a general 
rule in C. Is the following code legal? 

#include <stdio.h> 

void f(void); 
void g(void); 
void h(void); 

int main(void) 
{ 

} 

("'f) 0; 
return 0; 

void f(void) 
{ 

} 

pri ntf("Hell 0 from fO. \n") ; 
((("'g))) 0; 

void g(void) 
{ 

} 

printf("Hello from gO.\n"); 
C'" (>', ("'h))) 0 ; 

void h(void) 
{ 

pri ntf("Hell 0 from hO. \n") ; 
} 

Write your answer before you try to compile the program. Your answer should be 
based on your general knowledge about how well a C compiler can be expected to 
follow a rule, even if the rule is applied in some strange way. 

45 A precondition for the rootO solver to work is that f(a) and feb) must have 
opposite signs. Use an assertion at the beginning of root 0 to check this condition. 

T Exercises 329 

46 The ancient Egyptians wrote in hieroglyphics. In this system of writing, vowel 
sounds are not represented, only consonants. Is written English generally under
standable without vowels? To experiment, write a function i 5_ vowe 1 0 that 
returns 1 if a letter is a vowel and 0 otherwise. Use your function in a program that 
reads the standard input file and writes to the standard output file, deleting all 
vowels. Use redirection on a file containing some English text to test your program. 



hapter 7 

Bitwise Operators and 
Enumeration Types 

. There are two additional ways to represent discrete values: as bits and as elements in a 
finite set. In this chapter, we first discuss the bitwise operators. Even though expres
sions involving bitwise operators are explicitly system-dependent, they are very useful. 
We illustrate their usefulness in packing and unpacking data. 

In the second half of the chapter, we discuss the enumeration types. Enumeration 
types are user-defined types that allow the programmer to name a finite set together 
with its elements, which are called enumerators. These types are defined and used by 
the programmer as the need arises. We illustrate much of this material by implement
ing a completely worked out interactive game program. 

7.1 Bitwise Operators and Expressions 

The hitwise operators act on integral expressions represented as strings of binary dig
its. These operators are explicitly system-dependent. We will restrict our discussion to 
machines having 8-bit bytes, 4-byte words, the two's complement representation of 
integers, and ASCII character codes. 



332 Chapter 7 T Bitwise Operators and Enumeration Types 

Bitwise operators 

Logical operators (unary) bitwise complement 

bitwise and & 

bitwise exclusive or A 

bitwise inclusive or 

Shift operators left shift « 

right shift » 

like other operators, the bitwise operators have rules of precedence and associativity 
that determine how expressions involving them are evaluated. 

Operators Associativity 

0 [] ++ (postfix) (postfix) left to right 
++ (prefix) (prefix) ! sizeof (type) + right to left 

(unary) - (unary) & (address) -{, (dereference) 

* / % left to right 

+ left to right 
« » left to right 

< <= > >= left to right 

left to right 
& left to right 
A left to right 

left to right 
&& left to right 

II left to right 
? right to left 

+= ,;'(:::::: / right to left 
'Yo= »= «= &= A= 1= 

• (comma operator) left to right 

7.1 T Bitwise Operators and Expressions 333 

operator ~ is unary; all the other bitwise operators are binary. They operate on inte
expressions. We will discuss each of the bitwise operators in detail. 

itwise Complement 

. The operator - is called the one's complement operator, or the bitwise complement oper
. It inverts the bit string representation of its argument; the Os become Is, and the 

become Os. Consider, for example, the declaration 

int a = 70707; 

The binary representation of a is 

00000000 00000001 00010100 00110011 

The expression ~a is the bitwise complement of a, and this expression has the binary 
representation 

11111111 11111110 11101011 11001100 

The; nt value of the expression -a is -70708. 

Two's Complement 

The two's complement representation of a nonnegative integer n is the bit string 
obtained by writing n in base 2. If we take the bitwise complement of the bit string and 
add 1 to it, we obtain the two's complement representation of -no The next table gives 
some examples. To save space, we show only the two low-order bytes. 

• Binary Two's complement Value 
representation Bitwise complement representation of -n of -n ! 

7 00000000 00000111 11111111 11111000 11111111 11111001 -7 

8 00000000 00001000 11111111 11110111 11111111 11111000 -8 

9 00000000 00001001 11111111 11110110 11111111 11110111 -9 

-7 11111111 11111001 00000000 00000110 00000000 00000111 7 

The preceding table is read from left to right. If we start with a positive integer n, 
consider its binary representation, and take its bitwise complement and add 1, then we 



334 Chapter 7.. Bitwise Operators and Enumeration Types 

obtain the two's complement representation of -no A machine that uses the two's com
plement representation as its binary representation in memory for integral values is 
called a two's complement machine. 

On a two's complement machine, if we start with the binary representation of a nega
tive number -n and take its bitwise complement and add 1, we obtain the two's comple
ment representation, or binary representation, of n. This is illustrated in the last line in 
the preceding table. 

The two's complement representations of both 0 and -1 are special. The value 0 has 
all bits off; the value -1 has all bits on. Note that if a binary string is added to its bitwise 
complement, then the result has all bits on, which is the two's complement representa
tion of -1. Negative numbers are characterized by having the high bit on. 

On a two's complement machine, the hardware that does addition and bitwise com
plementation can be used to implement subtraction. The operation a b is the same 
as a + (-b), and -b is obtained by taking the bitwise complement of b and adding 1. 

Bitwise Binary Logical Operators 

The three operators & (and), A (exclusive or), and I (inclusive or) are binary operators. 
They take integral expressions as operands. The two operands, properly widened, are 
operated on bit position by bit position. The following table shows the bitwise opera
tors acting on I-bit fields. The table defines the semantics of the operators. 

Values of: 

a b a&b aAb alb 

0 0 0 0 0 

1 0 0 1 1 

0 1 0 1 1 

1 1 1 0 1 

The next table contains examples of the bitwise operators acting on i nt variables. 

7.1 .. Bitwise Operators and Expressions 335 

Declaration and initializations 

int a = 33333, b ~ -77777; 

Expression Representation Value 

a 00000000 00000000 10000010 00110101 33333 

b 11111111 11111110 11010000 00101111 -77777 

a & b 00000000 00000000 10000000 00100101 32805 

a A b 11111111 11111110 01010010 00011010 -110054 

a I b 11111111 11111110 11010010 00111111 -77249 

~(a I b) 00000000 00000001 00101101 11000000 77248 

00000000 00000001 00101101 11000000 77248 

Left and Right Shift Operators 

The two operands of a shift operator must be integral expressions. The integral promo
tions are performed on each of the operands. The type of the expression as a whole is 
that of its promoted left operand. An expression of the form 

exprl « expr2 

causes the bit representation of exprl to be shifted to the left by the number of places 
specified by expr2. On the low-order end, Os are shifted in. 

I Declaration and initialization 

char c = I Z '; 

Expression Representation Action 

c 00000000 00000000 00000000 01011010 i unshifted 

,c « 1 00000000 00000000 00000000 10110100 left-shifted 1 

c « 4 00000000 00000000 00000101 10100000 left-shifted 4 

c « 31 00000000 00000000 00000000 00000000 left-shifted 31 

Even though c is stored in 1 byte, in an expression it gets promoted to an i nt. When 
shift expressions are evaluated, integral promotions are performed on the two oper-



336 Chapter 7 T Bitwise Operators and Enumeration Types 

ands separately, and the type of the result is that of the promoted left operand. Thus, 
the value of an expression such as c « 1 gets stored in 4 bytes. 

The right shift operator» is not symmetric to the left shift operator. For unsigned 
integral expressions, Os are shifted in at the high end. For the signed types, some 
machines shift in Os, while others shift in sign bits. (See exercise 4, on page 357.) 
sign bit is the high-order bit; it is 0 for nonnegative integers and 1 for negative Inreg-,ers 

• Declarations and initializations 

i i nt a = 1 « 31; I" shift 1 to the high bit *1 
unsigned b 1 « 31; 

Expression Representation Action 

a 10000000 00000000 00000000 00000000 unshifted 

a » 3 11110000 00000000 00000000 00000000 right-shifted 3 

b 10000000 00000000 00000000 00000000 unshifted 

b » 3 00010000 00000000 00000000 00000000 right-shifted 3 

Note that on our machine, sign bits are shifted in with an i nt. On another machine, Os. 
might be shifted in. To avoid this difficulty, programmers often use unsigned type& 
when using bitwise operators. 

If the right operand of a shift operator is negative or has a value that equals or 
exceeds the number of bits used to represent the left operand, then the behavior is 
undefined. It is the programmer's responsibility to keep the value of the right operand 
within proper bounds. 

Our next table illustrates the rules of precedence and associativity \<\>ith respect to the 
shift operators. To save space, we show only the two low-order bytes. 

Declaration and assignments 

unsigned a 1, b = 2; 

Expression Equivalent expression Representation 

a « b » 1 (a « b) » 1 00000000 00000010 

a « 1 + 2 « 3 (a « (1 + 2)) « 3 00000000 01000000 

a + b « 12 1, a » b ((a + b) « (12 * a)) » b 00001100 00000000 

In C++, the two shift operators are overloaded and used for input/output. Overload~ 
ing in C++ is a method of giving existing operators and functions additional meanings. 
(See Section 13.5, "Overloading," on page 603, for examples and explanation.) 

7.2 v Masks 

Masks 

A mask is a constant or variable that is used to extract de SIr' ed b't ' l' h .. . bl ' . . " 1 S rom anot er varI-
a e or expreSSIOn. Because the 1 nt constant 1 has the bit representation 

00000000 00000000 00000000 00000001 

it can b.e used to dete~mine the low-order bit of an i nt expression. The following code 
uses this mask and prmts an alternating sequence of Os and Is: 

int i, mask = 1; 
for (i = 0; i < 10; ++i) 

pri ntf("%d", i & mask); 

~f w~ wish to fi?? the value of a particular bit in an expression, we can use a mask that 
IS 1 m that posltlon and 0 elsewhere. For example we can use the exp . 1 

1 f h . . ' reSSIOn «2 as 
a mas <. or t e third bIt, counting from the right. The expression ' 

(v & (1 « 2)) ? 1 : 0 

has the value 1 or 0 depending on the third bit in v. 
~noth:r example of a mask is the constant value 255, which is 28 

lowmg bIt representation: 

00000000 00000000 00000000 11111111 

Because only the low-order byte is turned on, the expression 

v & 255 

- 1. It has the fo1-

will yield a value having a bit representation with all its high-order bytes zero and its 
low-order byte the same as the low-order byte in v. We express this by saying "255 . 
mask for the low-order byte." , IS a 



338 Chapter 7" Bitwise Operators and Enumeration Types 

7.3 Software Tools: Printing an i nt Bitwise 

Software tools are utilities that the programmer can use to write software. Most sys
tems provide a variety of software tools. Examples are compilers, debuggers, and the 
make utility. We will discuss these in Chapter 11, "Input/Output and the Operating Sys
tem." Programmers often write other software tools for their own use as the need 
arises. The bi t_pri nt 0 function that we discuss in this section is a typical example. 
For anyone writing software that deals with the machine at the bit level, the 
b i t_p ri n to utility is essential; it allows the programmer to see what is happening. 
For the beginning programmer, exploration with bi Lp ri nt 0 helps to provide a con
ceptual framework that is very useful. 

Our bi t_p ri nt 0 function uses a mask to print out the bit representation of an i nt. 
The function can be used to explore how values of expressions are represented in mem
ory. We used it, in fact, to help create the tables in this chapter. 

In file biLprint.c 

/* Bit print an int expression. */ 

#include <limits.h> 

void bit_print(int a) 
{ 

} 

i nt i; 
int n = sizeof(int) -;, CHAR_BIT; 
int mask = 1 «(n 1); 

for (i = 1; i <= n; ++i) { 
putchar(((a & mask) == 0) ? '0' 
a «= 1; 

} 

if (i % CHAR_BIT == 0 && i < n) 
putchar(' '); 

/* in limits.h */ 
/* mask = 100 ... 0 */ 

'1') ; 

7.3 " Software Tools: Printing an i nt Bitwise 339 

Dissection of the bi t_p ri nt 0 Fu nction 

#include <limits.h> 

In ANSI C, the symbolic constant CHAR_BIT is defined in limits.h. In traditional C, this 
header file is not usually available. The value of CHAR_BIT on most systems is 8. It rep
resents the number of bits in a char, or equivalently, the number of bits in a byte. ANSI 
C requires at least 8 bits in a byte. 

i nt n si zeof(i nt) 'i, CHAfLBIT; /* in limits.h */ 

Because we want this function to work on machines having either 2- or 4-byte words, 
we use the variable n to represent the number of bits in a machine word. We expect the 
value of the expression si zeof (i nt) to be either 2 or 4, and we expect that the sym
bolic constant CHAR_BIT, which is defined in the standard header file limits.h, will be 8. 
Thus, we expect n to be initialized to either 16 or 32, depending on the machine. 

i nt mask = 1 « (n 1) ; /* mask = 100 ... 0 */ 

Because of operator precedence, the parentheses are not needed in the initialization. 
We put them there to make the code more readable. Because « has higher precedence 
than = , the expression 1 «(n 1)) gets evaluated first. Suppose that n has value 
32. The constant 1 has only its low-order bit turned on. The expression 1 « 31 shifts 
that bit to the high-order end. Thus, mask has all its bits off except for its high-order bit 
(sign bit), which is on. 

for (i = 1; i <= n; ++i) { 
putchar(((a & mask) == 0) ? '0' 
a «= 1i 

First consider the expression 

(a & mask) == 0 

'1') ; 



340 Chapter 7" Bitwise Operators and Enumeration Types 

If~the high-order bit in a is off, then the expression a & mas k has all its bits off, and the 
expression (a & mask) == 0 is true. Conversely, if the high-order bit in a is on, then 
the expression a & mask has its high-order hit on, and the expression (a & mask) == 0 
is false. Now consider the expression 

((a & mask) == 0) ? '0' : '1' 

If the high-order bit in a is off, then the conditional expression has the value' 0 ' ; other
wise, it has the value '1'. Thus, putcharO prints a 0 if the high-order bit is off and 
prints a 1 if it is on. 

• putchar(((a & mask) == 0) ? '0' : '1'); 
a «= 1; 

After the high-order bit in a has been printed, we left-shift the bits in a by 1 and place 
the result back in a. Recall that 

a «= 1; is equivalent to a = a « 1; 

The value of the expression a « 1 has the same bit pattern as a, except that it has 
been left-shifted by 1. The expression by itself does not change the value of a in mem
ory. In contrast to this, the expression a «= 1 does change the value of a in memory, 
Its effect is to bring the next bit into the high-order position, ready to be printed the 
next time through the loop. 

II if (i % CHAR_BIT == 0 && i < n) 
putchar(' '); 

If we assume that the value of the symbolic constant CHAR_BIT is 8, then this code 
causes a blank to be printed after each group of 8 bits has been printed. It is not neces
sary to do this, but it certainly makes the output easier to read. 

• 

7.4 'f Packing and Unpacking 341 

Packing and Unpacking 

The use of bitwise expressions allows for data compression across byte boundaries. 
This is useful in saving space, but it can be even more useful in saving time. On a 
machine with 4-byte words, each instruction cycle processes 32 bits in parallel. The fol
lowing function can be used to pack four characters into an i nt. It uses shift opera
tions to do the packing byte by byte. 

In file pack_bits.c 

/* Pack 4 characters into an into */ 

#include <limits.h> 

int pack(char a, char b, char c, char d) 
{ 

int p = a; /* p will be packed with a, b, c, d */ 

p (p « CHAR_BIT) b; 
p (p « CHAR_BIT) c; 
p (p « CHAR_BIT) d; 
return p; 

} 

To test our function, we write a program "vith the lines 

printf("abcd == "); 
bit_print(pack('a', 'b', 'c', 'd')); 
putchar(' \n'); 

in mai nO, Here is the output of our test program: 

abed = 01100001 01100010 01100011 01100100 

Observe that the high-order byte has value 97, or 'a', and that the values of tbe 
remaining bytes are 98, 99, and 100. Thus, pack 0 did its work properly. 

Having written pack 0, we now want to be able to retrieve the characters from within 
the 32-bit i nt. Again, we can use a mask to do this. 



342 Chapter 7 v Bitwise Operators and Enumeration Types 

• 

/* Unpack a byte from an into */ 

#include <limits.h> 

char unpack(int P. int k) 
{ 

} 

int 
unsigned 

mask «= n; 

n = k 'it CHAR_BIT; 
mask = 255; 

return ((p & mask) » n); 

Dissection of the unpack 0 Function 

• #include <limits.h> 

/* k 0, 1, 2, or 3 */ 

/* n 0, 8, 16, or 24 */ 
/* low-order byte */ 

We have included thi~ header file because it contains the definition of the symbolic con
stant CHAR_BIT. It represents the number of bits in a byte. On most machines its value 
is 8. 

• char unpack(int p, int k) 
{ 

/* k 0, 1, 2, or 3 */ 

We think of the parameter p as a packed i nt with its bytes numbered ° through 3. The 
parameter k will indicate which byte we want: If k has value 0, then we want the low
order byte; if k has value 1, then we want the next byte; and so forth. 

• int n = k * CHAR_BIT; /* n = 0, 8, 16, or 24 */ 

If we assume that CHAR_BIT is 8 and that k has value 0, 1,2, or 3, then n will be initial
ized with the value 0,8, 16, or 24. 

• unsigned mask = 255; /* low-order byte */ 

The constant 255 is special; to understand it, first consider 256. Because 256 28, the 
bit representation of 256 has all bits ° except for a 1 in the 9th bit, counting from the 
low-order bit. Because 255 is one less than 256, the bit representation of 255 has all 
bits 0, except for the first 8 bits, which are all I. (See exercise 8, on page 358.) Thus, the 
binary representation of mas k is 

7.4 " Packing and Unpacking 343 

00000000 00000000 00000000 11111111 

mask «= n; 

Let us assume that CHAR_BIT is 8. If n has value 0, then the bits in mask are not 
changed. If n has value 8, then the bits in mask are left-shifted by 8. In this case we 
think of mas k stored in memory as 

00000000 00000000 11111111 00000000 

If n has value 16, then the bits in mask are left-shifted by 16. In this case we think of 
mas k stored in memory as 

00000000 11111111 00000000 00000000 

In a similar fashion, if n has value 24, then mask will have only the bits in its high-order 
byte turned on. 

(p & mask) » n 

Parentheses are needed because & has lower precedence than ». Suppose that p has 
value -3579753 (which we chose because it has a suitable bit pattern), and suppose that 
n has value 16. The following table illustrates what happens: 

Expression Binary representation Value 

p 11111111 11001001 01100000 10010111 -3579753 

mask 00000000 11111111 00000000 00000000 16711680 

P & mask 00000000 11001001 00000000 00000000 13172736 

i(p & mask) » n 00000000 00000000 00000000 11001001 201 

return ((p & mask) » n); 

Because the function type for unpackO is char, the i nt expression (p & mask) » n 
gets converted to a char before it gets passed back to the calling environment. When an 
; nt is converted to a char, only the low-order byte is kept; other bytes are discarded. 

• 
Imagine wanting to keep an abbreviated employee record in one integer. We '\'\ill sup

pose that an "employee identification number" can be stored in 9 bits and that a "job 
type" can be stored in 6 bits, which provides for a total of up to 64 different job types. 



344 Chapter 7 T Bitwise Operators and Enumeration Types 

The employee's "gender" canbe stored in 1 bit. These three fields will require 16 bits, 
which, on a machine with 4-byte words, is a short integer. We can think of the three bit 

fields as follows: 

Identification Job type Gender 

bbbbbbbbb bbbbbb b 

The following function can be used in a program designed to enter employee data 
a short. The inverse problem of reading data out of the short would be aC(:OIno!lislled 

with the use of masks. 

/* Create employee data in a short into */ 

short create_employee_data(int id_no, int job_type, char gender) 
{ 

} 

short employee = 0; /* start with all bits off */ 

employee 1= (gender == 'm' II gender == 'M') ? 0 : 1; 
employee 1= job_type « 1; 
employee 1= id_no « 7; 
return employee; 

Multibyte Character Constants 

Multibyte characters are allowed in ANSI C. An example is 1 abc 1 • On a machine with 
byte words, this causes the characters 1 a I, I b I, and Ie' to be packed into a 
word. However, the order in which they are packed is machine-dependent. 
machines put I a I in the low-order byte; others put it in the high-order byte. (See 

cise 12, on page 359.) 

7.5 T Enumeration Types 345 

Enumeration Types 

The keyword enum is used to declare enumeration types. It provides a means of naming 
a finite set, and of declaring identifiers as elements of the set. Consider, for example, 
the declaration 

enum day {sun, mon, tue, wed, thu, fri, sat}; 

This creates the user-defined type enum day. The keyword enum is followed by the tag 
name day. The enumerators are the identifiers sun, mon, ... , sat. They are constants of 
type i nt. By default, the first one is 0, and each succeeding one has the next integer 
value. This declaration is an example of a type specifier, which we also think of as a 
template. No variables of type enum day have been declared yet. To do so, we can now 
write 

enum day dl, d2; 

This declares dl and d2 to be of type enum day. They can take on as values only the ele
ments (enumerators) in the set. Thus, 

dl fri; 

assigns the value fri to dl, and 

if (di == d2) 
/* do something */ 

tests whether dl is equal to d2. Note carefully that the type is enum day. The keyword 
enum by itself is not a type. 

The enumerators can be initialized. Also, we can declare variables along with the 
template, if we wish to do so. The follOWing is an example: 

enum suit {clubs = 1, diamonds, hearts, spades} a, b, c; 

Because cl ubs has been initialized to 1, di amonds, hearts, and spades have the values 
2,3, and 4, respectively. In this example 

enum suit {clubs = 1, diamonds, hearts, spades} 



346 Chapter 7" Bitwise Operators and Enumeration Types 

is the type specifier, and a, b, and c are variables of this type. Here is another example 
of initialization: 

·enum fruit {apple = 7, pear, orange = 3, lemon} frt; 

Because the enumerator appl e has been initialized to 7, pear has value 8. Similarly, 
because orange has value 3, 1 emon has value 4. Multiple values are allowed, but the 
identifiers themselves must be unique. 

enum veg {beet = 17, carrot = 17, corn = 17} 

The tag name need not be present. Consider, for example, 

enum {fir, pine} ,tree; 

vege1, vege2; 

Because there is no 'tag name, no other variables of type enum {fi r, pi ne} can be 
declared. 

The following is the syntax for the enumeration declaration: 

enum_declaration ::= enum_type_specifier identifier { , identifier }0+ 
enum_type_specifier :: = enum e_tag {e_list} 

I enum e_tag 
I enum {e_list} 

e_tag :: = identifIer 
e_list :: = enumerator { , enumerator }o+ 
enumerator :: = identifier {= constanLintegraLexpression }opt 

In general, one should treat enumerators as programmer-specified constants and use 
them to aid program clarity. If necessary, the underlying value of an enumerator can be 
obtained by using a cast. The variables and enumerators in a function must all have dis
tinct identifiers. The tag names, however, have their own name space. This means that 
we can reuse a tag name as a variable or as an enumerator. The following is an example: 

erium veg {beet, carrot, corn} veg; 

Although this is legal, it is not considered good programming practice. 
We illustrate the use of the enumeration type by writing a function that computes the 

next day which uses typedef to replace the enum keyword in the type declaration. 

7.5 " Enumeration Types 

In file nexLday.c 

/* Compute the next day. */ 

enum day {sun, man, tue, wed, thu, fri, sat}; 

typedef enum day 

} 

switch Cd) { 
case sun: 

next_day 
break; 

case mon: 
next_day 
break; 

case tue: 
next_day 
break; 

case wed: 
next_day 
break; 

case thu: 
next_day 
break; 

case fri: 
next_day 
break; 

case sat: 
next_day 
break; 

} 

mon; 

tue; 

wed; 

thu; 

fri' . , 

sat; 

= sun; 

return next_day; 

day; /*the usual typedef trick */ 

347 

Recall that only a constant integral expression can be used in a case label. Because enu
merators are constants, they can be used in this context. The following is another ver
sion of this function; this version uses a cast to accomplish the same ends: 



348 Chapter 7 T Bitwise Operators and Enumeration Types 

r Compute the next day wi th a cast. '1'1 

enum day {sun, mon, tue, wed, thu, fri, sat}; 

typedef enum day day; 

day find_next_day(day d) 
{ 

} 

assert((int) d >= 0 && (int) d < 7) 
return ((day)(((int) d + 1) % 7)); 

Enumeration types can be used in ordinary expressions provided type compatibility 
is maintained. However, if one uses them as a form of integer type and constantly 
accesses their implicit representation, it is better just to use integer variables instead. 
The importance of enumeration types is their self-documenting character, where the 
enumerators are themselves mnemonic. Furthermore, enumerators force the compiler 
to provide programmer-defined type checking so that one does not inadvertently mix 
apples and diamonds. 

7.6 An Example: The Game of Paper, Rock, Scissors 

We will illustrate some of the concepts introduced in this chapter by writing a program 
to play the traditional children's game called "paper, rock, scissors." In this game each 
child uses her or his hand to represent one of the three objects. A flat hand held in a 
horizontal position represents "paper," a fist represents "rock," and two extended fin
gers represent "scissors." The children face each other and at the count of three display 
their choices. If the choices are the same, then the game is a tie. Otherwise, a win is 
determined by the rules: 

Paper, Rock, Scissors Rules 

.. Paper covers the rock. 

.. Rock breaks the scissors. 

.. Scissors cut the paper. 

We will write this program in its own directory. The program will consist of a .h file 
and a number of .c files. Each of the .c files will include the header file at the top of the 

7.6 T An Example: The Game of Paper, Rock, Scissors 349 

file. In the header file we put #i ncl ude directives, templates for our enumeration 
types, type definitions, and function prototypes: 

In file p_r_s.h 

1'1, The game of paper, rock, scissors. ''<I 

#include <ctype.h> I" for i sspaceO 
#include <stdio.h> I'" for pri ntfO. 
#include <stdlib.h> I'Y for randO and 
#include <time.h> Ii' for timeO i'l 

enum p_r_s {paper, rock, scissors, 
game, help, instructions, quit}; 

enum outcome {win, lose, tie, error}; 

typedef 
typedef 

outcome 

enum p_r_s 
enum outcome 

p_r_s; 
outcome; 

compare(p_r_s player_choice, 
p_r_s machine_choice); 

i'l 
etc "'1 

srandO "'1 

void 
void 

prn_final_status(int win_cnt, int lose_cnt); 
prn_game_status(int win_cnt, 

void 
void 
void 

int lose_cnt, int tie_cnt); 
prn_help(void); 
prn_instructions(void)j 
report_and_tabulate(outcome result, 

i nt "'wi n_cnt_ptr, 
int *1 ose_cnt_ptr , 
int *tie_cnt_ptr); 

selection_by_machine(void); 
selection_by_player(void); 

We do not normally comment our #i ncl ude lines, but here we are trying to make the 
code more readable for the novice programmer. Here is our main 0 function: 



350 Chapter 7... Bitwise Operators and Enumeration Types 

In file main.c 

} 

int main(void) 
{ 

int win_cnt = 0, lose_cnt = 0, tie_cnt 
result ; 
player_choice, machine_choice; 

0; 

srand(time(NULL)); /* seed the random number generator */ 
prn_instructions(); 
while ((player_choice = select;on_by_player()) quit) 

switch (player_choice) { 
case paper: 
case rock: 
case scissors: 

machine_choice = selection_by_machine(); 
result compare(player_choice, machine_choice); 
report_and_tabulate(result, &win_cnt, &lose_cnt, 

break; 
case game: 

&tie_cnt); 

prn_game_status(win_cnt, lose_cnt, tie_cnt); 
break; 

case instructions: 
prn_instructions(); 
break; 

case help: 
prn_he 1 pO; 
break; 

default: 

} 

printf(lt\nPROGRAMMER ERROR: Cannot get to here!\n\nlt); 
exit(l); 

prn_game_status(win_cnt, lose_cnt, tie_cnt); 
prn_final_status(win_cnt, lose_cnt); 
return 0; 

The first executable statement in mai n 0 is 

srand(time(NULL)); 

This seeds the random-number generator rand 0, causing it to produce a different 
sequence of integers each time the program is executed. More explicitly, passing 
s rand 0 an integer value determines where rand 0 will start. The function call 
ti me (NULL) returns a count of the number of seconds that have elapsed since 1 Janu-

7.6 ... An Example: The Game of Paper, Rock, Scissors 351 

ary 1970 (the approximate birthday of UNIX). Both s rand 0 and ti me 0 are provided in 
the standard library. The function prototype for s rand 0 is in stdlib.h, and the function 
prototype for ti me 0 is in time.h. Both of these header files are provided by the system. 
Note that we included them in PJ_s.h. 

The next executable statement in mainO calls prn_instructionsO. This provides 
instructions to the user. Embedded in the instructions are some of the design consider
ations for programming this game. We wrote this function, along with other printing 
functions, in prnc: 

In file prn.c 

#include "p_r_s.h lt 

void prn_final_status(int wi n_cnt , int lose_cnt) 
{ 

} 

if (win_cnt > lose_cnt) 
printf(ltCONGRATULATIONS You won!\n\n"); 

else if (win_cnt == lose_cnt) 
printf(ltA DRAW - You tied!\n\n"); 

else 
printf(ltSORRY - You lost!\n\n"); 

void prn_game_status(int win_cnt, int lose_cnt, int tie_cnt) 
{ 

} 

printf(lt\n%s\n%s%4d\n%s%4d\n%s%4d\n%s%4d\n\n lt , 
"GAME STATUS: It , 

It Wi n : "wi n_cnt , 
" Lose: " 1 ose_cnt, 
" Tie: "tie_cnt, 
" Total:" win_cnt + lose_cnt + tie_cnt); 

void prn_help(void) 
{ 

printf("\n%s\n", 
"The following characters can be used for input:\n" 
It p for paper\n" 
" r for rock\n" 
II s for scissors\n lt 
II g print the game status\n" 
" h help, print this list\n" 
" i reprint the instructions\n" 
" q quit this game\n"); 

} 



352 

} 

Chapter 7 'Y Bitwise Operators and Enumeration Types 

void prn_instructions(void) 
{ 

printf("\n%s\n", 
"PAPER, ROCK, SCISSORS:\n" 
:: ~n this game p is for \"paper, \" r is for \"rock, \" and" 

s 1S for \"scissors.\"\n" 
" Both the player and the machine\n" 
" will choose one of p, r, or s." 
" If the two choices are the same,\n" 

" 
" 
" 
H\n" 

then the game is a tie. Otherwise:\n" 
\"paper covers the rock\" (a win 
\"rock breaks the scissors\" (a win 
\"sci ssors cut the paper\" (a wi n 

for paper),\n" 
for rock), \n" 
for scissors).\n" 

" There are other allowable inputs:\n" 
" 
" 
" 
" 
If\n" 

g 
h 
i 
q 

for game status (the number of wins so far) \n" 
for help,\n" - , 
for instructions (reprint these instructions) \n" 
for quit (to quit the game).\n" ' 

::\n"ThiS game is played repeatedly until q is entered.\n" 

" Good luck!\n"); 

To play the game, both the machine and the player (user) need to make a selection from 
"paper, rock, scissors." We write these routines in selectionc: 

In file selection.c 

#include "p_r_s.h" 

~_r_s selection_by_machine(void) 

return ((p_r_s) (rand() % 3)); 
} 

7.6 T An Example: The Game of Paper, Rock, Scissors 

p_r_s selection_by_player(void) 
{ 

} 

c; 
player_choice; 

printf("Input p, r, or s: "); 
while (isspace(c = getchar())) 

, 
switch (c) { 
case 'p': 

player_choice paper; 
break; 

case 'r': 
player_choice rock; 
break; 

case's' : 
player_choice scissors; 
break; 

case 'g I : 

player_choice game; 
break; 

case 'i I : 

player_choice instructions; 
break; 

case I q' : 
player_choice quit; 
break; 

default: 

} 

player_choice help; 
break; 

return player_choice; 

/* skip white space */ 

353 

The machine's selection is computed by the uses of the expression rand 0 % 3 to pro
duce a randomly distributed integer between 0 and 2. Because the type of the function 
is p_s_r, the value returned will be converted to this type, if necessary. We provided an 
explicit cast to make the code more self-documenting. 

Note that in selection_by_playerO we use the macro isspaceO from ctype.h to 
skip white space. (See Section 8.7, "The Macros in stdio.h and ctype.h," on page 382.) 
After white space is skipped, all other characters input at the terminal are processed, 
most of them through the defaul t case of the swi tch statement. 

The value returned by selection_by_playerO determines which case gets exe
cuted in the swi tch statement in rna in O. The value returned depends on what the 
player types. If the character 9 is input, then prn_game_statusO is invoked; if any 
character other than white space or p, r, s, g, i, or q is input, then prn_hel pO is 
invoked. 



354 Chapter 7... Bitwise Operators and Enumeration Types 

Once the player and the machine have made a selection, we need to compare the two 
selections in order to determine the outcome of the game. The following function does 
this: 

In file compare.c 

#include "p_r_s.h" 

} 

outcome result; 

if (player_choice machine_choice) 
return tie; 

switch (player_choice) { 
case paper: 

result = (machine_choice rock)? win: lose; 
break; 

case rock: 
result = (machine_choice scissors)? win: lose; 
break; 

case sci ssors: 
result = (machine_choice paper)? win: lose; 
break; 

default: 

} 

printf("\nPROGRAMMER ERROR: Unexpected choice!\n\n"); 
exit(l); 

return result; 

The value returned by the call to compareO in mai nO gets passed to the function 
report_and_tabulateO. This function reports to the user the result of a round of 
play and increments as appropriate the number of wins, losses, and ties. 

7.6 ... An Example: The Game of Paper, Rock, SCissors 

In file report.c 

#include "p_r_s.h" 

void report_and_tabulate(outcome result, 

{ 

} 

int *win_cnt_ptr, int *lose_cnt_ptr, int *tie_cnt_ptr) 

switch (result) { 
case win: 

++i'wi n_cnt_ptr; 
printf("%27sYou win.\n", ""); 
break; 

case lose: 
++*lose_cnt_ptr; 
printf("%27sYou lose.\n", ""); 
break; 

case tie: 
++'''ti e_cnt_ptr; 
printf("%27sA tie.\n", ""); 
break; 

default: 

} 

pri ntf("\nPROGRAIVIMER ERROR: Unexpected result! \n\n"); 
ex;t(l); 

We are now ready to compile our function. We can do this "'lith the command 

cc -0 PJ_S main.c compare.c prn.c reportc selection.c 

Later, after we have learned about the make utility, we can facilitate program develop
ment by using an appropriate makefile. (See Section 11.17, "The Use of make," on page 
532.) 



356 Chapter 7 'f Bitwise Operators and Enumeration Types 

Summary 

1 The bitwise operators provide the programmer "vith a means of accessing the bits 
in an integral expression. Typically, we think of the operands of these operators as 
bit strings. 

2 The use of bitwise expressions allows for data compression across byte boundaries. 
This capability is useful in saving space, but is more useful in saving time. On a 
machine with 4-byte words, each instruction cycle processes 32 bits in parallel. 

3 Most machines use the two's complement representation for integers. In this repre
sentation, the high-order bit is the sign bit. It is 1 for negative integers and a for 
nonnegative integers. 

4 Bitwise operations are explicitly machine-dependent. A left shift causes as to be 
shifted in. The situation for a right shift is more complicated. If the integral expres
sion is unsi gned, then as are shifted in. If the expression is one of the signed types, 
then what gets shifted in is machine-dependent. Some machines shift tn sign bits. 
This means that if the sign bit is 0, then Os are shifted in, and if the sign bit is 1, 
then Is are shifted in. Some machines shift in as in all cases. 

5 Masks are particular values used typically with the & operator to extract a given 
series of bits. Packing is the act of placing a number of distinct values into various 
subfields of a given variable. Unpacking extracts these values. 

6 The keyword enum allows the programmer to define enumeration types. A variable 
of such a type can take values from the set of enumerators associated with the type. 

7 Enumerators are distinct identifiers chosen for their mnemonic Significance. Their 
use provides a type-checking constraint for the programmer, as well as self-docu
mentation for the program. 

8 Enumerators are constants of type i nt. they can be used in case labels in a 
swi tch. A cast can be used to resolve type conflicts. 

'f Exercises 357 

Exercises 

1 Suppose that integers have a 16-bit two's complement representation. Write the 
binary representation for -1, -5, -101, -1023. Recall that the two's complement rep
resentation of negative integers is obtained by taking the bit representation of the 
corresponding positive integer, complementing it, and adding 1. 

2 Alice, Betty, and Carole all vote on 16 separate referenda. Assume that each individ
ual's vote is stored bitwise in a 16-bit integer. Write a function definition that 
begins 

short majority(short a, short b, short c) 
{ 

This function should take as input the votes of Alice, Betty, and Carole stored in a, 
b, and c, respectively. It should return the bitwise majority of a, b, and c. 

3 Write a function definition that begins 

int circular_shift(int a, int n) 
{ 

This function should left-shift a by n positions, where the high-order bits are rein
troduced as the low-order bits. Here are two examples of a circular shift operation 
defined for a char instead of an i nt: 

10000001 
01101011 

circular shift 1 yields 
circular shift 3 yields 

00000011 
01011011 

4 Does your machine shift in sign bits? Here is some code that will help you deter
mine this. Explain why this code works. 

i nt 
unsigned 

i 
u 

-1; 
-1; 

if (i »1 u » 1) 

/* turn all bits on */ 

printfC"Zeros are shifted in.\n"); 
else 

printf("Sign bits are shifted in.\n"); 



358 Chapter 7 T Bitwise Operators and Enumeration Types 

5 Write a function that will reverse the bit representation of an i nt. Here are two 
examples of a reversing operation defined for a char instead of an i nt: 

01110101 
10101111 

reversed yields 
reversed yields 

10101110 
11110101 

6 Write a function that will extract every other bit position from a 32-bit expression. 
The result should be returned as a 16-bit expression. Your function should work on 
machines having eIther 2- or 4-byte words. 

7 Write a function that takes as its input a string of decimal integers. Each character 
in the string can be thought of as a decimal digit. The digits should be converted to 
4-bit binary strings and packed into an i nt. If an i nt has 32 bits, then eight digits 
can be packed into it. When you test your function, here is what you might see on 
the screen: 

Input a string of decimal digits: 12345678 
12345678 = 0001 0010 0011 0100 0101 0110 0111 1000 

Also, write an inverse function. It should unpack an i nt and return the original 
string. Hint: Here is one way to begin a conversion function: 

int convert(char *s) 
{ 

char ;'p; 
int a = 0; /* turn all bits off */ 

for (p = s; *p != '\0'; ++p) { 
a «= 4; 
swi tch ('>"p) { 
case '1': 

a 1= 1; 
break; 

case '2': 

8 Use the bi Lp ri nt 0 function to create a table containing n, the binary representa
tion for 2n, and the binary representation for 2n , for n = 0, 1,2, ... ,32. If your 
machine has 2-byte words, then the output of your program should look like this: 

0: 00000000 00000001 
1: 00000000 00000010 
2: 00000000 00000100 

15: 10000000 00000000 

00000000 00000000 
00000000 00000001 
00000000 00000011 

01111111 11111111 

T ExerCises 359 

After you have done this, write dovVll a similar table by hand that contains n, lOn, 
and lOn - 1 for n = 0, 1,2, ... , 7. Write the numbers in base 10 in your table. Do you 
see the similarity between the two tables? Hint: Use follOwing code: 

; nt i , power 1; 

for (i = 0; i < 32; ++i) { 
pr; ntfC"%2d: II i) ; , 
bit_print(power); 
pr; ntf(" "); 
bit_print(power - 1); 
putchar('\n'); 
power ,~= 2; 

} 

9 Some of the binary representations in the tables in this chapter are easy to check 
for correctness, and some are not. Use bi t_pri nt () to check some of the rr,tore dif
ficult representations. 

Write a version of the bi t_p ri nt () function that will work on machines with either 
2- or 4-byte words. Hint: Use the si zeof operator to find the number of bytes in an 
into 

If you are not familiar with the use of the constants 0xff, 0xff00, 0xff0000, and 
0xff000000 as masks, write a test program that uses bi t_p ri nt () to print these 
values as bit strings. 

If your machine has 4-byte words, use the function bi t_p ri nt () to find out how 
the multibyte character 'abc' is stored on your machine. If your machine has 2-
byte words, then you can put only two characters into a multibyte character. In that 
case, try 'ab J • 

Write a roulette program. The roulette (machine) will select a number between 0 
and 35 at random. The player can place an odd/even bet, or can place a bet on a 
particular number. A winning odd/even bet is paid off at 2 to 1, except that all odd/ 
even bets lose if the roulette selects O. If the player places a bet on a particular 
number and the roulette selects it, then the player is paid off at 35 to 1. If you play 
this game, how many one-dollar bets can you place before you lose ten dollars? 



360 Chapter 7 'f Bitwise Operators and Enumeration Types 

14 Write a function called prey; ous_month 0 that returns the previous month. Start 
with the code 

enum month {jan, feb, ... , dec}; 

typedef enum month month; 

If j an is passed as an argument to the function, then dec should be returned. Write 
another function that prints the name of a month. More explicitly, if the enumera
tor j an is passed as an argument, then January should be printed. Write mai nO so 
that it calls your functions and produces a table of all twelve months, each one 
listed next to its predecessor month. Caution: When p ri ntfO is used, a variable 
of an enumeration type is printed as its implicit integer value. That is, 

printf("%d\n", jan); 

prints 0, not jan. 

15 Write a next-day program for a particular year. The program should take as input 
two integers, say 17 and 5, which represents 17 May, and it should print as output 
18 May, which is the next day. Use enumeration types in the program. Pay particu
lar attention to the problem of crossing from one month to the next. 

16 A twentieth-century date can be written with integers in the form day/month/year. 
An example is 1/7/33, which represents 1 July 1933. Write a function that stores 
the day, month, and year compactly. Because we need 31 different values for the 
day, 12 different values for the month, and 100 different values for the year, we can 
use 5 bits to represent the day, 4 bits to represent the month, and 7 bits to repre
sent the year. Your function should take as input the day, month, and year as inte
gers, and it should return the date packed into a 16-bit integer. Write another 
function that does the unpacking. Write a program to test your functions. 

17 Write a fUnction that acts directly on a packed date, and produces the next calendar 
day in packed form. (See the previous exercise.) Contrast this to the program you 
wrote in the previous exercise. 

18 Rewrite the program given in Section 4.10, "An Example: Boolean Variables," on 
page 170. Use the five low-order bits in the char variable b to represent the five 
boolean variables b1, ... , bS. 

'f Exercises 361 

19 Re'write the program from the previous exercise to take advantage of machine arith
metic. Show by hand simulation that the effect of adding 1 to the bit representation 
for b is equivalent to the effect of the nested fo r statements. In this exercise, your 
program should generate the table using a single unnested for statement. 

20 (Balanced Meal Program) Use enumeration types to define five basic food groups: 
fish, fruits, grains, meats, and vegetables. Use a random number generator to select 
an item from each food group. Write a function meal 0 that picks an item from 
each of the five groups and prints out this menu. Print 20 menus. How many differ
ent menus are available? 

21 Write a function that picks out five cards at random from a deck of cards. Your 
function should check that all the cards in the hand are distinct. Recall that the 
spots on a playing card that represent its numeric value are called "pips." A playing 
card such as the seven of hearts has a pip value 7 and a suit value hearts. The pip 
value for an ace is 1, a deuce is 2, ... , and a king is 13. Use enumeration types to rep
.resent the pips and suit values in your function. Write another function that prints 
out the hand in a visually pleasing way. 

22 Write a set of routines that test whether the hand generated by the function in the 
previous exercise is a straight, a flush, or a full house. A straight consists of five 
cards that can be placed in consecutive sequence by pip value. A flush consists of 
five cards of the same suit. A full house is three of a kind plus a pair. Run your ran
dom hand generator and print out any hand that is one of these three kinds, along 
with the hand number. Continue to print out hands until one of each of the three 
kinds has been generated, or until you have generated 5,000 hands. If the latter 
happens, there is probably something wrong with your program. Do you know why? 

23 In the game "paper, rock, scissors," an outcome that is not a tie is conveyed to the 
player by printing 

You win. or You lose. 

RevvTite the program so that messages like the follovving are printed: 

You chose paper and I chose rock. You win. 

24 Consider the function packO given in Section 7.4, "Packing and Unpacking," on 
page 34 L The body of the function consists of four statements. Rewrite the func
tion so that these four statements are collapsed into a single retu rn statement. 

25 Revvrite the function packO so that only arithmetic operations are used. 



362 Chapter 7 'f Bitwise Operators and Enumeration Types 

26 'On any machine, a mask of type long is acceptable. However, when we tried the fol
lowing initialization on a 2-byte machine, our code did not work as expected: 

long mask == 1 « 31; /* turn the high bit on: error! */ 

We made an egregious error. Can you explain what it is? 

27 How multicharacter character constants such as 'abc' get stored is system-depen
dent. Because programmers sometimes write 'abc' instead of n abc", some compil
ers provide a warning when multicharacter character constants get used, even if the 
use is proper. What happens on your system? Try the follOwing code: 

i nt c 'abc' ; 

printfC'''abc' == "); 
bit_print(c); 
printf("\n"); 

Here is the output on a Sun workstation: 

'abc' == 00000000 01100011 01100010 01100001 

28 A useful implementation of the mathematical concept of set is an unsi gned long 
treated as a set of up to 32 elements. 

typedef unsigned long set; 

const set empty == 0X0; /* use hexadecimal constants */ 

Write a routine that does set union using bit operators. Caution: Because uni on is a 
keyword, use another name. 

/* This function returns the union of a and b. */ 

set Union(set a, set b); 

By using masks you can examine whether a bit position is 1. Use this idea to write a 
function 

void display(set a); 

'f Exercises 363 

that informatively prints out the members of a set. To test your functions, you 
could write 

set 
set 

a 0X7; 
b 0X55; 

display(Union(a, b»; 

/* a has elements 1, 2, 3 */ 
/* b has elements 1, 3, 5, 7 */ 

/* 1, 2, 3, 5, 7 is in the union */ 

29 (Project) Use the ideas presented in the previous exercise to develop a complete 
set manipulation package for sets whose size is 32 members or less. Thus, you need 
to write 

set Union(set a, set b); 
set intersection(set a, set b); 
set complement(set a); 

After you have written these functions and tested them, use arrays of i nts to repre
sent larger sets. The size of the arrays should allow for sets with 1,000 members or 
less. Modify your functions to work with these sets. 



Chapter 8 

The Preprocessor 

The C language uses the preprocessor to extend its power and notation. In this chapter, 
we present a detailed discussion of the preprocessor, including new features added by 
the ANSI C committee. We begin by explaining the use of #i ncl ude. Then we thor
oughly discuss the use of the #defi ne macro facility. Macros can be used to generate 
inline code that takes the place of a function call. Their use can reduce program execu
tion time. 

Lines that begin with a # are called preprocessing directives. These lines communicate 
with the preprocessor. In ANSI C, the # can be preceded on the line by white space, 
whereas in traditional C, it must occur in column 1. The syntax for preprocessing direc
tives is independent of the rest of the C language. The effect of a preprocessing direc
tive starts at its place in a file and continues until the end of that file, or until its effect 
is negated by another directive. It is always helpful to keep in mind that the preproces
sor does not "know c." 

8.1 The Use of #include 

We have already used preprocessing directives such as 

#include <stdio.h> 
#include <stdlib.h> 

Another form of the #i ncl ude facility is given by 

#i ncl ude "filename" 



366 Chapter B." The Preprocessor 

This causes the preprocessor to replace the line with a copy of the contents of the 
named file. A search for the file is made first in the current directory and then in other 
system-dependent places. With a preprocessing directive of the form 

#include <filename> 

the preprocessor looks for the file only in the other places and not in the current direc
tory. In UNIX systems, the standard header files such as stdio.h and stdlib.h are typically 
found in jusrjinclude. In general, where the standard header files are stored is system
dependent. 

There is no restriction on what a #i ncTude file can contain. In particular, it can con
tain other preprocessing directives that will be expanded by the preprocessor in turn. 

8.2 The Use of #defi ne 

Preprocessing directives with #defi ne occur in two forms: 

#defi ne identifier token_stringopt 
#defi ne identifier( identifier, '" , identifier) token_stringopt 

The token_string is optional. A long definition of either form can be continued to the 
next line by placing a backslash \ at the end of the current line. If a simple #defi ne of 
the first form occurs in a file, the preprocessor replaces every occurrence of identifier 
by token_string in the remainder of the me, except in quoted strings. Consider the 
example 

(60 ;( 60 i( 24) 

In this example, the token string is (60 * 60 ;( 24), and the preprocessor will replace 
every occurrence of the symbolic constant SECONDS_PER_DAY by that string in the 
remainder of the file. 

The use of Simple #defi nes can improve program clarity and portability. For exam
ple, if special constants such as 1t or the speed of light c are used in a program, they 
should be defined. 

#define PI 3.14159 
#define C 299792.458 1* speed of light in km/sec *1 

8.2 ." The Use of #defi ne 

Other special constants are also best coded as symbolic constants. 

#define EOF (-1) 
#define MAXINT 2147483647 

1* typical end-of-file value *1 
1* largest 4-byte integer *1 

Program limits that are programmer decisions can also be specified symbolically. 

#define 
#define 
#define 

ITERS 
SIZE 
EPS 

50 
250 
1.0e-9 

1* number of iterations *1 
li( array si ze *1 
1* a numerical limit *1 

367 

In general, symbolic constants aid documentation by replacing what might otherwise be 
a mysterious constant with a mnemonic identifier. They aid portability by allowing con
stants that may be system-dependent to be altered once. They aid reliability by restrict
ing to one place the check on the actual representation of the constant. 

Syntactic Sugar 

It is possible to alter the syntax of C toward some user preference. A frequent program
ming error is to use the token in place of the token == in logical expressions. A pro
grammer could use 

#define EQ 

to defend against such a mistake. This superficial alteration of the programming syntax 
is called syntactic sugar. Another example of this is to change the form of the whi 1 e 
statement by introducing "do," which is an ALGOL style construction. 

#define do 1* blank *1 

With these two #defi ne lines at the top of the file, the code 

while (i EQ 1) do { 

will become, after the preprocessor pass, 

while Ci == 1) { 

Keep in mind that because do will disappear from anywhere in the file, the do-whi 1 e 
statement cannot be used. Using macros to provide a personal syntax is controversial. 
The advantage of avoiding ==mistakes is offset by the use of an idiosyncratic style. 



368 Chapter 8... The Preprocessor 

8.3 Macros with Arguments 

So far, we have considered only simple #defi ne preprocessing directives. We now want 
to discuss how we can use the #defi ne facility to write macro definitions with parame· 
ters. The general form is given by 

#define identifier( identifier, ... , identifier) 

There can be no space between the first identifier· and the left parenthesis. Zero or 
more identifiers can occur in the parameter list. An example of a macro definition with 
a parameter is 

#define SQ(x) ((x) * (x)) 

The identifier x in the #defi ne is a parameter that is substituted for in later text. The 
substitution is one of string replacement without consideration of syntactic correct
ness. For example, with the argument 7 + w the macro call 

SQ(7 + w) expands to ((7 + w) ~, (7 + w)) 

In a similar fashion 

SQ(SQ(~'p)) expands to ((((*p) * (*p))) * (((*p) * (*p)))) 

This seemingly extravagant use of parentheses is to protect against the macro expand
ing an expression so that it led to an unanticipated order of evaluation. It is important 
to understand why all the parentheses are necessary. First, suppose we had defined the 
macro as 

#define SQ(x) X 1, X 

With this definition 

SQ(a + b) expands to a + b ,', a + b 

which, because of operator precedence, is not the same as 

((a + b) * (a + b)) 

8.3 l' Macros with Arguments 369 

Now suppose we had defined the macro as 

#define SQ(x) (x) 1( (x) 

With this definition 

4 / SQ(2) expands to 4 / (2) 1, (2) 

which, because of operator precedence, is not the same as 

4 / ((2) ,', (2)) 

Finally, let us suppose that we had defined the macro as 

#define SQ (x) ((x) ,', (x)) 

With this definition 

SQ(7) expands to (x) ((x) ,', (x)) (7) 

which is not even close to what was intended. If, in the macro definition, there is a 
space between the macro name and the left parenthesis that follows, then the rest of 
the line is taken as replacement text. 

A common programming error is to end a #defi ne line 'with a semicolon, malting it 
part of the replacement string when it is not wanted. As an example of tIns, consider 

#define SQ(x) ((x) ~( (x)); F' error ~'/ 

The semicolon here was typed by mistake, one that is easily made because program
mers often end a line of code with a semicolon. When used in the body of a function, 
the line 

x = SQ(y); gets expanded to x ((y) ,', (y));; 

The last semicolon creates an unwanted null statement. If we were to write 

if (x == 2) 
x = SQ(y); 

else 
++x; 

we would get a syntax error caused by the unwanted null statement. The extra semico
lon does not allow the else to be attached to the if statement. 



370 Chapter 8'" The Preprocessor 

Macros are frequently used to replace function calls by inline code, which is more 
efficient. For example, instead of writing a function to find the minimum of two values, 
a programmer could \vrite 

#define mi n(x, y) (((x) < (y») ? (x) : (y)) 

After this definition, an expression such as 

m min(u, v) 

gets expanded by the preprocessor to 

m = (((u) < (v») ? (u) : (v) 

The arguments of mi nO can be arbitrary expressions of com~atible typ,e., Also, we can 
use mi nO to build another macro. For example, if we need to fmd the llllIllmum of four 
values, we can \-vrite 

#define min4(a, b, c, d) min(min(a, b), min(c, d) 

A macro definition can use both functions and macros in its body. For example 

#define 
#define 
#define 

SQ(x) 
CUBE(x) 
F_POW(x) 

((x) ,', (x» 
(SQ(x) ,', (x)) 
sqrt(sqrt(CUBE(x))) /* fractional power:3/4 */ 

A preprocessing directive of the form 

#undef identifier 

will undefine a macro. It causes the previous definition of a macro to be forgotten. 
Caution: Debugging code that contains macros with arguments can be difficult. To 

see the output from the preprocessor, you can give the command 

cc -£ file.c 

After the preprocessor has done its work, no further compilation takes place. (See exer
cise 1, on page 396.) 

8.4 .., The Type Definitions and Macros in stddef.h 371 

8.4 The Type Definitions and Macros in stddef.h 

C provides the typedef facility so that an identifier can be associated with a specific 
type. A simple example is 

typedef char uppercase; 

This makes uppercase a type that is synonymous with char, and it can be used in dec
larations, just as other types are used. An example is 

uppercase c, u[1100]; 

The typedef facility allows the programmer to use type names that are appropriate for 
a specific application. (See Section 9.1, "Structures," on page 408, and Section 10.6, "An 
Example: Polish Notation and Stack Evaluation," on page 468.) 

In this section, we are concerned with the implementation-specific type definitions 
and macros that are given in the header file stddef.h, They can occur in other standard 
header files as well. Here is how the type definitions might appear: 

typedef 
typedef 
typedef 

i nt 
short 
unsigned 

ptrdifLt; 
wchar_t; 
size_t; 

/* pointer difference type */ 
/* wide character type */ 
/* the sizeof type */ 

The type ptrdi fLt tells what type is obtained \-vith an expression involving the differ
ence of two pointers. (See exercise 7, on page 398.) The type wchar _t is provided to 
support languages with character sets that will not fit into a char. Some C compilers 
are not interested in providing such support. If that is the case, the type definition 
would probably be 

typedef char wchar_t; /* same as a plain char */ 

Recall that the sizeaf operator is used to find the size of a type or an expression. 
For example, si zeof(doubl e) on most systems is 8. The type si ze_t is the type of the 
result of the si zeof operator. This is system-dependent, but it must be an unsigned 
integral type. We will see the use of si ze_t in our discussion of qsortO in the next 
section. 

The macro NULL is also given in stddef. h. It is an implementation-defined null 
pointer constant. Typically, NULL is defined to be 0, but on some systems it is given by 

#define NULL ((voi d 1,) (0) 



372 Chapter 8 T The Preprocessor 

8.5 An Example: Sorting with qsort () 

Programmers, for a variety of reasons, need to be able to sort data. If the amount of 
data is small, or the program does not have to run fast, we can use a bubble sort or a 
transposition sort to accomplish the task. If, however, there is a lot of data, and speed 
of execution is a concern, then we can use the function qsortO provided by the stan
dard library. (The name qsort stands for "quick sort.") 

The function qso rt 0 is useful because it is a lot faster than a bubble sort or a sim
ple transposition sort and it is quite easy to use. Another quicksort implementation, 
qui cksort 0, however, can be even faster, but it requires more coding effort. (See exer
cises 33 and 34 on page 406. See also Section 8.15, "An Example: Quicksort," on page 
391.) 

The function prototype for qsort 0 is in stdlib.h. It is equivalent to 

void qsort(void *array, size_t n_els, size_t el_size, 
int compare(const void *, const void *)); 

Notice that the type 5 i ze_ t is used. Many other functions in the standard library also 
use this type. When qso rt 0 is called, its first argument is the array to be sorted, its 
second argument is the number of elements in the array, its third argument is the num
ber of bytes in an element, and its fourth argument is a function, called the comparison 
function, which is used to compare elements in the array. In this function prototype for 
qsortO, the declaration of the fourth parameter is 

int compare(const void *, const void *) 

This is itself a function prototype, the prototype for the comparison function. The com
parison function takes as arguments two pointers to voi d. When compare 0 gets 
invoked, these two pointers will point to elements of the array. The comparison func
tion returns an i nt that is less than, equal to, or greater than zero, depending on 
whether its first argument is considered to be less than, equal to, or greater than its 
second argument. The two pointers are of type voi d ,', because they are meant to be 
generic. As we vvill see, qsortO can be used to sort arrays of any type. The type quali
fier const tells the compiler that the objects pointed to by the two pointers should not 
be modified. (See Section 6.19, "The Type Qualifiers const and vol ati 1 e," on page 
307.) 

Let us vvrite a test program that illustrates the use of q so rt 0 .In our program, we fill 
an array, print it, sort it with qsort 0, and then print it again. 

8.5 T An Example: Sorting with qsortO 373 

In file try _qsort.c 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#define N 11 /* size of the array */ 

enum when {before, after}; 

typedef enum when when; 

int cmp(const void *vp, const void *vq); 
void fill_array(double *a, int n); 
void prn_array(when val, double *a, int n); 

int main(void) 
{ 

} 

double a[NJ; 

fill_array(a, N); 
prn_array(before, a, N); 
qsort(a, N, sizeof(double) , cmp); 
prn_array(after, a, N); 
return 0; 

int cmp(const void *vp, const void *vq) 
{ 

} 

const double 
const double 
double 

"'P = vp; 
"'q = vq; 
diff = "'p - "'q; 

return ((diff >= 0.0) ? ((diff > 0.0) ? -1 

void fill_array(double *a, int n) 
{ 

i nt i; 

srand(time(NULL)); 
for (i = 0; i < n; ++i) 

a[iJ = (rand() % 1(01) / 10.0; 
} 

0) +1) ; 

/* seed rand() */ 



374 Chapter 8 T The Preprocessor 

void prn_array(when val, double *a, int n) 
{ 

int i; 

printf("%s\n%s%s\n", 
n It , 

((val == before)? "Before 11 : "After "), "sorting:"); 

} 

for (i = 0; i < n; ++i) { 
if (i % 6 == 0) putchar('\n'); 
printf("%10.1f". a[iD; 

} 
putchar('\n'); 

We want to discuss a number of points about this test program, but before we do, let 
us look at some typical output: 

Before sorting: 
1.5 17.0 99.5 45.3 52.6 66.3 
3.4 70.2 23.4 57.4 6.4 

After sorting: 
99.5 70.2 66.3 57.4 52.6 45.3 
23.4 17.0 6.4 3.4 1.5 

• 
Dissection of the try_qsort Program 

III #define N 11 /* size of the array */ 

To test the function qsort 0, we will create an array of size N. After we get the code to 
work for a small array, we can test it on a larger array. 

.. int 
void 
void 

crnp(const void *vp, const void *vq); 
fill_array(double *a, int n); 
prn_array(when val. doubl e '~a, i nt n); 

These are function prototypes. We can name our comparison function whatever we 
want, but the type of the function and the number and type of its arguments must 
agree with the last parameter in the function prototype for qsortO. 

int rnain(void) 
{ 

double a[NJ; 

fill_array(a. N); 
prn_array(before. a, N); 

8.5 T An Example: Sorting with qsortO 

qsort(a. N, sizeof(double) , crnp); 
prn_array(after, a, N); 
return 0; 

} 

375 

In rna i nO, we declare a to be an array of doub 1 es. Because the purpose of our program 
is to test qsortO, we do not do anything exciting. An we do is fill the array, print it, 
use qsortO to sort it, and then print the array again. 

.. qsort(a. N, sizeof(double) , cmp); 

When qsortO is invoked, we must pass it the base address of the array to be sorted, 
the number of elements in the array, the number of bytes required to store an element, 
and the name of our comparison function. 

III int crnp(const void *vp, const void *vq) 
{ 

This is the start of the function definition for our comparison function. The letter v in 
vp and vq is mnemonic for "void." In the body of rnai nO we pass the name of our com
parison function as the last argument to qsortO. This occurs in the statement 

qsort(a, N, sizeof(double) , crnp); 

In the body of qsortO, which the programmer does not have access to, pointers to ele
ments of the array a will be passed to crnp O. The programmer is not concerned with 
the internal details of q so rt O. The programmer only has to write the comparison 
function with the understanding that the parameters vp and vq are pointers to ele
ments of the array. 



376 Chapter 8... The Preprocessor 

• int cmp(const void *vp, canst void *vq) 
{ 

canst double 
canst double 
double 

'''p = vp; 
~'q = vq; 
diff = '''p - "q; 

In the body of our comparison function, we initialize vp to p and vq to q. If we do not 
qualify p and q with const, the compiler will complain. (See Section 6.19, "The Type 
Qualifiers canst and val ati 1 e," on page 307.) The variables p and q are of type 
pointer to double because the elements of the array a are of type double. We initialize 
di ff to the difference of the objects pointed to by p and q. 

• return ((diff >= 0.0) ? ((diff > 0.0) ? -1 : 0) : +1); 

If di is positive, we return -1; if diff is zero, we return 0; and if di ff is negative, we 
return 1. This causes the array to be sorted in descending order. We can cause the array 
to be sorted in ascending order if we replace this line with 

if (diff < 0.0) 
return -1; 

if (diff == 0.0) 
return 0; 

return 1; 

• void fill_array(double *a, int n) 
{ 

i nt i; 

srand(time(NULL)); /* seed rand() */ 

Typically, the function call ti me (NULL) returns the number of seconds that have 
elapsed since 1 January 1970. ANSI C does not guarantee this, but this convention is 
widely followed. Passing ti me (NULL) to s rand 0 causes the array a to be filled with 
different values every time the program is invoked. 

• for (i = 0; i < n; ++i) 
a[iJ = (rand() % 1001) / 10.0; 

The expression rand 0 % 1001 has an i nt value in the interval 0 to 1000. Because we 
are dividing this by the double value 10.0, the value of whatis assigned to a [i] is in 
the interval 0 to 100. 

• • 

8.6 ... An Example: Macros with Arguments 377 

An Example: Macros with Arguments 

In this section, we again fill arrays and sort them with qsortO, but this time we use 
macros with arguments. We will call our program sort. 

Let us write our program in three files: a header file sort.h and two .c files. In the 
header file we put our #i ncl udes, our #defi nes, and a list of function prototypes. 

In file sort.h 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 

M 32 

(x - (int) x) 

/* size of a[] */ 
/* size of b[] */ 

#define 
#define 
#define 
#define 
#define 

N 11 
fractional_part(x) 
random_char 0 
random_flaatO 

(rand() % 26 + 'a r
) 

(rand() % 100 / 10.0) 

#define FILL(array, SZ, type) \ 
if (strcmp(type, "char") == 0) \ 

for (i = 0; i < sz; ++i) \ 
array[;] randam_char(); \ 

else \ 
for (i = 0; i < sz; ++;) \ 

array[iJ random_float() 

#define PRINT(array, sz, cntrl_string) \ 
for (i = 0; i < sz; ++i) \ 

pr;ntf(cntrl_string, array[iJ); \ 
putchar('\n') 

int compare_fractional_part(const void *, const void *); 
int lex;co(const void *, const void *); 



378 Chapter 8.., The Preprocessor 

• • 
Dissection of the sort.h Header File 

• #include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 

The header file stdio.h contains the macro definition for NULL and the function proto
type for pri ntfO. The header file stdlib.h contains the function prototypes for 
randO, srandO, and qsortO. The header file time.h contains the function prototype 
for ti me O. The function call ti me (NULL) will be used to seed the random number gen
erator. 

• #define fract;onal_part(x) (x (i nt) x) 

If x is a positive float, then the expression x (i nt) x yields the fractional part of x. 

• #define (rand() % 26 + 'a') 

When rand () is invoked, it returns an integer value randomly distributed between 0 
and MAK...RAND, a symbolic constant defined in stdlib.h. Because MAX_RAND is typically 
more than 32 thousand, the expression randO % 26 yields an integer value randomly 
distributed between 0 and 25. Because 0 + 'a' has the value • a' and 25 + 'a' has the 
value 'z' I the expression 

rand() % 26 + 'a' 

produces a character value randomly distributed between • a' and 'z'. 

• #define random_ float () (rand() % 100 I 10.0) 

The value of the expression rand () % 100 is an integer randomly distributed between 
o and 99. Because the expression 10.0 is of type doub 1 e, the value produced by randO 
% 100 is promoted to a doub 1 e, and the expression 

rand() % 100 I 10.0 

as a whole is also of type doubl e. Its value is between 0 and 9.9. 

8.6 .., 'An Example: Macros with Arguments 379 

• #define FILL(array, SZ, type) \ 
if (strcmp(type, "char") "''''' 0) \ 

for (i = 0; i < sz; ++i) \ 
array[;J random_char(); \ 

else \ 
for (i "" 0; i < sz; ++i) \ 

array[i] random_float() 

In this macro definition, array, SZ, and type are parameters. Unlike function defini
tions, no type checking gets done. It is the programmer's responsibility to call the 
macro with arguments of the appropriate type. Note that the variable i is used in the 
body of the macro. Because it is not declared here, it has to be declared in mai n (), 
where the macro gets called. Consider the macro call 

FILL(a, n, "char"); 

When the macro gets expanded, we obtain 

if (strcmp("char", "char") == 0) 
for (i "" 0; i < n; ++i) 

a[iJ random_char 0 ; 
else 

for (i = 0; i < n; ++i) 
a[i] = random_float(); 

The identifiers array, SZ, and type have been replaced by a, n, and "char", respec
tively. Note carefully that all but the last semicolon came from the preprocessor expan
sion mechanism. 

• #define PRINT(array, SZ, cntrl_string) \ 
for (i = 0; i < sz; ++i) \ 

printf(cntrl_string, array[iJ); \ 
putchar('\n') 

This macro can be used to print the values of elements of an array. Note that the con
trol string for pri ntfO is a parameter in the macro definition. 

• int compare_fractional_part(const void *, const void *); 
int lexico(const void *, const void *); 

These are prototypes of comparison functions that will be passed to q so rt O. Notice 
that with respect to type, they match the function prototype of the comparison func
tion in the function prototype for q so rt O. 

• 



380 Chapter 8 Y The Preprocessor 

N~W l~t us c~nsider the rest of the code for our program. In ma; nO, we fill an array, 
prmt It, so~t It, and print it again. Then we repeat the process, but this time with an 
array of a dIfferent type. 

In file main.c 

} 

#include "sort.h" 

int main(void) 
{ , 

char arM]; 
float beN]; 
i nt i; 

srand(time(NULL)); 
FILL(a, M , "char"); 
PRINT(a, M, 1%-2c"); 
qsort(a, M, sizeof(char), lexico); 
PRINT(a, M, "%-2c")' 
pri ntf("---\n"); , 
FILL(b, N, "float"); 
PRINT(b, N, "%-6.1f"); 
qsort(b, N, sizeof(float) compare_fractional_part); 
PRINTCb, N, "%-6.lf"); , 
return 13; 

~otice that each time we invoke qsort 0, we use a different comparison nmction. Here 
IS the output of our program: 

q m z r h 1 a j 0 e t b k w 1 t z t v i e m h p f Y bps j a a b bee f h h i j j k 1 1 
w a 

m m 0 p p q r s t t t v w w y z z 
9.4 13.2 5.1 6.7 5.4 5.3 6.1 9.6 2.8 8.8 6.1 5.1 8.5 13.2 5.3 5.4 9.4 8.5 9.6 6.7 8.8 2.8 

Finally, we. w.ant to ~ook at the two comparison functions. Pointers to vo; d are used 
because t~s IS reqUIred by the function prototype of qsortO in stdlib.h. We will care
fully explam how these pointers get used in the comparison functions. 

8.6 Y An Example: Macros with Arguments 

In file compare.c 

• 

#include "sort.h" 

int compare_fractional_part(const void "'vp, const void '''vq) 
{ 

} 

const float 
float 

*p = vp, *q = vq; 
x; 

x = fractional_part(*p) - fractional_part(*q); 
return ((x < 0.0) ? -1 (x == 0.0) ? 0 : +1); 

int lexico(const void *vp, const void *vq) 
{ 

} 

const char 
return (r,p 

*p = vp, *q = vq; 
r'q) ; 

Dissection of the compare_fracti onal_partO Function 

• int compare_fractional_part(const void *vp, const void *vq) 
{ 

381 

This function takes two const qualified pointers to voi d as arguments and returns an 
i nt. Because of this, the function can be passed as an argument to qsortO. 

III int compare_fractional_part(const void "'vp, const void "'vq) 
{ 

const float 
float 

*p = vp, *q = vq; 
x; 

The letter v in vp and vq is mnemonic for "void." Because pointers to vo; d cannot be 
dereferenced, we declare p and q to be pointers to float and initialize them with vp 
and vq, respectively. Because an ANSI C compiler will complain if a const-qualified 
pointer is assigned to one that is not const qualified, we declare p and q to be const 
qualified. Notice that we did not declare x to be const qualified. If we had done so, we 
would be able to give x a value only by initializing it. 



382 Chapter 8 V The Preprocessor 

• x = fractional_part(*p) - fractional_part(*q); 
return ((x < 0.0) ? -1 : (x == 0.0) ? 0 : +1); 

The difference of the fractional parts of the objects pointed to by p and q is assigned to 
x. Then -1,0, or +1 is returned, depending on whether x is negative, zero, or positive. 
Thus, when we call qsortO with compare_decimal_partO passed as an argument, 
the elements in the array get sorted according to their fractional parts. 

• • 
Observe that in the function 1 exi coO we defined p and q to be pointers to const 

char and initialized them with vp and vq, respectively. Then we returned the difference 
of what is pointed to by p and q. Thus, when we call qsortO with 1 exi co passed as an 
argument, the elements in the array get sorted lexicographically. 

8.7 The Macros in stdio.h and ctype.h 

The C system provides the macros getcO and putcO in stdio.h. The first is used to 
read a character from a file, the second to write a character to a file. (See Section 11.5, 
"An Example: Double Spacing a File," on page 509.) Because the header file stdio.h con
tains the lines 

#define 
#define 

getcharO 
putchar(c) 

getc(stdin) 
putc((c), stdout) 

we see that getcharO and putcharO are also macros. They read characters from the 
keyboard and write characters to the screen, respectively. ' 

The C system also provides the standard header file ctype.h, which contains a set of 
macros that test characters and a set of prototypes of functions that convert charac
ters. The preprocessing directive 

#include <ctype.h> 

includes these macros and function prototypes. In the table that follows, we list the 
macros that test characters. These macros all take an argument of type i nt and return 
an i nt. 

8.7 V The Macros in stdio.h and ctype.h 383 

Macro Nonzero (true) is returned if: 

isalpha(c) c is a letter 

i supper(c) c is an uppercase letter 

islower(c) c is a lowercase letter 

i sdi gi t(c) c is a digit 

isalnum(c) c is a letter or digit 

isxdigit(c) c is a hexadecimal digit 

i sspace(c) c is a white space character 

i spunct(c) c is a punctuation character 

i spri nt(c) c is a printable character 

i sgraph(c) c is printable, but not a space 

i scntrl (c) c is a control character 

i sasci i (c) c is an ASCII code 

In the next table, we list the functions touppe r 0 and to lowe r 0, which are in the 
standard library, and the macro toasci i O. The macro and the prototypes for the two 
functions are in ctype.h. The functions and the macro each take an i nt and return an 
i nt. In the table, we assume that c is a variable of integral type, such as char or i nt. 
Note carefully that the value of c stored in memory does not get changed. 

Call to the function or macro Value returned 

toupper(c) corresponding uppercase value or c 

tolower(c) corresponding lowercase value or c 

toascii(c) corresponding ASCII value 

If c is not a lowercase letter, then the value returned by toupper(c) is c. Similarly, if c 
is not an uppercase letter, then the value returned by to lowe r (c) is c. 



384 Chapter 8 T The Preprocessor 

8.8 Conditional Compilation 

The preprocessor has directives for conditional compilation. They can be used for pro
gram development and for writing code that is more easily portable from one machine 
to another. Each preprocessing directive of the form 

#if 
#ifdef 
#ifndef 

constanL integraL expression 
identifier 
identifier 

provides for conditional compilation of the code that follows until the preprocessing 
directive 

#endif 

is reached. For the intervening code to be compiled, after #i f the constant expression 
must be nonzero (true), and after #i fdef or after #i f defi ned, the named identifier 
must have been defined previously in a #defi ne line, without an intervening 

#undef identifier 

having been used to undefine the macro. After #i fndef, the named identifier must be 
currently undefined. 

The integral constant expression used in a preprocessing directive cannot contain 
the si zeof operator or a cast, but it may use the defi ned preprocessing operator. This 
operator is available in ANSI C, but not necessarily in traditional C. The expression 

defi ned identifier is equivalent to defi ned(identifier) 

It evaluates to 1 if the identifier is currently defined, and evaluates to 0 otherwise. Here 
is an example of how it can be used: 

#if defined(HP9000) I I defined(SUN4) && !defined(VAX) 
/* machine-dependent code */ 

#endif 

Sometimes pri ntfO statements are useful for debugging purposes. Suppose that at 
the top of a file we write 

#define DEBUG 1 

8.8 T Conditional Compilation 385 

and then throughout the rest of the file we write lines such as 

#if DEBUG 
printf("debug: a = %d\n!l, a); 

#endif 

Because the symbolic constant DEBUG has nonzero value, t?e ~ri ntfO st~tements will 
be compiled. Later, these lines can be omitted from compIlatIon by changmg the value 
of the symbolic constant DEBUG to O. . . 

An alternate scheme is to define a symbolic constant havmg no value. Suppose that 
at the top of a file we write 

#define DEBUG 

Then we can use the #i fdef or #i f defi ned forms of conditional compilation. For 
example, if we write 

#ifdef DEBUG 

#endif 

then the intervening lines of code will be compiled. When we r~move the #de:i ne line 
that defines DEBUG from the top of the file, the intervening lmes of code WIll not be 
compiled. 

Suppose we are writing code in a large soft",:are proj~ct. We may be expected to 
include at the top of all our code certain header files supplIed by others: Our code may 
depend on some of the function prototypes and on some of the macros m t~ese header 
files, but because the header files are for the project as a whole, our code mI~ht n~t use 
everything. Moreover, we may not even know all the things that eventually WI~ ?e III the 
header files. To prevent the clash of macro names, we can use the #undef faCIlIty: 

#include "everything.h" 

#undef 
#define 

PIE 
PIE "I like apple." 

If PIE happens to be defined in everything.h, then we have undefined it. If it is not 
defined in everything.h, then the #undef directive has no effect. . . 

Here is a common use of conditional compilation. Imagine that you are m the testmg 
phase of program development and that your code has the form 



386 Chapter 8 'f' The Preprocessor 

statements 
more statements 
and still more statements 

For debugging or testing purposes, you may wish to temporarily disregard, or block 
out, some of your code. To do this, you can try to put the code into a comment. 

statements 
/,~ 

more statements 
*/ 
and still more statements 

However, if the code to be blocked out contains comments, this method \vill result in a 
syntax error. The use of conditional compilation solves this problem. 

statements 
#if 0 
more statements 
#endif 
and still more statements 

The preprocessor has control structures that are similar to the i f-e 1 se statement in 
C. Each of the #i f forms can be followed by any number of lines, possibly containing 
preprocessing directives of the form 

#elif constanLintegraL eXpression 

possibly followed by the preprocessing directive 

#else 

and, finally, followed by the preprocessing directive 

#endif 

Note that #e 1 i f is a contraction for "else-if." The flow of control for conditional compi
lation is analogous to that prOvided by i f-el se statements. 

8.9 'f' The Predefined Macros 387 

The Predefined Macros 

ANSI C there are five predefined macros. They are always available, and they, canno~ 
: undefi~ed by the programmer. Each of these macro names includes two leadmg an 
twO trailing underscore characters. 

Predefined macro Value 

__ DATE A string containing the current date 

FILL_ A string containing the file name 
__ LINE __ An integer representing the current line number 

__ STDC_ If the implementation follows ANSI Standard C, 
then the value is a nonzero integer, 

__ TIME A string containing the current time 

8.10 The Operators # and ## 

. in 0 erators # and ## are available in ANSI C but not in traditiona~ ~. 
i~: ~~~~o~;~~at~r ~ causes "stringization" of a formal parameter in a macro deflm
tion. Here is an example of its use: 

#define message_for(a, b) \ 
pr; ntf(#a II and II #b ll. We love you! \nlf) 

int main(void) 
{ 

} 

message_for(Carole, Debra); 
return 0; 

. 'nvol<ed each parameter in the macro definition is replaced by its When the macro IS I'd b d bi 
d ' men·t \vith the # causing the argument to be surrounde y au e correspon mg argu, '. 

quotes. Thus, after the preprocessor pass, we obtam 



388 Chapter 8 T The Preprocessor 

int mainCvoid) 
{ 

} 

printfCICarole" II and II "Debra" ". We love you!\n"); 
return 0; 

Because string constants separated by white space are concatenated, this pri ntfO 
statement is equivalent to 

printf("Carole and Debra: We love you!\n"); 

In the next section we use the "strmgization" operator # in the assertO macro. 
The binary operator ## is used to merge tokens. Here is an example of how the oper

ator is used: 

#define XCi) x ## i 
XCI) = X(2) ~ X(3); 

After the preprocessor pass, we are left with the line 

xl = x2 = x3; 

8.11 The assert () Macro 

ANSI C provides the assert 0 macro in the standard header file assert.h. This macro 
can be used to ensure that the value of an expression is what you expect it to be. Sup
pose that you are writing a critical function and that you want to be sure the arguments 
satisfy certain conditions. Here is an example of how assertO can be used to do this: 

#include <assert.h> 

void f(char *p, int n) 
{ 

assert(p != NULL); 
assert(n> 0 && n < 7); 

If an assertion fails, then the system will print out a message and abort the program. 
Although the assertO macro is implemented differently on each system, its general 
behavior is always the same. Here is one way the macro might be written: 

8.12 T The Use of #error and #pragma 

#include <stdio.h> 
#include <stdlib.h> 

#if defined(NDEBUG) 
#define assert(ignore) ((void) 0) 

#else 
#define assert(expr) 

#endif 

if (! (expr)) { 
printf("\n%s%s\n%s%s\n%s%d\n\n" , 

"Assertion failed: ", #expr, 
"i n fi 1 e ", , 
"at 1 i ne ", __ LINL_); 

abortO; 
} 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

/* for abort() */ 

I~' ignore it "'/ 

389 

Note that if the macro NDEBUGO is defined, then all assertions are ignored. This allows 
the programmer to use assertions freely during program development, and then to 
effectively discard them later by defining the macro NDEBUG. The function abortO is in 
the standard library. (See Appendix A, "The Standard Library.") 

8.12 The Use of #error and #pragma 

ANSI C has added the #error and #pragma preprocessing directives. The following 
code demonstrates how #error can be used: 

#if A_SIZE < B_SIZE 
#error "Incompatible zes" 

#endif 

If during compilation the preprocessor reaches the #error directive, then a compile
time error will occur, and the string following the directive will be printed on the 
screen. In our example, we used the #error macro to enforce the consistency of two 
symbolic constants. In an analogous fashion, the directive can be used to enforce other 
conditions. The #pragma directive is provided for implementation-specific uses. Its gen
eral form is 

#pragma tokens 

It causes a behavior that depends on the particular C compiler. Any #pragma that is not 
recognized by the compiler is ignored. 



390 Chapter 8... The Preprocessor 

8.13 Line Numbers 

A preprocessing directive of the form 

#1 i ne integraL constant "filename" 

causes the compil~r to renumber the source text so the next line has the specified con
~:~~ ~~d causes It to believe that the current source file name is filename. If no file 
b IS p~esent, then only the renumbering of lines takes place. Normally line num-

ers are hidden from the programmer and occur only in reference to warning's and syn
tax errors. 

8.14 Corresponding Functions 

~~ AN~I C, many of the m~cros with parameters that are given in the standard header 
es a so have correspondmg functions in the standard library. As an example suppose 

:el,'\:~t~t to access the function i sa 1 pha 0 instead of the macro. One way to do this is 

#undef isa1pha 

:~::~:here in. t~~ file bef?re i sa 1 pha 0 is invoked. This has the effect of discarding 
. I d cro defmltlon, forcmg the compiler to use the function instead We would still 
me u e the ~eader fi~e ctype.h at the top of the file, however, becaus~ in addition to 
macros, the file contams function prototypes. 

Another way to obtain the function instead of the macro is to write 

(i sa 1 ph a) (c) 

T~e ~~eprocessor ,does not recognize this construct as a macro, but the compiler recog
mzes It as a functIOn call. (See exercise 8, on page 398.) 

8.1 5 ... An Example: Quicksort 391 

8.15 An Example: Quicksort 

Quicksort was created by C. Anthony R. Hoare and described in his 1962 paper "Quick
sort" (Computer Journal, vol. 5, no. 1). Of all the various sorting techniques, quicksort is 
perhaps the most widely used internal sort. An internal sort is one in which all the data 
to be sorted fit entirely within main memory. 

Our qUicksort code makes serious use of macros. When sorting lots of data, speed is 
essential, and the use of macros instead of functions helps to make our code run faster. 
As we will see, all the macros that we use are quite simple. We could replace them by 
inline code, but their use makes the code more readable. Because quicksort is impor
tant, we will explain it in some detail. 

Let us suppose that we want to sort an array of integers of size n. If the values of the 
elements are randomly distributed, then, on average, the number of comparisons done 
by quicksort is proportional to n log n. But in the worst case, the number of compari
sons is proportional to n2. This is a disadvantage of quicksort. Other sorts-mergesort, 
for example-even in the worst case, do work proportional to n log n. However, of all 
the n log n sorting methods known, quicksort is, on average, the fastest by a constant 
factor. Another advantage of quicksort is that it does its work in place. No additional 
work space is needed. 

Our qUicksort code is written in a single file. We will describe the elements of the 
code as we present it. At the top of the file we have 

/* Quicksort! Pointer version with macros. */ 

#define 
#define 
#define 
#define 

typedef 

swap(x, y) 
order(x, y) 
o2(x, y) 
o3(x, y, z) 

enum {yes, no} 

{ int t; t x; x y; y = t; } 
if (x > y) swap(x, y) 
order(x, y) 
o2(x, y); o2(x, z); o2(y, z) 

static yes_no 
static int 

find_pivot(int *left, int *right, int *pivot_ptr); 
*partition(int *left, int *right, int pivot); 

We have not written our macros to be robust. They are intended for use only in this file. 
A typedef has been used to make the type yes_no synonymous with the enumeration 
type enum {yes, no}. Because the two functions find_pivotO and partitionO 
have stat; c storage class, they are known only in this file. 



392 Chapter 8 V The Preprocessor 

void quicksort(int *left int *right) { , 

} 

int *p, pivot; 

if (find_pivot(left, right, &pivot) ~= yes) { 
p = partition(left, right, pivot); 
quicksort(left, p - 1); 
quicksort(p, right); 

} 

Quicksort is usually implemented recursively. The underlying idea is to "divide and 
conquer." Suppose that in main 0 we have declared a to be an array of size N. After the 
array has been filled, we can sort it with the call 

quicksort(a, a + N - 1); 

The first argument is a pointer to the first element of the array; the second argument is 
a pointer to the last element of the array. In the function definition for qui cksortO, it 
is convenient to think of these pointers as being on the left and right side of the array, 
respectively. The function fi nd_pi vot 0 chooses, if possible, one of the elements of 
the array to be a "pivot element." The function pa rt it ion 0 is used to rearrange the 
array so that the first part consists of elements all of whose values are less than the 
pivot and the remaining part consists of elements all of whose values are greater than 
or equal to the pivot. In addition, parti ti on 0 returns a pointer to an element in the 
array. Elements to the left of the pointer all have value less than the pivot, and elements 
to the right of the pointer, as well as the element pointed to, all have value greater than 
or equal to the pivot. Once the array has been rearranged with respect to the pivot, 
qui cksortO is invoked on each sub array. 

static yes_no find_pivot(;nt "'1 eft, int "'right, int "'p;vot_ptr) 
{ 

i nt a, b, c, *p; 

a '~l eft; 
b = *(left + (right - left) / 2); 
c = >"right; 

/* left value */ 
/* middle value */ 
/* right value */ 

/* order these 3 values */ 
/* pivot will be higher of 2 values */ 

03(a, b, c); 
if (a < b) { 

} 

'~pi vot_ptr 
return yes; 

b' , 

} 

8.15 V An Example: Quicksort 

if (b < c) { 
"'p;vot_ptr c; 
return yes; 

~or (p = left + 1; P <= right; ++p) 
i f ('~p! ''<1 eft) { 

} 

*pivot_ptr = (*p < *left) ? *left 
return yes; 

: "'p; 

return no; /* all elements have the same value */ 

393 

Ideally, the pivot should be chosen so that at each step the array i~ p~rtitioned i~t? t:-"o 
parts, each with an equal (or nearly equal) number of elements. ThIS would mIlllm:ze. 
the total amount of work performed by qui ckso rt 0 . Because we do not know a pnon 
what this value should be, we try to select for the pivot the middle value from among 
the first, middle, and last elements of the array. In order for there to be a partition, 
there has to be at least one element that is less than the pivot. If all the elements have 
the same value, a pivot does not exist and no is returned by the function. (See exercise 
25, on page 404 and exercise 26, on page 404, for further discussion.) 

static int *partition(int *left, int *right, int pivot) 
{ 

} 

while (left <= right) { 
while (*left ~ pivot) 

++left; 

} 

while (*right >= pivot) 
--right; 

if (left < right) { 
swap(*left, *right); 
++left; 
--right; 

} 

return left; 

The major work is done by parti ti on O. We want to explain in detail how this func
tion works. Suppose we have an array a[] of 12 elements: 

7 4 3 5 2 5 8 2 1 9 -6 -3 

When fi nd_pi vot 0 is invoked, the first, middle, and last elements of the array are 
compared. The middle value is 5, and because this is larger than the smallest of the 
three values, this value is chosen for the pivot value. The following table shows the val-



394 Chapter 8.., The Preprocessor 

ues of the elements of th f 
ti on 0 function Th 1 e array a ter each pass of the outer whi 1 e loop in the parti _ 

. e e ements that were swapped in that pass are boxed. 

U~ordered data: 7 4 3 5 2 5 8 2 1 9 -6 Flrst pass: -3 -3 4 3 5 2 5 8 2 1 9 Second pass: -3 4 3 -6 -6 7 
Third pass: 2 5 8 2 1 9 5 7 -3 4 3 -6 2 Fourth pass: 1 8 2 5 9 5 7 -3 4 3 -6 2 1 2 8 5 9 5 7 

Notice that after th 1 
pivot and that the re~ a~t .pass the elements with index a to 6 have value less than the 
address of a[7] . aImng elements have value greater than or equal to the pivot. The 

IS returned when the function exits. 

Summary 

1 :~~ ~:ef:~c~s~~pro,?-des facilities f.or fil: inc:usion and for defining macros. Files 
u e y usmg preprocessmg dIrectIVes of the form 

#i ncl ude <filename> #i ncl ude "filename" 

2 ~r~~efi ne preprocessing directive can be used to give a symbolic name to a token 

text :~~~: ~~:;~~~:;:.r substitutes the string for the symbolic name in the source 

3 The use of the #defi n f T d' 
and portabl'lity f e aCl lty to efme symbolic constants enhances readability 

o programs. 

4 :~~r~r~~~cessor prOVi?es a .general macro facility with argument substitution. A 
parameters IS defmed by a preprocessing directive of the form 

#defi ne identifierC identifier, ... , identifier) 

An example is given by 

#define SQCX) C CX) ,', CX)) 

This macro provides inline code to perform squaring of a value. 

.., Summary 395 

The preprocessor provides for conditional compilation to aid in program testing, to 
facilitate porting, and so on. Lines beginning with #i f, #i fdef, #i fndef, #e 1 i f, 
#e 1 se, and #endi f are used for this. 

The defi ned operator can be used with preprocessing directives. An example is 

#if CdefinedCHP3000) I I definedCSUN3)) && !definedCSUN4) 
/* machine-dependent code */ 

#endif 

An effective way to block out sections of code for debugging purposes is to use 

#if 0 

#endif 

ANSI C has introduced the preprocessing operators # and ##. The # operator is 
unary. It can be applied to a formal parameter in the body of a macro, causing 
replacement text to be surrounded by double quotes. This effect is called "stringi
zation." The ## operator is binary. It causes the pasting together of two tokens. 

ANSI C provides the assertO macro in the header file assert.h. Assertions can be 
used to ensure that an expression has an appropriate value. 

The function qsortO is provided by the C system. Its function prototype is in 
stdlib.h. Although qso rt 0 is faster than a bubble sort or a simple transposition 
sort, it is often not as fast as quicksort. An advantage of qsort 0 is that it is easy to 
use. 

Quicksort is one of the most widely used sorting algorithms. It is typically faster by 
a constant factor than other well-known n log n sorting methods, such as merge
sort. 



396 Chapter 8 'f The Preprocessor 

Exercises 

1 A program that contains macros with arguments can be difficult to debug. Most C 
compilers provide an option that causes the preprocessor to write its output on the 
screen with no further compilation taking place. Put the follmving code in a file, say 
t1Y_me.c: 

#include <stdio.h> 

#define PRN(x) 

i nt mai n (voi d) 
{ 

printf("x\n"); 

} 

PRN(Hello from maine)); 
return 0; 

Next, compile the program and run it You will see that it does not print what was 
expected. To see how the preprocessor treats this code, give the command 

(Use redirection if you want to take a careful look at what gets produced.) If the -E 
option is not the right one for your compiler, find out what the correct option is. 
Note that the identifier PRN does not get generated by the preprocessor. Explain 
why. Fix the code. Hint: Use stringlzation. 

2 Consider the following macro definition: 

#define forever(x) 
farever(more) farever(forever(x)) 

This looks like it will produce infinite recursion, but in ANSI C the preprocessor is 
supposed to be smart enough to know that infinite recursion is not what is 
intended. How does your preprocessor expand this macro? 

3 Suppose that x, y, and z are variables of type fl aa t in a program. If these variables 
have the values 1.1, 2.2, and 3.3, respectively, then the statement 

PRN3(x, y, z); 

'f Exercises 397 

should cause the line 

x has value 1.1 and y has value 2.2 and z has value 3.3 

to be printed. Write the macro definition for PRN 3 (). 

4 Suppose we have the following code in a file named a_b_c.h: 

1 #define 
#define int main(void) 

{ 

} 

printf("A Big Cheery \"hello\"!\n"); 
return 0; 

and the following code in a file named a_b_c.c: 

#if TRUE 
#include <stdio.h> 
#include "a_b_c.h" 
A_LC 

#endif 

\ 
\ 
\ 
\ 

When we try to compile the program, the compiler complains. Why? Can you int~r" 
change two lines in one of the files so that the program compiles and runs? Explam. 

5 Macros are not always as safe as functions, even when all t~e parameters in the 
body of the macro definition are enclosed in parentheses. Defme a macro 

MAX (x , y, z) 

that roduces a value corresponding to the largest of its three arguments. Con
struc~ some expressions to use in MAXO that produce unanticipated results. 

6 Are all of the predefined macros available on your system? Try the following code: 

printf("%s%s\n%s%s\n%s%d\n%s%d\n%s%s\n", 
II DATL_ = ", __ DATL_, 
11--FILE __ = __ FILE __ , 
H LINE = II __ LINE __ , 
II --STDC -- II __ STDC_ , 
II == TIME== __ TIME __ ) ; 



398 Chapter 8" The Preprocessor 

7 Do y~u have access to an ANSI C compiler on a small system? On small sys 
complIers such as Borland C and Microsoft C provide for different memory mod 
and e~ch memory model usually requires a specific type definition for ptrdi ff 
Look III stddef.h and see if this is the case on your small system. Can you 
why the different memory models require their own ptrdifLt type? -"fJ~~'UI 

8 In ANSI ~, many of the macros with arguments defined in the standard header files 
a,re requITed to be aVailable also as functions. Does your system provide these 
tIOns? See, for example, if your system will accept the code 

#include <ctype.h> /* function prototype here? */ 

if ( (i sal pha) (' a f)) 
pri ntf("Found the i sal phaO function! \n"); 

~o not be too surprised if your system does not provide the corresponding func
tIons. After all, they do not get used very much. 

9 C has the reputation for being an excellent language for character processing. This 
reputation is due, in part, to the fact that macros rather than functions are used 
extensively in character processing. Programmers believe that the use of macros 
can reduce execution time significantly. Is this really true? In this exercise, we want 
to test this belief. Begin by writing a program that uses the macros in stdio.h and 
ctype.h extensively. 

#inc1ude <ctype.h> 
#include <stdio.h> 
#inc1ude <time.h> 

int main(void) 
{ 

int c' , 

pr~ntf("Clock ticks: %ld\n", c10ckO); 
whl1e ((c = getchar()) != EOF) 

if (islower(c)) 
putchar(toupper(c)); 

else if (isupper(c)) 
putchar(to1ower(c)); 

else if (isdigit(c)) 

/* start the clock */ 

Complete this program. (Read about clock 0 in Section A.I 5 "Date and Time: 
<ti me. h>," on page 675.) If c is a digit, write the character x; if ~ is a punctuation 

" Exercises 399 

character, do not write anything; if c is a white space character, write it tV\rice. Just 
before the return from rna in 0, write the line 

printf("Clock ticks: %ld\n", c1ockO); /* ticks up to now */ 

Now, write another version of your program in which each macro is replaced by its 
corresponding function. For example, instead of i slower(c) write (i slower) (c). 
Use redirection to process character files with each version of your program. On a 
small file, due to system overhead, there should not be much difference in running 
time, but as the file gets larger, the difference should be more pronounced. Is it? 
Hint: Give the command 

pgm < input > output 

so that you V\rill not have to waste time printing the file on the screen. 

In ANSI C, the standard header files can be included repeatedly and in any order. 
Change the first version of the program that you wrote in the previous exercise by 
duplicating the #i ncl ude lines at the top of the file a number of times: 

#inc1ude <ctype.h> 
#include <stdio.h> 
#inc1ude <time.h> 
#inc1ude <ctype.h> 
#include <stdio.h> 
#include <time.h> 

i nt mai n (voi d) 
{ 

/* repeat a number of mes */ 

Does your compiler complain? Although the program might compile a little more 
slowly, it should execute just as fast. Does it'? 

11 We listed i sasci i 0 as a macro in ctype.h. However, this macro is not really speci
fied in the ANSI C documents. (Perhaps the ANSI C committee did not want to show 
any favoritism for ASCII codes over any other.) Check to see if i sasei i 0 is pro
vided by your system. 



400 Chapter 8. The Preprocessor 

12 In this exercise, we want to warn you about a subtle difference between 
C and ANSI C. In traditional C, tolowerO and toupperO are provided as 
in ctype.h. In ANSI C, the corresponding macros are available in ctype.h, but 
hav.e been renamed as _tolowerO and _toupperO. (Check to see that they 
aVaIlable on your system.) In traditional C, it makes sense to use an expression 
as toupper(c) only if you already know that c is a lowercase letter. In ANSI 
toupperO is implemented as a function, and the expression toupper(c) 
sense no matter what integral value c might have. If c is not a lowercase letter 
toupper(c) has no effect; that is, it returns c. Similar remarks hold with resp~ct 
to lowe r O. Experiment with your system. See what is produced by the expres 

tolower('a') _tolower('a') toupper('A') _toupper('A' 

13 The stringization operator # causes an argument that is passed to a macro to 
surrounded by double quotes. What happens if the argument is already 
b~ double-quote characters? Write a test program that contains the following 

#define YANK(x) s == #x 
char *s; 
YANK(flGo home, Yankee!"); 
printf("%s\n", s); 

Write another version of your program that does not contain the # operator. 
cute both versions. How does the output of one version differ from the other? Use 
the -E option (or whatever is required by your system) to get the preprocessor to 
:xpand your code. What does the preprocessor do differently when the # operator 
IS present? 

14 What gets printed? Explain. 

#define GREETINGS (a , b, c) \ 
printf(#a" "#b fI and fI #c ". Hello!\n") 

int main(void) 
{ 

} 

GREETINGS(Alice, Bob, Carole); 
return 0; 

Look what is produced by the preprocessor before compilation. Can you find 
GREETINGS? 

.., Exercises 401 

Consider the directive 

If TRY_ME was previously defined with a #defi ne macro, this line causes the macro 
to be discarded. If TRY_ME was not previously defined, then the line should have no 
effect. Write some code to test what happens on your system. If TRY _1\1E was not 
previously defined, does your system complain'? 

The asse rt 0 macro is supposed to be discarded if the macro NDEBUG is defined. 
Does it work as expected on your system? Try the following program: 

#define NDEBUG 

#include <assert.h> 

i nt mai n (vo; d) 
{ 

} 

int a == 1, b = 2; 

assert(a> b); 
return 0; 

What happens if you interchange the first two lines of the program? 

17 In the program in the previous exercise, replace the two lines at the top with the fol
lowing three lines: 

#include <assert.h> 

#define NDEBUG 

#include <assert.h> 

Does your C compiler complain? Should your C compiler complain? Hint: Check to 
see if the line 

#undef assert 

is in the assert.h header file. 



402 Chapter 8" The Preprocessor 

18 Suppose you are moving a large C program from a machine that has 4-byte 
to one that has.2-byte words. On a machine with 2-byte words, an i nt is res 
to values that h~ (approximately) between -32,000 and +32,000. Suppose that 
~ange of values is too restrictive for some parts of the program that you are 
mg. If you put the line 

#define int long 

in.to a ~eader file that gets included with each of the files making up your TIn.a .. "","," 
will thiS work? Explain. 

19 ~i~d the type.def fO.r s1 ze_t in the header file stddef.h on your system. Search 
his typedef In stdllb.h also. Suppose you are vvriting some code that starts with 

#include <stddef.h> 
#include <stdlib.h> 

Because duplicate type .definitions do not work, your system must be able to pre
v~nt the typedef for SlZe_t from being included twice. Explain how this mecha- . 
msm works. 

20 If you want to use qsortO, you have to know what its function prototype is. On 
some ANSI C systems it is given in stdlib.h as 

void qsort(void *base, size_t nelem, size_t width, 
int (*compare)(const void *, const void *»; 

What is provided by your system? Is it equivalent to this? Remember, in a function 
prototype, .the parameter identifiers are discarded by the compiler. Thus, an equiv
alent function prototype is given by 

void qsort(vo1d *, size_t, size_t, int (*)(»; 

21 In t~e qsort progra~, we used two comparison functions. What happens if you 
rewnte th~ comparIson functions in such a way that they do not match the last 
parameter In the function prototype for qsortO? Rewrite them as 

:nt compare_decimal_part(float *p, float *q) 

float x; 

} 

x = decimal_part(*p) - decimal_part(*q); 
return ((x 0.0)? 0 : (x < 0.0) ? -1 : +1); 

v Exercises 403 

int lexico(char *p, char *q) 
{ 

return (*p - *q); 
} 

Also, change the corresponding function prototypes in rna in O. Will the program 
compile nmv? If it does, take a careful look at the function prototype for qsortO 
as given in stdlib.h on your system. Is it the case that the last parameter is some
thing like (compare *) O? If the program does not compile, can you cast the last 
argument in the two calls to qsortO so that it does? 

Write a program to test the quicksort code. Begin with the following code: 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#define N 10000 

void qui cksort(i nt i( 

int main(void) 
{ 

i nt a [N], i; 

int >~); 

srand(time(NULL»; 1* seed the random number generator */ 
for (i = 0; ; < N; ++i) 

a[i] = rand() % 1000; 
quicksort(a, a + N - 1); 

Complete this program by writing code that prints the sorted array elements. If you 
get tired of looking at all those elements, you can print just enough of the begin
ning, middle, and end of the array so that you believe it has been sorted. 

23 In the previous exercise, you sorted an array of size 10,000 with integer entries that 
were randomly distributed in the interval [0, 999]. Run the program again, this time 
keeping track of its running time. Now change the program so that the entries in 
the array are randomly distributed in the interval [0, 9J. Give a heuristic argument 
to explain why the times are so different. 

24 The quicksort algorithm can be used to sort all kinds of arrays, not just arrays of 
integers. Rewrite the quicksort code so that it can be used to sort an array of 
strings. Write a program to test your code. 



404 Chapter 8,. The Preprocessor 

25 If an array has just a few elements, say seven or less, then a bubble sort or a 
position sort should be faster than quicksort. The following version of qui ck 
sortO takes this into account: 

~nt quicksort(int *left, int *right) 

} 

int 
static int 

"'p, ~'q, pivot; 
cnt = 0; 

if Cright left < 7) { 

} 

for Cp left; p < right; ++p) 
for Cq = p + 1; q <= right; 

if C"'p > "'q) 
swapC"'p, *q); 

++q) 

else if Cfi nd_pivotCl eft, right, &pivot) 
p partitionCleft, right, pivot); 

} 

quicksortCleft, p - 1); 
quieksortCp, right); 

return ++cnt; 

yes) { 

Note the use of the variable ent. The value returned to the calling environment is 
the number of times that the function gets called. Experiment to see if this new ver
sion of qui cksortO executes faster. Is there a correlation between running time 
and the number of times the function gets called? 

26 Having a good algorithm for finding the pivot element in quicksort can be crucial. A 
simple algorithm is to find two distinct elements of the array and to choose the 
larger value as the pivot. With this algorithm, quicksort takes time proportional to 
n

2 
instead of n log n if the array happens to be already in order, or nearly so. This is 

an important paint, because, in practice, arrays are often partially in order to begin 
with. Rewrite the quicksort code to implement this algorithm and write a test pro
gram that illustrates the poor behavior of quicksort when the array is in order to 
begin with. What happens if the array starts in reverse order? 

27 To find the pivot element, we choose from among three elements of the array. 
Choosing from among five elements should reduce the running time somewhat. 
Implement this strategy by rewriting the quicksort code, using macros where 
appropriate. Write a program to test whether the running time is less. The optimal 
strategy for finding the pivot depends on the data in the array. Choosing from 
among five elements is a common strategy. What about choosing from among 
seven elements? If you are ambitious, try that strategy as well. 

,. Exercises 405 

Suppose that a [] is an array of integers of size 100, and that for each i the element 
a [i ] has value i. If qui cksort Ca, a + 99) is invoked, how many function calls to 
qui cksortO are made? Compute this number for each version of fi nd_pivotO. 

The pointer that is returned by parti ti on 0 is used to break the original array into 
two subarrays. The size of the first sub array is called the partition break size. Use a 
random-number generator to fill an array of size 100. Invoke fi nd_pi vot 0 and 
parti ti on 0 to find the partition break size for the array. Do this repeatedly, say 
100 times, and keep track of the running average of the break size. One expects the 
average break size to correspond to the middle of the array. Does this seem to be 
true from your experimentation? 

The optimal break size for an array of size n is n/2. This identifies two subarrays of 
equal, or nearly equal, size for further processing. For example, given an array of 
size 100, a break size of 50 is optimal. Notice that a break size of 49 identifies sub
arrays of sizes 49 and 51, and that a break size of 51 identifies sub arrays of sizes 
51 and 49. Thus, the break sizes 49 and 51 are both of equal merit. Modify the pro
gram you wrote in exercise 27, on page 404, so that you keep track of the running 
average of the absolute value of the difference k - 50, where k is the break size 
obtained from pa rti ti on O. This number corresponds inversely to how good the 
break size is. More generally, define 

m= 
Ik- (n/2)1 

n 

where k is the partition break size obtained from parti ti on 0 acting on an array 
of size n. Fill arrays randomly and run some machine experiments to see what, if 
anything, can be said about m. 

31 In the discussion that follows the code for the parti ti onO function, we presented 
a table that shows the elements of the array a [] after each pass of the outer whi 1 e 
loop. Find an array of 12 distinct elements that will produce the maximum number 
of passes. Write down a table that shows the elements of the array after each pass. 
Box the elements that were swapped. After you have done this by hand, write a pro
gram to create this table. To indicate the elements that ·were swapped in each pass, 
you can surround them with double quotes. 

32 Compare qui cksortO with mergesortO. (See Section 6.9, "An Example: Merge 
and Merge Sort," on page 266.) Time both functions with arrays having 100, 1,000, 
and 10,000 elements. For a small amount of data, run-time overhead dominates. 
That is, setting up the functions, initializing values, and other miscellaneous steps 
dominate the actual work required to perform the sorting. For large arrays, qui ek
sortO should be faster than mergesortO. Is this true? 



406 Chapter 8 T The Preprocessor 

33 If you have a small amount of data to be sorted, a bubble sort or transposition sort 
works fine. If you have more data, then qsortO can be used. Although qsortO 
certainly is a lot faster than a bubble sort, for most implementations it is not as fast 
as qui cksortO. The advantage of qsortO over qui cksortO is that it can be 
implemented with just a few lines of code. The advantage of qui cksort 0 over 
qsortO is that it is often faster. By how much'? On our system, the answer is that it 
is a lot faster. Write a program to test this. In your program, declare two large 
arrays. Fill the first array with randomly distributed integers and copy it into the 
second array. Time how long it takes qsort 0 to sort the first array and how long it 
takes qui ckso rt 0 to sort the second array. Print these two values and their quo
tient. Because of system overhead, the size of the quotient will depend on the size 
of the arrays being sorted. It will also depend on how much effort you put into fine
tuning your quicksort algorithm. In any case, remember what quotients you get (or 
jot them down in the margin). 

34 In the previous exercise, you computed the quotient of running times required to 
sort a large array, first with qsortO and then with quicksortO. In this exercise, 
you are to compute those quotients again, first with your array elements randomly 
distributed in the interval [0, 1000001 and then with array elements randomly dis
tributed in the interval [0, 1]. The results of this exercise can be quite surprising. 
Try it. 

Chapter 9 

Structures and Unions 

C is an easily extensible language. It can be extended by providing macros that are 
stored in header files and by providing functions that are stored in libraries. It can also 
be extended by defining data types that are constructed from the fundamental types. 
An array type is an example of this; it is a derived type that is used to represent homo
geneous data. In contrast, the structure type is used to represent heterogeneous data. A 
structure has components, called members, that are individually named. Because the 
members of a structure can be of various types, the programmer can create aggregates 
of data that are suitable for a particular application. 

Structures 

The structure mechanism provides a means to aggregate variables of different types. 
As a simple example, let us define a structure that describes a playing card. The spots 
on a card that represent its numeric value are called "pips." A playing card such as the 
three of spades has a pip value, 3, and a suit value, spades. We can declare the structure 
type 

struct card { 
i nt pi ps; 
char suit; 

} ; 

to capture the information needed to represent a playing card. In this declaration, 
struct is a keyword, card is the structure tag name, and the variables pi ps and suit 
are members of the structure. The variable pi ps will take values from 1 to 13, repre-



408 Chapter 9" Structures and Unions 

senting ace to king; the variable sui t will take values from I c I, I d', I h', and's' , 
resenting the suits clubs, diamonds, hearts, and spades, respectively. 

This ~eclaration creates the derived data type struct card. It is an example of 
user-defmed type. The declaration can be thought of as a template; it creates the 
st ruct card, but no storage is allocated. The tag name, along with the 'rL""nT<~~..J 
struct, can now be used to declare variables of this type. 

struct card c1, c2; 

This declaration allocates storage for the identifiers c1 and c2, which are of 
struct card. An alternative scheme is to write 

struct card { 
int pips; 
char suit; 

} c1, c2; 

which defines the type st ruct card and declares c1 and c2 to be of this type, all at the 
same time. 

~o access the members of a structure, we use the member access operator ".". Let 
aSSIgn to c1 the values representing the three of spades. 

c1. pi ps 
c1. sui t 

3 . , 
's' ; 

A construct of the form 

structure_ variable. member_name 

is used as a variable in the same way that a simple variable or an element of an array is 
used. If we want c2 to represent the same playing card as el, then we can write 

c2 == c1; 

This causes each member of c2 to be assigned the value of the corresponding member 
of c1. 

Programmers commonly use the typedef mechanism when using structure types. An 
example of this is 

typedef struct card card; 

Now, if we want more variables to represent playing cards, we can write 

card c3, (4, c5; 

9.1 ." Structures 409 

Note that in the type definition the identifier card is used twice. In C, the name space 
for tags is separate from that of other identifiers. Thus, the type definition for card is 
appropriate. 

Within a given structure, the member names must be unique. However, members in 
different structures are allowed to have the same name. This does not create confusion 
because a member is always accessed through a structure identifier or expression. Con
sider the following code: 

struct fruit { 
char '~name; 
int calories; 

} ; 

struct vegetable { 
char 1'name; 
int calories; 

} ; 

struct fruit a; 
struct vegetable b; 

Having made these declarations, it is clear that we can access a. ca lor; es and b. cal o
r; es without ambiguity. 

Struchues can be complicated. They can contain members that are themselves arrays 
or structures. Also, we can have arrays of structures. Before presenting some examples, 
let us give the syntax of a structure declaration: 

structure_declaration :: = strucLspecifier declarator_list 
strucLspecifier ::= struct tag_name 

I struct tag_nameopt { { member_declaration h+ } 
tag_name :: = identifier 
member_declaration :: = type_specifier declarator_list 
declarator_list .. = declarator { , declarator }0+ 

An example is 

struct card { 
i nt pi ps ; 
char SUlt; 

} deck[52]; 

Here, the identifier deck is declared to be an array of struct card. 



410 Chapter 9" Structures and Unions 

If a tag name is not supplied, then the structure type cannot be used in later declara" 
tions. An example is 

struct { 
int day, month, year; 
char day_name[4J; 
char month_name[4J; 

} yesterday, today, tomorrow; 

/* Mon, Tue, Wed, etc. */ 
/* Jan, Feb, Mar, etc. */ 

This declares yesterday, today, and tomorrow to represent three dates. Because a tag 
name is not present, more variables of this type cannot be declared later. In contrast, 
the declaration 

struct date { 
int day, month, year; 
char day_name[4]; 
char month_name[4J; 

}; 

/* Mon, Tue, Wed, etc. */ 
/* Jan, Feb,'Mar, etc. */ 

has date as a structure tag name, but no variables are declared of this type. We think of 
this as a template. We can write 

struct date yesterday, today, tomorrow; 

to declare variables of this type, 
It is usually good programming practice to associate a tag name with a structure 

type. It is both convenient for further declarations and for documentation. However, 
when using typedef to name a structure type, the tag name may be unimportant. An 
example is 

typedef struct { 
float rei 
float im; 

} complex; 

complex a, b, c[100J; 

The type complex now serves in place of the structure type. The programmer achieves 
a high degree of modularity and portability by using typedef to name such derived 
types and by storing them in header files. 

9.2 ,.. Accessing Members of a Structure 411 

w 

Accessing Members of a Structure 

In this section we discuss methods for accessing members of a structure. We have 
already seen the use of the member access operator ",". We will give further examples 
of its use and introduce the member access operator ->. 

Suppose we are writing a program called class_info, which generates information 
about a class of 100 students. We begin by creating a header file. 

In file class_info.h 

#define 100 

struct student { 
char *last_name; 
int student_id; 
char grade; 

} ; 

This header file can now be used to share information with the modules making up the 
program. Suppose in another file we write 

#include "class_info.h" 

int main(void) 
{ 

struct student tmp, class[CLASS_SIZE]; 

We can assign values to the members of the structure variable tmp by using statements 
such as 

tmp.grade = 'A'; 
tmp . 1 as t_name = !I Casanova" ; 
tmp.student_id = 910017; 

Now suppose we want to count the number of failing students in a given class. To do 
this, we write a function named fa; 10 that counts the number of F grades in the array 
class[]. The grade member of each element in the array of structures must be 
accessed. 



412 Chapter 9" Structures and Unions 

• 

1* Count the failing grades. *1 

#inelude "elass_info.h" 

int fail(struet student elass[J) 
{ 

int i, ent 0; 

} 

for (i 0; i < CLASS_SIZE; ++i) 
ent += elass[iJ.grade 'F'; 

return ent; 

• 
Dissection of the fai 1 0 Function 

• int failCstruet student elass[J) 
{ 

int i, ent = 0; 

The parameter el ass is of type pointer to struet student. An equivalent declaration 
for this parameter would be 

struet student *e1ass 

We can think of e 1 as s as a one-dimensional array of structures. Parameters of any 
type, including structure types, can be used in headers to function definitions. 

• for (; = 0; i < CLASS_SIZE; ++i) 

We are assuming that when this function is called, an array of type struet student of 
size CLASS_SIZE will be passed as an argument. 

• ent += e1ass[i].grade == 'F'; 

An expression such as this demonstrates how concise C can be. C is operator rich. To 
be fluent in its use, the programmer must be careful about precedence and associativ
ity. This statement is equivalent to 

ent += (((e1ass[iJ).grade) 'F') ; 

9.2 " Accessing Members of a Structure 413 

member grade of the ith element (counting from zero) of the array of structures 
c1 ass is selected. A test is made to see if it is equal to I F'. If equality holds, then the 
value of the expression 

e1ass[iJ.grade == 'F' 

. 1 and the value of ent is incremented. If equality does not hold, then the value of the IS "' 
expression is 0, and the value of ent remains unchanged. 

• retu rn ent; 

The number of failing grades is returned to the calling environment. 

• 
C provides the member access operator -> to access the members of a structure via a 

pointer. (This operator is typed on the keyboard as a minus sign followed by a greater 
than sign.) If a pointer variable is assigned the address of a structure, then a member of 
the structure can be accessed by a construct of the form 

pointerJo_structure -> member_name 

A construct that is equivalent to this is 

(*pointer_to_structure). member_name 

The parentheses are necessary. Along with 0 and [J, the operators '.'-" and -> have ~he 
highest precedence and associate from left to right. Thus, the precedrng construct WIth
out parentheses would be equivalent to 

~'(pointer jo_structure. member_name) 

This is an error because only a structure can be used with the "." operator, not a pointer 
to a structure. 

Let us illustrate the use of -> by writing a function that adds complex numbers. First, 
suppose we have the following typedef in a header file: 

In file complex.h 

struet complex { 
double rei 
double im; 

} ; 

I'~ real part ,~ I 
Ii' i mag part *1 



414 Chapter 9 T Structures and Unions 

typedef struct complex complex; 

Then in another file we write 

#include "complex.hl! 

void add(complex *a, complex *b, complex *c) 
{ 

} 

a -> re == b -> re + c -> rei 
a -> im == b -> im + c -> im; 

/,~ a == b + c if I 

~ote that a, b, and c are pointers to structures. If we think of the pointers as represent
mg complex numbers, then we are adding band c and putting the result into a. That is 
the sense of the comment that follows the header to the function definition. 

In the following table, we have illustrated some of the ways that the two member 
access operators ca~ be used. In the table, we assume that the user-defined type 
struct student, which we presented earlier, has already been declared. 

Declarations and assignments 

struct student tmp, *p = &tmp; 
tmp.grade == 'A'; 
tmp.last_name"" "Casanova"; 
tmp.student_id 910017; 

Expression Equivalent expression Conceptual value 

tmp.grade p -> grade A 
tmp . 1 ast_name Casanova 
("'p). d -> studenCid 910017 

(*(p -> last_name» + 1 D 
*(p -> last_name + 2) (p -> last_name)[2J s 

9.3 V Operator Precedence and Associativity: A Final Look 415 

& 

9.3 Operator Precedence and Associativity: 
A Final Look 

We now want to display the entire precedence and associativity table for all the C oper
ators. The operators" . " and -> have been introduced in this chapter. These operators, 
together with 0 and [], have the highest precedence. 

Operators I Associativity 

0 [] -> ++ (postfix) --- (postfix) I left to right 

++ (prefix) -- (prefix) I ~ sizeof (type) right to left 
+ (unary) - (unary) & (address) * (dereference) 

• * I % left to right 
i 

+ left to right 

« » left to right 

< <= > >= left to right 
· 
• 

== != left to right 

& left to right 
A left to right 

1 left to right 

&& left to right 

~ left to right 
I 

7: right to left 
I 

+== -= "'= I right to left 
%= »= «= &= A= 1= 

, (comma operator) left to right 

Although the complete table of operators is extensive, some simple rules apply. The 
primary operators are function parentheses, subscripting, and the two member access 
operators. These four operators are of highest precedence. Unary operators come next, 
followed by the arithmetic operators. Arithmetic operators follow the usual convention; 
namely, multiplicative operators have higher precedence than additive operators. 
Assignments of all kinds are of lowest precedence, with the exception of the still more 
lowly comma operator. If a programmer does not know the rules of precedence and 



416 Chapter 9 T Structures and Unions 

associativity in a particular situation, he or she should either look up the rules or use 
parentheses. If you work at a particular location on a regular basis, you should consider 
copying this table and pasting it on the wall right next to where you work. 

9.4 Using Structures with Functions 

In C, structures can be passed as arguments to functions and can be returned from 
them. When a structure is passed as an argument to a function, it is passed by value, 
meaning that a local copy is made for use in the body of the function. If a member of 
the structure is an array, then the array gets copied as well. If the structure has many 
members, or members that are large arrays, then passing the structure as an argument 
can be relatively inefficient. For most applications, an alternate scheme is to write func
tions that take an address of the structure as an argument instead. 

BUsiness applications often use structures that have lots of members. Let us imagine 
that we have such a structure: 

typedef struct { 
char 
int 
struct dept 
struct home_address 
double 

} employee_data; 

name[25]; 
employee_id; 
department; 
1'a_ptr; 
salary; 

Notice that the department member is itself a structure. Because the compiler has to 
know the size of each member, the declaration for struct dept has to come first. Let 
us suppose that it was given by 

struct dept { 
char dept_name[25]; 
int depLno; 

} ; 

Notice that the a_pt r member in the type definition of emp 1 oyee_data is a pointer to a 
structure. Because the compiler already knows the size of a pointer, this structure need 
not be defined first. 

Now, suppose we want to write a function to update employee information. There are 
two ways we can proceed. The first way is as follows: 

9.4 T Using Structures with Functions 

employee_data update(employee_data e) 
{ 

printf("Input the department number: It); 
scanf(lt%d", &n); 
e.department.dept_no = n; 

return e; 
} 

Notice that we are accessing a member of a structure within a structure, because 

e.department.dept_no is equivalent to (e.department).dept_no 

To use the function updateO, we could write in mai nO or in some other function 

employee_data e; 
e = update(e); 

417 

Here, e is being passed by value, causing a local copy of e to be used in the body of the 
function; when a structure is returned from updateO, it is assigned to e, causing a 
member-by-member copy to be performed. Because the structure is large, the compiler 
must do a lot of copy work. An alternate way to proceed is to write 

void update(employee_data 1'p) 
{ 

printf("Input the department number: It); 
scanf("%d", &n) j 
p -> department.dept_no = n; 

In this example, the construct 

p -> department. dept_no is equivalent to (p -> department). dept_no 

This illustrates how a member of a structure within a structure 'can be accessed via a 
pointer. To use this version of the update 0 function, we could write in mai n () or in 
some other function 

employee_data e; 
update(&e)j 

Here, the address of e is being passed, so no local copy of the structure is needed 
within the update 0 function. For most applications this is the more efficient of the 
two methods. (See exercise 5, on page 438, for further discussion.) 



418 Chapter 9 T Structures and Unions 

9.5 Initialization of Structures 

All external and static variables, including structures, that are not explicitly initialized 
by the programmer are automatically initialized by the system to zero. In traditional C, 
only external and static variables can be initialized. ANSI C allows automatic variables, 
including structures, to be initialized as well. 

The syntax for initializing structures is similar to that for initializing arrays. A struc
ture variable in a declaration can be initialized by following it with an equal sign and a 
list of constants contained within braces. If not enough values are used to assign all the 
members of the structure, the remaining members are assigned the value zero by 
default. Some examples are 

card c = {l3, 'h'}; /* the king of hearts */ 

complex a[3][3J = { 
{{1.0, -0.1}, {2.0, 0.2}, {3.0, 0.3}}, 
{{4.0, -0.4}, {5.0, 0.5}, {6.0, 0.6}}, 

}; /* a[2J[J is assigned zeroes */ 

struct fruit frt = {"plum", 150}; 

struct home_address { 
char ~'street; 
char ~'ci ty_and_state; 
long zip_code; 

} address = {"8? West SUeet", "Aspen, Colorado", 80526}; 

struct home_address previous_address = {0}; 

The last example illustrates a convenient way to initialize all members of a structure to 
have value zero. It causes pointer members to be initialized with the pointer value NULL 
and array members to have their elements initialized to zero. 

9.6 T An Example: Playing Poker 419 

9.6 An Example: Playing Poker 

Let us use the concepts that we have presented thus far in this chapter to write a pro
gram to play poker. The program will compute the probability that a flush is dealt, 
meaning that all five cards in a hand are of the same suit. In the exercises, we will dis
cuss ways of extending the program. Caution: We are going to redesign our card struc
ture. 

Our program consists of many small functions. The simplest scheme is to put them 
all in one file. We will present the functions one after another as they occur in the file. 
Where appropriate, we will discuss key ideas. Here is what occurs at the top of the file: 

In file poker.c 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#define 
#define 

NDEALS 
NPLAYERS 

3000 
6 

/* number of deals */ 
/* number of players */ 

typedef enum {clubs, diamonds, hearts, spades} 

struct card { 
int pips; 
cdhs suit; 

} ; 

typedef struct card card; 

cdhs; 

We are envisioning a game with six players. Because we are interested in the probability 
of a flush occurring, we want to deal many hands. Notice that the member sui t is an 
enumeration type. As we will see, the use of the enumeration type makes the code very 
readable. Next in the file comes the function prototypes: 

card assign_values(int pips, cdhs suit); 
void prn_card_values(card "'c_ptr); 
void play_poker(card deck[52J); 
void shuffle(card deck[52J); 
void swap(card *p, card *q); 
void deal_the_cards(card deck[52J, card hand [NPLAYERSJ [5J); 
int is_flush(card h[5J); 



420 Chapter 9... Structures and Unions 

We begin our program development with mai nO. Every time we need a new function, 
we write it at the bottom of the file and put its function prototype in the list just above 
mainO. 

int main(void) 
{ 

} 

cdhs suit; 
i nt i, pi ps; 
card deck[52]; 

for (i = 0; i < 52; ++i) { 
pips = i % 13 + 1; 
if (i < 13) 
suit = cl ubs; 

else if (; < 26) 
suit = diamonds; 

else if (i < 39) 
suit = hearts; 

else 
suit = spades; 

deck[iJ assign_values(pips, 
} 
for (; = 26; i < 39; ++i) 

prn_card_values(&deck[iJ); 
play_poker(deck); 
return 0; 

sui t) ; 

/* print out the hearts */ 

In mainO, we first assign values to each element in the array deck. We think of these 
elements as playing cards in a deck. To check that the code works as expected, we print 
out the hearts. 

card assign_values(int pips, cdhs suit) 
{ 

} 

card c; 

c.pips pips; 
c.suit = suit; 
return c; 

Notice that the identifiers pi ps and sui t are parameters in the function definition as 
well as members of the structure c. This sort of dual use of names is common. 

yO; d prn_card_val ues(card ~'cptr) 
{ 

int pips = c_ptr -> pips; 
cdhs suit = c_ptr -> suit; 
char "'sui t_name; 

if (s~it clubs) 
sUlt_name "clubs"; 

else if (suit == diamonds) 
suit_name = "diamonds"; 

else if (suit hearts) 
suit_name = "hearts"; 

else if (suit == spades) 
suit_name = "spades"; 

9.6 ... An Example: Playing Poker 

printf("card: %2d of %s\n", pips, suit_name); 
} 

421 

In the function p rn_ca rd_ va 1 ues 0, we use pi ps and su it as local variables. The com
piler cannot confuse these identifiers with the members of card because members of a 
structure can be accessed only via the "." and -> operators. 

Our next function is play_poke r O. Because it is central to this program and con
tains some crucial ideas, we wiUlook at it in detail. 

void play_poker(card deck[52]) 
{ 

} 

int 
int 
card 

i, j; 
hand[NPLAYERS][5]; /* each player dealt 5 cards */ 

srand(time(NULL)); /* seed random-number generator */ 
for (i 0; i < NDEALS; ++i) { 

} 

shuffle(deck); 
deal_the_cards(deck, hand); 
for (j = 0: j < NPLAYERS; ++j) { 

++hand_cnt; 

} 

if (is_flush(hand[j])) { 
++flush_cnt; 
printf("%s%d\n%s%d\n%s%f\n\n", 

" Hand number: ", hand_cnt, 
" Fl ush numbe r: ", fl ush_cnt. 
"Flush probability: ", 
(double) flush_cnt / hand_cnt); 

} 



422 Chapter 9 T Structures and Unions 

• 
Dissection of the pl ay_pokerO Function 

• card hand [NPLAYERS] [5]; /* each player dealt 5 cards */ 

The identifier hand is a two-dimensional array. It can be viewed also as an array of 
arrays. Because the symbolic constant NPLAYERS has value 6, we can think of hand as 
six hands, each with five cards. 

• srand(time(NULL)); /* seed random-number generator */ 

The function s rand 0 is used to seed the random-number generator invoked by 
rand O. The value supplied as an argument to 5 rand 0 is called the seed. Here, we 
have used for the seed the value returned by the function call ti me (NULL). This func
tion is in the standard library, and its function prototype is in the header file time.h. 
Because ti me 0 produces an integer value that is obtained from the internal clock, each 
time we run the program a different seed is produced, causing different numbers to be 
generated by rand O. Hence, every time we run the program different hands are dealt. 

• for (i 0; i < NDEALS; ++i) { 
shuffle(deck); 
deal_the_cards(deck, hand); 

Before dealing the cards, we shuffle the deck. As we will see, this is where we use 
rand 0 to simulate the shuffling. 

• for (j 0; j < NPLAYERS; ++j) { 
++hand_cnt; 
if (is_flush(hand[j])) { 

++flush_cnt; 

After the cards are dealt, we check each player's hand to see if it is a t1ush. If it is, then 
we increment fl ush_cnt and print. 

• • 
The function that shuffles the cards comes next. It is quite simple. We go through the 

deck swapping each card with another card that is chosen randomly. Note that the 52 in 
the header to the function definition is only for the benefit of the human reader. The 
compiler disregards it. 

void shuffle(card deck[52]) 
{ 

} 

i nt i, j; 

for (i = 0; i < 52; ++i) { 

} 

j := rand 0 % 52; 
swap(&deck[i], &deck[j]); 

void swap(card *p, card *q) 
{ 

card tmp; 

tmp = *p; 
Y'p 1rq; 
i'q == tmp; 

} 

9.6 T An Example: Playing Poker 423 

Even though the swap 0 function is used to swap structures, its general form is the 

same. 

void deal_the_cards(card deck[52], card hand [NPLAYERS] [5]) 
{ 

} 

int card_cnt 0, i, j; 

for (j = 0; j < 5; ++j) 
for (i == 0; i < NPLAYERS; ++i) 

hand[i][j] = deck[card_cnt++]; 

Because the compiler disregards the first size in an array in a parameter declaration, an 
equivalent header for this function definition is 

void deaLthe_cards(card deck[], card hand[] [5]) 

Also, because arrays in parameter declarations are really pointers, another equivalent 

header is given by 

void deaLthe_cards(card "'deck, card ("<hand) [5]) 

In each of these headers, the 5 is needed by the compiler to generate the correct storage 
mapping function. Notice that in the function the cards are dealt one at a time to each 
of the hands in turn. In contrast, the code 



424 Chapter 9'" Structures and Unions 

for (i = 0; i < I~PLAYERS; ++;) 
for (j = 0; j < 5; ++j) 

hand[i][j] = deck[cnt++]; 

would have the effect of dealing five cards all at once to each of the hands. Because we 
are trying to simulate a poker game as it is actually played, the code that we used in 
dea Lthe_cards 0 is preferable. 

int is_flush(card h[5]) 
{ 

} 

i nt i . , 

for (i = 1; i < 5; ++i) 
if (h[i].suit != h[0J.suit) 

return 0; 
return 1; 

The function i Lfl ushO checks to see if the cards in a hand are all of the same suit. It 
is invoked in the function play_pokerO with the expression is_flush(hand[j]). 
Recall that hand is an array of arrays, making hand [j] itself an array of type card. 
When i s_ fl ush 0 is called, the elements of this array are accessed. 

9.7 Unions 

A union, like a structure, is a derived type. Unions follow the same syntax as structures 
but have members that share storage. A union type defines a set of alternative values 
that may be stored in a shared portion of memory. The programmer is responsible for 
interpreting the stored values correctly. Consider the declaration 

union int_or_float { 
i nt i; 
float f; 

} ; 

In this declaration, un; on is a keyword, i nt_or _float is the union tag name, and the 
variables i and f are members of the union. This declaration creates the derived data 
type uni on i nt_or _float. The declaration can be thought of as a template; it creates 
the type, but no storage is allocated. The tag name, along with the keyword uni on, can 
now be used to declare variables of this type. 

9.7 .., Unions 425 

a, b, c; 

This declaration allocates storage for the identifiers a, b, and c. For each variabl~ ~he 
ompiler allocates a piece of storage that can accommodate the largest of the speCIfied 
~embers. The notation used to access a member of a union is identical to that used to 
access a member of a structure. . . 

The following example shows how what is stored in a union can be interpreted m dif-

ferent ways: 

In file numbers.c 

typedef union int_or_float { 
i nt i; 
float f; 

} number; 

i nt ma; n (vo; d) 
{ 

} 

number n; 

n.; ::::: 4444; 
pri ntf(";: %10d 
n.f::::: 4444.0; 
printf("i: %10d 
return 0; 

f: %16. 10e\n" , n.;, n.f); 

f: %16.10e\n", n.;, n.f); 

This little experiment demonstrates how your system overlays an ; nt and a float. The 
output of this program is system-dependent. Here is what is printed on our system: 

• 
i: 4444 
i: 1166729216 

f: 6.227370375e-41 
f: 4.4440000000e+03 

Dissection of the inLor_f1oat Program 

• typedef union int_or_float { 
i nt i; 
float f; 

} number; 

As with structures, the typedef mechanism can be used to abbreviate long type names. 



426 Chapter 9 'f Structures and Unions 

II number n; 

The type number is equivalent to uni on i nt_or _float. This declaration causes the 
system to allocate space for the union variable n. That space must accommodate the 
larger of the two members of n. If we assume that an i nt is stored in 2 or 4 bytes and 
that a float is stored in 4 bytes, then the system will allocate 4 bytes for n. 

II n . i = 4444; 
printf("i: %10d f: %16. 10e\n" , n.i, n.f); 

The i nt member n . i is assigned the i nt value 4444. When we print the value of n . i in 
the format of a decimal integer, 4444, of course, is printed. However, the same piece of 
memory is interpreted as a float when we print the member n. f in the %e format. In 
this case, something radically different from 4444 is printed. 

II n.f = 4444.0; 
printf("i: %10d f: %16.10e\n", n.i, n.f); 

Now we are playing the game the other way. The float member n. f is assigned the 
value 4444.0. ''\Then n . f is printed in the %e format, we get the correct value, but when 
we print the underlying storage in the %d format, we get something quite different . 

• 
The point is that the system will interpret the same stored values according to which 
member component is selected. It is the programmer's responsibility to choose the 
right one. 

Unions are used in applications that require multiple interpretations for a given piece 
of memory. But more commonly, they are used to conserve storage by allowing the 
same space in memory to be used for a variety of types. The members of a union can be 
structures or other unions. The follOwing is an example: 

struct flower { 
char 

}; 
enum {red, white, blue} 

struct fruit { 
char "'name; 

} ; 
int calories; 

'''name; 
color; 

9.8 'f Bit Fields 427 

struct vegetable { 
char *name; 
int calories; 
int cooking_time; /* in minutes */ 

} ; 

union flower_fruit_or_vegetable { 
struct flower flw; 
struct fruit frt; 
struct vegetable veg; 

} ; 

union flower_fruit_or_vegetable ffv; 

Having made these declarations, we can use a statement such as 

ffv.veg.cooking_time = 7; 

to assign a value to the member cooki ng_time of the member veg in the union ffv. 

9.8 Bit Fields 

An i ht or unsi gned member of a structure or union can be declared to consist of a 
specified number of bits. Such a member is called a bit field, and the number of associ
ated bits is called its width. The width is specified by a nonnegative constant integral 
expression following a colon. The width is at most the number of bits in a machine 
word. Typically, bit fields are declared as consecutive members of a structure, and the 
compiler packs them into a minimal number of machine words. An example is 

struct pcard { 
unsigned pips 
unsigned suit 

}; 

4; 
2 ; 

/* a packed representation */ 

A variable of type struct pcard has a 4-bit field called pi ps that is capable of storing 
the 16 values ° to IS, and a 2-bit field called suit that is capable of storing the values 
0, 1, 2, and 3, which can be used to represent clubs, diamonds, hearts, and spades, 
respectively. Thus, the thirteen pi ps values and the four sui t values needed to repre
sent playing cards can be represented compactly with 6 bits. Suppose that we make the 
declaration 



428 Chapter 9 T Structures and Unions 

struct pcard c; 

To assign to c the nine of diamonds, "ve can write 

c.pips = 9; 
c.suit = 1; 

The syntax for a bit field within a structure or union is given by 

biLfield_member :: = { ; nt I uns i gned h {identifier} opt : expr 
expr :: constanUntegraLexpression 

Whether the compiler assigns the bits in left-to-right or right-to-left order is ~U(:t\_ljllllt 
dependent. Although some machines assign bit fields across word boundar,les, most 
them do not. Thus, on a machine with 4-byte words, the declaration 

struct abc { 
i nt 

} x; 
a 1, b : 16, c : 16; 

typically would cause x to be stored in two words, with a and b stored in the first 
and c stored in the second. Only nonnegative values can be stored in unsi gned 
fields. For i nt bit fields, what happens is system-dependent. On some systems 
high-order bit in the field is treated as the sign bit. (See exercise 25, on page 443.) 
most applications, unsi gned bit fields are used. 

The chief reason for using bit fields is to conserve memory. On machines with 
words, we can store 32 I-bit variables in a single word. Alternatively, we could use 32 
char variables. The amount of memory saved by using bit fields can be substantial. 

There are some restrictions, however. Arrays of bit fields are not allowed. Also, the 
address operator & cannot be applied to bit fields. This means that a pointer cannot be 
used to address a bit field directly, although use of the member access operator -> is 
acceptable. 

One last point: Unnamed bit fields can be used for padding and alignment purposes. 
Suppose our machine has 4-byte'words, and suppose we want to have a structure that 
contains six 7-bit fields with three of the bit fields in the first word and three in second. 
The follovving declaration accomplishes this: 

struct small_integers { 
unsigned il 7,;2 

11, 
;4 7, i5 

} ; 

7, i 3 

7, i 6 

7, 
/* align to next word */ 

7 . , 

9.9 T An Example: Accessing Bits and Bytes 429 

l ' nment to a next word is to use an unnamed bit field with zero way to cause a Ig 
Consider the code 

struct abc { 
unsigned a: 1, : 0, b : 1, : 0, c : 1; 

creates three 1-bit fields in three separate words. 

An Example: Accessing Bits and Bytes 

this section we give an example of how the bits and bytes of a word in memory can 
In d 0 ay we can do this is through the use of bitwise operators and masks, 

accesse, ne w ," 3 31 and Sec-
as e lained in Section 7.1, "Bitwise Operators and ExpresslOns, on page. ., , 
. XP72 "Masks" on page 337. Here, we illustrate how it can be done usmg bIt flelds. 

tlOn . , , d 
Our program will be for machines having 4-byte wor s. 

#include <stdio.h> 

typedef struct { 
unsigned b0 8, b1 

} word_bytes; 

typedef struct { 
unsigned 

b1 1, b2 b0 : 1, 
1, b8 1, b9 b7 : 

b14: 1, b15 1, b16 
1, b22 1, b23 b21: 

b28: 1, b29 1, b30 
} word_bits; 

typedef union { 
int i ; 
word_bits bit; 
word_bytes byte; 

} word; 

8, b2 8, b3 8; 

1, b3 1, b4 1, b5 1, b6 1, 
1, b12 1, b13 1, 1, b10 1, bll 
1, b19 1, b20 1, 1, b17 1, b18 

I, b24 1, b25 1, b26 1, b27 1, 
1, b31; 



430 Chapter 9 T Structures and Unions 

int main(void) 
{ 

word w {0}; 
void bit_print(int); 

w.bit.b8 = 1; 
w. byte. b0 = 'a 1 ; 

printf("W.i = %d\n", w.i); 
bit_print(w.i) ; 
return 0; 

} 

The code in main 0 shows how a particular bit or byte in a word can be accessed. 
use the function bit_printO, which we presented in Section 7.3, "Software T 
Printing an i nt Bitwise," on page 338, to see precisely what is happening to the word 
memory. Because machines vary on whether bits and bytes are counted from the 
order or low-order end of a word, the use of a utility such as bi t_p ri nt 0 is ess:en1tial,,;'; 
On one machine, our program caused the following to be printed: 

w.i = 353 
00000000 00000000 00000001 01100001 

whereas on another machine we obtained 

w.i 1635778560 
01100001 10000000 00000000 00000000 

Because machines vary with respect to word size and "\lith respect to how bits and bytes 
are counted, code that uses bit fields may not be portable. 

9.10 The ADT Stack 

The term abstract data type (ADT) is used in computer science to mean a data structure 
together with its operations, without specifying an implementation. Suppose we wanted 
a new integer type, one that could hold arbitrarily large values. The new integer type 
together with its arithmetic operations is an ADT. It is up to each individual system to 
determine how the values of integer data types are represented and manipulated com
putationally. Native types such as char, int, and double are implemented by the C 
compiler. 

9.10 T The ADT Stack 431 

programmer-defined types are frequently implemented with structures. In this sec
tion, we develop and implement the ADT stack, one of the most useful standard data 
structures. A stack is a data structure that allows insertion and deletion of data to 
occur only at a single restricted element, the top of the stade This is the last-in-first-out 
(LIFO) discipline. Conceptually, a stack behaves like a pile of trays that pops up or is 
pushed down when trays are removed or added. The typical operations that can be 
used with a stack are push, pop, top, empty, full, and reset. The push operator places a 
value on the stack The pop operator retrieves and deletes a value off the stack The top 
operator returns the top value from the stack The empty operator tests if th'~e stack is 
empty. The full operator tests if the stack is full. The reset operator dears the stack, or 
initializes it. The stack, along with these operations, is a typical ADT. 

We will use a fixed-length char array to store the contents of the stack (Other imple
mentation choices are possible; in Section 10.5, "Stacks," on page 461, we will imple
ment a stack as a linked list.) The top of the stack will be an integer-valued member 
named top. The various stack operations will be implemented as functions, each of 
whose parameter lists includes a parameter of type pointer to stacie By using a 
pointer, we avoid copying a potentially large stack to perform a simple operation. 

In file stackc 

/* An implementation of type stack. */ 

#define 
#define 
#define 

typedef 

typedef 
char 
i nt 

} stack; 

MA)LLEN 
EMPTY 
FULL 

1000 
-1 
(MA)LLEN - 1) 

enum boolean {false, true} 

struct stack { 
s[MA)LLEN]; 
top; 

void reset(stack *stk) 
{ 

stk -> top = EMPTY; 
} 

void push(char c, stack *stk) 
{ 

stk -> top++; 
stk -> s[stk -> top] = c; 

} 

boolean; 



432 Chapter 9 T Structures and Unions 

char pop (stack *stk) 
{ 

} 
return (stk -> s[stk -> top--]); 

char top (canst stack *stk) 
{ 

} 
return (stk -> s[stk -> top]); 

boolean empty(const stack *stk) 
{ 

} 
return ((boolean) (stk -> top -- EMPTY»; 

boolean full(const stack *stk) 
{ 

return ((boolean) (stk -> top 
} 

FULL»; 

• • 
Dissection of the stack Implementation 

• typedef enum boolean {false, true} boolean; 

We use this typedef to give a new name, bool ean, to the enumeration type, enum 
boo 1 ean. Note that the new name coincides with the tag name. Programmers often do 
this. . 

• typedef struct stack { 
char s[MAX-LENJ; 
int top; 

} stack; 

This code declares the structure type struct stack, and at the same time uses a 
typedef to give struct stack the new name stack. Here is an equivalent way to write 
this: 

struct stack { 
char s[MAX-LEN]; 
int top; 

}; 

typedef struct stack stack; 

9.10 T The ADT Stack 

The structure has two members, the array member s and the i nt member top. 

• void reset(stack *stk) 
{ 

stk -> top = EMPTY; 
} 

433 

The member top in the stack pOinted to by stk is assigned the value EMPTY. This con
ceptually resets the stack, making it empty. In the calling environment, if st is a stack, 
we can write 

reset(&st); 

to reset st or initialize it At the beginning of a program, we usually start with an empty 
stack. 

void push(char c, stack *stk) 
{ 

stk -> top++; 
stk -> s[stk -> top] 

} 

• char pop(stack* stk) 
{ 

c; 

return (stk -> s[stk -> top--]); 
} 

The operation push is implemented as a function of two arguments. First, the member 
top is incremented. Note that 

stk -> top++ is equivalent to (stk -> top)++ 

Then the value of c is shoved onto the top of the stacIe This function assumes that the 
stack is not full. The operation pop is implemented in like fashion. It assumes the stack 
is not empty. The value of the expression 

stk -> top--

is the value that is currently stored in the member top. Suppose this value is 7. Then 

stk -> s [7J 

gets returned, and the stored value of top in memory gets decremented, making its 
value 6. 



434 Chapter 9 v Structures and Unions 

• boolean empty(const stack *stk) 
{ 

} 
return ((boolean) (stk -> top 

boolean full(const stack *stk) 
{ 

EMPTY)); 

} 
return ((boolean) (stk -> top == FULL)); 

Each of these functions tests the stack member top for an appropriate condition 
returns a value of type boolean, either t rue or fa 1 se. Suppose the expression 

stk -> top == EMPTY 

in the body of emptyO is true. Then the expression has the i nt value 1. This value 
cast to the type boolean, making it t rue, and that is what gets returned. 

To test our stack implementation, we can put the preceding code in a .c file and 
the following code at the bottom. Our function ma i nO enters the characters of a 
onto a stack and then pops them, printing each character out in turn. The effect is 
print in reverse order the characters that were pushed onto the stack 

In file stackc 

/* Test the stack implementation by reversing a string. */ 

#include <stdio.h> 

int main(void) 
{ 

char str[] liMy name is Laura Pohll"; 
i nt i; 
stack 5; 
reset (&5) ; r i ni ti al i ze the stack ,~/ 
printf(" In the string: %s\n", str); 
for (i = 0; str[i] 1= '\0'; ++i) 

if (I full (&5)) 
push(str[iJ, &s); /* push a char on the stack */ 

printf("From the stack: "); 
while (!empty(&s)) 

putchar(pop(&s)); /* pop a char off the stack */ 
putchar('\n'); 
return 0; 

} 

output from this test program is 

In the string: My name is Laura Pohll 
From the stack: IlhoP aruaL s1 eman yM 

V Summary 435 

Note that the expression &s, the address of the stack variable 5, is used as an argu
Illent whenever we call a stack function. Because each Of these functions expects a 
pointer of type stack ~', the expression &s is appropriate. 

1 Structures and unions are principal methods by which the programmer can define 
new types. 

2 The typedef facility can be used to give new names to types. Programmers rou
tinely use typedef to give a new name to a structure or union type. 

3 A structure is an aggregation of components that can be treated as a single'variable. 
The components of the structure are called members. 

4 Members of structures can be accessed by using the member access operator ".". If 
s is a structure variable with a member named m, then the ez.'Pression 5 • m refers to 
the value of the member m within the structure s. 

5 Members of structures can also be accessed by the member access operator ->. If P 
is a pointer that has been assigned the value &s, then the expression p -> m also 
refers to 5 . m. Both "." and -> have highest precedence among C operators. 

6 In ANSI if a and b are two variables of the same structure type, then the assign
ment expression a = b is valid. It causes each member of a to be assigned the value 
of the corresponding member of b. Also, a structure expression can be passed as an 
argument to a function and returned from a function. (Many traditional C compilers 
also have these capabilities, but not all of them.) 

7 When a structure variable is passed as an argument to a function, it is passed "call
by-value." If the structure has many members, or members that are large arrays, 
this may be an inefficient way of getting the job done. If we redesign the function 



436 Chapter 9 l' Structures and Unions 

definition so that a pointer to the structure instead of the structure itself is 
then a local copy of the structure will not be created. 

8 A union is like a structure, except that the members of a union share the s 
space in memory. Unions are used principally to conserve memory. The space 
cated for a union variable can be used to hold a variety of types, specified by 
members of the union. It is the programmer's responsibility to know which 
sentation is currently stored in a union variable. 

9 The members of structures and unions can be arrays or other structures 
unions. Considerable complexity is possible when nesting arrays, structures, 
unions within each other. Care must be taken that the proper variables are 
accessed. 

10 A bit field is an i nt or unsi gned member of a structure or union that has a 
fied number of bits. The number of bits is given as an integral constant eX})re:SSi( 
following a colon. This number is called the width of the bit field. The width is 
ited to the number of bits in a machine word. Consecutive bit fields in a 
are stored typically as contiguous bits in a machine word, provided that they fit. 

11 Bit fields can be unnamed, in which case they are used for padding or word 
ment purposes. The unnamed bit field of width 0 is speciaL It causes H~'''H'_U~'Ul\':; 
alignment on the next word. 

12 How bit fields are implemented is system-dependent. Hence, their use need not be 
portable. Nonetheless, bit fields have important uses. 

l3 The stack is an abstract data type (ADT) that has many uses, especially in computer 
science. An ADT can be implemented many different ways. 

l' Exercises 437 

In some situations a typedef can be replaced by a #defi ne. Here is an example: 

typedef float 

int main(void) 
{ 

DOLLARS; 

DOLLARS amount = 100.0, interest = 0.07 * amount; 

printf(flDOLLARS = %.2f\n", amount + interest); 
return 0; 

} 

Execute this program so you understand its effects, then replace the typedef by 

#define DOLLARS float 

When you recompile the program and execute it, does it behave as it did before? 

2 In some situations a typedef cannot be replaced by a #defi ne. Consider the fol
lowing program: 

typedef float DOLLARS; 

int main(void) 
{ 

DOLLARS amount = 100.00, 
interest = 0.07 * amount; 

{ 
float DOLLARS; 
DOLLARS = amount + interest; 
pri ntf("DOLLARS = %. 2f\n", DOLLARS); 

} 
return 0; 

} 

/~, new block "'/ 

Execute this program so that you understand its effects. If the typedef is replaced 
by the line 

#define DOLLARS float 



438 Chapter 9 'f Structures and Unions 

3 The program in the previous exercise used a new block to illustrate a certain point, 
Because of this, the code was not very natural. In this exercise, we use a typedef 
again, and this time the code is quite straightforward. 

typedef char * stri ng; 

int main(void) 
{ 

} 

string a[] = {"I", "like", "to", "fight,"}, 
be] = {"pinch,", "and", "bite."}; 

printf("%s %s %s %s %s %s %s\n", 
a[0], a[l], a[2], a[3], b[0], b[l]. b[2]); 

return 0; 

Execute the program so that you understand its effects. If the typedef is replaced 
by the line 

#defi ne string char ,', 

then the program will not compile. Explain why the typedef works, but the 
#defi ne does not. To make the program work with the #defi ne, a single character 
needs to be added. What is the character? 

4 Write a function add (a, b, c), where the variables a, b, and c are of type matri x. 
Write a program to test your function. 

5 Speed is not everything, but it counts for a lot in the computing world. If a structure 
is large, it is more efficient to pass an address of the structure than it is to pass the 
structure itself. Does this hold true if the structure is small? After all, there is a cost 
for dealing with pointers, too. Suppose you have many complex numbers to multi
ply. How should you design your multiplication function? You could pass struc
tures as arguments: 

complex mult(complex.b, complex c) 
{ 

} 

complex a; 

a.re = b.re * c.re - b.im * c.im; 
a.im = b.im * c.re + b.re * c.im; 
return a; 

But it may be faster to pass addresses: 

void mult(complex *a, complex *b, complex *c) 
{ 

'f Exercises 439 

Complete this version of the multO function, and write a test program to see 
which version is faster. 

6 The program in this exercise uses a typedef to name the type "pointer to a func
tion that takes a double and returns a double." First, run the program so that you 
understand its effects. 

#include <stdio.h> 
#include <math.h> 

#define PI 3.14159 

typedef 
typedef 

double 
dbl 

dbl; 
(*PFDD)(dbl); 

/* create an abbreviation */ 
/* ptr to fct taking dbl 

int main(void) 
{ 

} 

PFDD f = sin, g = cos; 

printf("f(%f) %f\n", PI, f(PI)); 
printf("g(%f) = %f\n", PI, g(PI)); 
return 0; 

and returning a dbl */ 

Now modify the code so that the second typedef is replaced by 

typedef dbl 
typedef FDD 

FDD(dbl) ; 
"'PFDD; 

/* fct of dbl returning a dbl */ r ptr to FDD ,~/ 

Does the program still run? (It should.) Carefully explain how the typedef for PFDD 
works. 

7 Write a function to do complex subtraction. Write two versions: one that returns a 
pointer to complex and one that returns a value of type comp 1 ex. 

8 Write a small collection of functions that perform operations on complex vectors 
and matrices. Include in your collection functions that print complex vectors and 
matrices on the screen. Write a program to test your functions. 



440 Chapter 9 'f' Structures and Unions 

9 Write a program that is able to produce a balanced meal. Start by defining a 
ture that contains the name of a food, its calories per serving, its food type such 
meat or fruit, and its costs. The foods should be stored as an array of s 
The program should construct a meal that comes from four different food 
and that meets calorie and cost constraints. The program should be capable of 
ducing a large number of different menus. 

10 Create a structure that can describe a restaurant. It should have members 
include the name, address, average cost, and type of food. Write a routine 
prints out all restaurants of a given food type in order of cost, with the least ,,~,,"'C .. 
first. 

11 Put a list of student names, identification numbers, and grades into a file 
,data. For example, the beginning of the file might look like \ 

Casanova 
Smith 
Jones 

910017 A 
934422 C 
878766 B 

Write a program called reorder that can be used to read the data in the file and put 
it into the array cl ass of type struct student. This can be done with redirection 

reorder < data 

The program should print out an ordered list of students and grades. Students with 
A grades should be listed first, students ,"\lith B grades next, and so forth. Among all 
students having the same grade, the students should be listed alphabetically by 
name. 

12 Modify the program that you wrote in the previous exercise by adding the function 
class_averageO to compute the class average and print it. Assume that anA 
grade has value 4, a B grade has value 3, and so forth. 

13 Experiment with the poker program. After dealing many hands, the last computed 
probability of getting a flush should approximate the mathematical probability. 
What is the mathematical probability of getting a flush? If you are dealt one card, 
then it will be of a certain suit. say hearts. What is the chance that the second card 
you are dealt will be a heart? Well, there are 51 cards left in the deck and 12 of them 
are hearts, so the probability is 12/51. What is the chance that the third card you 
are dealt will also be a heart? Because there are now 50 cards left in the deck and 11 
of them are hearts, the probability that the second and third cards are hearts is 

" Exercises 441 

(12/51) x (11 / 50). Continuing in this fashion. we see that the mathematical prob
ability of getting a flush is 

12 11 10 9 
51 x 50 x 49 x 48 

This product is approximately 0.00198. (Use your hand calculator to check that this 
is so.) When your machine plays poker, some of the computed probabilities should 
be larger than this number and some smaller. Is that the case? 

14 Modify the poker program by adding the function i s_strai ghtO, which tests 
whether a poker hand is a straight. Whenever a straight is dealt, print the computed 
probability. Because a flush beats a' straight, we expect the probability of a flush to 
be lower than the probability of a straight. Does your poker program confirm this? 

15 Modify the poker program by adding the function is_full houseO. which tests 
whether a poker hand is a full house. Whenever a full house is dealt, plint the com
puted probability. Because a full house beats a flush. we expect the probability of a 
full house to be lower than that of a flush. Does your poker program confirm this? 

16 The experienced poker player arranges the hand to reflect its values. Write a pro
gram that arranges and prints out a hand of five cards in sorted order by pips 
value. Assume that an ace is highest in value, a king is next highest in value. and so 
forth. 

17 (Advanced) Write a function hand_value O. which returns the poker value of the 
hand. The best possible hand is a straight flush, and the worst possible hand is no 
pair. Write another function that compares two hands to see which is best. 

18 Consider the following version of the flmction assi gn_va 1 ues (): 

void assign_values(card c, int pips, cdhs suit) 
{ 

} 

c.pips pips; 
c.suit == suit; 

When we test this function with the following code we find that it does not work as 
expected. Explain. 

card c; 

assign_values(c, 13, diamonds); 
prn_card_values(&c); 

/* the king of diamonds */ 



442 Chapter 9 T Structures and Unions 

19 Consider the following un; on declaration: 

union a { 
int 
char 
float 

} a, b, c; 

a; 
b; 
a; 

There is only one thing wrong. What is it'? 

20 Write a typedef for a structure that has two members. One member should be 
union of doub 1 e and complex, and the other member should be a "flag" that 
which domain is being used. Write functions that can add and multiply over 
domains. Your functions should decide on appropriate conversions when 
arguments from both domains. \ 

21 In commercial applications, it is sometimes useful to use binary coded d 
codes (BCD), where 4 bits are used to represent a decimal digit. A 32-bit word 
be used to represent an 8-digit decimal number. Use bit fields to implement 
code. Write two conversion routines, one from binary to BCD and the second 
BCD to binary. 

22 In Section 4.10, "An Example: Boolean Variables," on page 170, we wrote a nnnar'J:ln1 

that printed a table of values for some boolean functions. Rewrite that 
using bit fields. Represent each boolean variable as a I-bit field. 

23 (Sieve of Eratosthenes) Use an array of structures, where each structure contains 
word that is divided into bit fields, to implement the sieve algorithm for primes. 
a machine with 4-byte words, we can use an array of 1,000 elements to find 
primes less than 32,000. Let each bit represent an integer, and initialize all bits 
zero. The idea is to cross out all the multiples of a given prime. A bit that is 1 
represent a composite number. Start with the prime 2. Every second bit is made 1 
starting with bit 4. Then bit 3 is still O. Every third bit is made 1, starting with bit 6. 
Bit 4 is 1, so it is skipped. Bit 5 is the next bit with value O. Every fifth bit is made 1, 
starting with bit 10. At the end of this process, only those bits that are stIll zero 
represent primes. 

24 What gets printed by the following program? Explain. 

#include <stdio.h> 

struct test { 
unsigned a : 1, b 2, c 

}; 

i nt main(void) 
{ 

i nt i ; 
struct test x; 

for (i = 0; i < 23; ++i) { 
x.a = x.b = x.c = i; 

3' , 

... Exercises 443 

printf("x.a = %d x.b = %d x.c %d\n", x.a, x.b,x.c); 
} 
return 0; 

} 

What happens if you replace 

x . a = x. b = x. c = i; by x . c = x. b = x. a = i; 

25 Does your system implement signed arithmetic for i nt bit fields? Try the follovving 
code: 

struct test { 
int a: 3, b 4; 

} x = {0}; 

for ( ; ; ) 
printf("x.a = %2d x.b = %2d\n", x.a++, x.b++); 

26 What gets printed? Explain. 

typedef struct a { unsigned a : 1, 0, b : 1; } a; 
typedef struct b { unsigned a : 1, b : 1; } b; 

printf("%.lf\n" , (float) sizeof(a) / sizeof(b)); 



444 Chapter 9 T Structures and Unions 

27 In this exercise, we want to consider = and == with respect to their use with s 
tures. Suppose a and b are two structure variables of the same type. Then 
expression a == b is valid, but the expression a == b is not. The operands of the 
operator cannot be structures. (Beginning programmers often overlook this 
point.) Write a small test program to see what your compiler does if you try to 
the expression a == b, where a and b are structures of the same type. 

28 (Project) The double-ended queue is a very useful ADT. To implement this 
start with the following constructs: 

struct deque { 

} ; 

/* double ended queue */ 

typedef 
typedef 
typedef 

struct deque 
enum {false, true} 
data 

deque; 
boolean; 
char; 

The programmer-defined type deque implements a double-ended queue with 
array. If you want the data stored in the queue to be i nts, use 

typedef data i nt; 

Function prototypes of useful operations include 

void 
void 
data 
data 
boolean 
boolean 

add_to_front(deque ,~, data); 
add_to_rear(deque *. data); 
take_from_front(deque *); 
take_from_rear(deque *); 
empty(deque '~); 
full (deque >'<); 

Write and test an implementation of the double-ended queue ADT. (In Section 10.7, 
"Queues," on page 471, we will see how to do this with a linked list.) 

T Exercises 445 

Although the program in this exercise is system-dependent, it will run correctly on 
many different systems. See if it runs correctly on your machine. 

/* The mystery program. */ 

#if (VAX II 
#define 
#define 
#define 
#define 

#else 
#define 
#define 
#define 
#define 

#endif 

PC) 
HEX0 
HEXl 
HEX2 
HEX3 

HEX0 
HEX1 
HEX2 
HEX3 

typedef union { 
char what[l6]; 
long cipher[4]; 

} mystery; 

int main(void) 
{ 

mystery x; 

0x6c6c6548 
0x77202c6f 
0x646c726f 
0x00000a21 

0x48656c6c 
0x6f2c2077 
0x6f726c64 
0x210a0000 

x.cipher[0] HEX0; 
x.cipher[l] == HEX1; 
x.cipher[2] == HEX2; 
x.cipher[3] == HEX3; 
printf("%s", x.what); 
return 0; 

/* put a hex on the mystery */ 

} 

Explain how the mystery program works. If the phrase that is printed is unfamiliar 
to you, ask a programmer who has worked in C for a number of years what its sig
nificance is. 



Chapter 10 

Structures and List Processing 

In this chapter, we explain self-referential structures. We define structures with pointer 
members that refer to the structure containing them. Such data structures are called 
dynamic data structures. Unlike arrays or simple variables that are normally allocated 
at block entry, dynamic data structures often require storage management routines to 
explicitly obtain and release memory. 

10.1 Self-referential Structures 

Let us define a structure with a member field that points at the same structure type. We 
wish to do this in order to have an unspeCified number of such structures nested 
together. 

struct list { 
int 
struct list 

} a; 

data; 
"'next; 

This declaration can be stored in two words of memory. The first word stores the mem
ber data, and the second word stores the member next. The pointer variable next is 
called a link. Each structure is linked to a succeeding structure by way of the member 
next. These structures are conveniently displayed pictorially with links shown as 
arrows. 



448 Chapter 10... Structures and List Processing 

A structure oftyp€ struct Jist 

data next 

The pointer variable next contains either an address of the location in memory 
the successor 1 i st element, or the special value NULL defined as O. NULL is used 
denote the end of the list. Let us see how all this works by manipulating 

struct list a, b, c; 

We will perform some assigmnents on these structures: 

1; 
2 ; 

a.data 
b.data 
c.data 
a.next 

3; 
b.next c.next == NULL; 

Pictorially, the result of this code is the following: 

a 

I NULL I 

Let us chain these together. 

a.next == &b; 
b.next == &c; 

After assignment 
b 

I 2 I NULL I 

These pointer assignments result in linking a to b to c. 

a 

After chaining 

b 

c 

3 I NULL I 

c 

I 3 I NUll I 

10.2 ... Linear Linked Lists 449 

NoW the links allow us to retrieve data from successive elements. Thus, 

a.next -> data 

has a value 2 and 

a.next -> next -> data 

has value 3. 

10.2 Linear Linked Lists 

A linear linked list is like a clothes line on which the data structures hang sequentially. 
A head pointer addresses the first element of the list, and each element points at a suc
cessor element, with the last element having a link value NULL. This discussion will use 
the following header file: 

In file list.h 

#include <stdio.h> 
#include <stdlib.h> 

typedef char DATA; 

struct linked_list { 
DATA d; 
struct linked_list *next; 

} ; 

typedef struct linked_list 
typedef ELEMENT 

/* will use char in examples */ 

ELEMENT; 
*LINK; 



450 Chapter 10,. Structures and List Processing 

Storage Allocation 

The specifications in list.h do not allocate storage. The system can allocate storage if 
declare variables and arrays of type ELEMENT. But what makes these structures 
cially useful is that utility functions exist to allocate storage dynamically. The 
provides rna 11 oc 0 in the standard library, and its prototype is in stdlib.h. A 
call of the form 

rna 11 oc(size) 

returns a pointer to enough storage for an object of size bytes. The ~torage is not initial
ized. The argument to rna 11 oc 0 is of type s i ze_ t, and the value returned is of 
pointer to vo; d. Recall that si ze_t is the unsigned integer type that is defined in 
stddefh and stdlib.h. It is the type that results when the si zeof operator is used. 
head is a variable of type LINK, then 

head = rna110c(sizeof(ELEMENT)); 

obtains a piece of memory from the system adequate to store an ELEMENT and assigns 
its address to the pointer head. As in the example, rna 11 oc 0 is used with the s i zeof. 
operator. A cast is unnecessary because rna 11 oc 0 returns a pointer to voi d, which 
be assigned to a variable of any pointer type. The si zeof operator calculates the 
required number of bytes for the particular data structure. 

In the code that follows, we will dynamically create a linear linked list storing the 
three characters n, e, and w. The code 

head; rnal1oc(sizeof(ELEMENT)); 
head -> d'n'; 
head -> next = NULL; 

creates a Single-element list. 

Creating a linked list 

head~ 

A second element is added by the assignments 

head -> next; rnal1oc(sizeof(ELEMENT)); 
head -> next -> d = 'e'; 
head -> next -> next = NULL; 

It is now a two-element list. 

10.3 ,. List Operations 451 

A two-element linked list 

head~ 

Finally, we add a last element: 

head -> next -> next rna11oc(sizeof(ELEMENT)); 
head -> next -> next -> d = 'W'; 
head -> next -> next -> next NULL; 

We have a three-element list pointed to by head, and the list ends when next has the 
sentinel value NULL. 

A three-element linked list 

head e ~! W !NULL! 
'------'------' 

10.3 List Operations 

The following list includes some of the basic linear list operations: 

Linear List Ogerations 

1 Creating a list 

2 Counting the elements 

3 Looldng up an element 

4 Concatenating two lists 

5 Inserting an element 

6 Deleting an element 

We will demonstrate the techniques for programming such operations on lists using 
both recursion and iteration. The use of recursive functions is natural because lists are 
a recursively defined construct. Each routine 'will require the specifications in file list.h. 
Observe that d in these examples could be redefined as an arbitrarily complicated data 
structure. 



452 Chapter 10.. Structures and List Processing 

As a first example, we will write a function that will produce a list from a string. 
function ,viII return a pointer to the head of the resulting list. The heart of the 
creates a list element by allocating storage and assigning member values. 

/* List creation using recursion. */ 

#include <stdlib.h> 
#i ncl ude "1 i st. hOI 

LINK strin9_to_1ist(char s[]) 
{ 

} 

LINK head; 

if (s[0] == '\0') /* base case */ 
return NULL; 

else { 

} 

head = malloc(sizeof(ELEMENT»; 
head -> d = s[0]; 
head -> next = strin9_to_l;st(s + 1); 
return head; 

Notice once more how recursion has a base case (the creation of the empty list) and a 
general case (the creation of the remainder of the list). The general recursive call 
returns as its value a LINK pointer to the remaining sublist. 

• • 
Dissection of the string_toJist() Function 

• LINK string_to_list(char s[J) 
{ 

LINK head; 

When a string is passed as an argument, a linked list of the characters in the string is 
created. Because a pointer to the head of the list will be returned, the type specifier in 
the header to this function definition is LINK. 

• if (s[0] == '\0') 
return (NULL); 

/* base case t,/ 

When the end-of-string sentinel is detected, NULL is returned, and, as we will see, the 
recursion terminates. The value NULL is used to mark the end of the linked list. 

10.3 T List Operations 453 

else { 
head malloc(sizeof(ELEMENT»; 

If the string s [] is not the null string, then rna 11 oc 0 is used to retrieve enough bytes 
to store an object of type ELEMENT. Because rna 11 oc 0 returns a pointer to vo; d, it can 
be assigned to the variable head, which is a different pointer type. A cast is unneces
sary. The pointer variable head now points at the block of storage provided by rna 1 
locO. 

head -> d = s[0J; 

The member d of the allocated ELEMENT is assigned the first character in the string s [J. 

head -> next = strin9_to_list(s + 1); 

The pointer expression s + 1 points to the remainder of the string. The function is 
called recursively with s + 1 as an argument. The pointer member next is assigned the 
pointer value that is returned by stri n9_to_l i st (5 + 1). This recursive call returns 
as its value a LINK or, equivalently, a pointer to ELEMENT that points to the remaining 
sublist. 

• return head; 

The function exits with the address of the head of the list. 

• • 
This function can also be written as an iterative routine with the help of the addi

tional auxiliary pointer tai 1. We will name the iterative version s_to_l 0 to distin
guish it from the recursive version stri n9_to_l i stO. 

In file iteLlist.c 

/* L;st creation using iteration. */ 

#include <stdlib.h> 
#include "list.h" 

LINK s_to_l(char s[]) 
{ 

LINK head = NULL, tail; 
int i; 



454 Chapter lOT Structures and List Processing 

if (s[0]! '\0') { I" first element "I 
head = malloc(sizeof(ELEMENT)); 
head -> d = 5[0]; 
tail = head; 
for (i = 1; sCi] != '\0'; ++i) { I'~ add to tail ;'1 
tail -> next mal10c(sizeof(ELEMENT)); 
tail = tail -> next; 
tail -> d = sCi]; 

} 

} 
tail -> next = NULL; 1* end of list *1 

return head; '. 

} 

FUnctions operating on lists often require local pointer variables such as head and 
tai 1. One should use such auxiliary pointers freely to Simplify code. It is also impor
tant to hand-simulate these routines. It is useful to try your program on the empty list, 
the unit or Single-element list, and the two-element list. Frequently, the empty list and 
the unit list are special cases. 

PaSSing a null string to s_ to_l 0 <:'Teates the empty list by having the routine return 
with value NULL. Creating the first element is done by the first part of the code. The 
one-element list created from the string "A" is shown in the following diagram. This is 
the state of the computation before the member next is assigned the value NULL. 

A one-element list 
head 

For the two-element case, say "AB", list creation is as pictured. First, the one-element 
list containing' A f is created. The for statement is then executed, with i having value 1 
and s [~] having value f B' . A new element is then allocated and attached to the list. 

A second element is attached 

head ------,._...! A 
tail ~,-. -_~_--l 

The statement tai 1 = tai 1 -> next; advances tai 1 to the new element. Then its d 
member is aSSigned 'B'. 

10.4 T Some List Processing Functions 455 

Updating the tail 

head~LI_A~I __ 1 .. 

tail ~ 

NoW s [2] has value \0 and the for statement is exited with a two-element list. Finally, 
the end of the list is marked with a NULL. 

After assigning NULL 

head ~LI _A_.l.-I __ I .. 1-1 _B_,-N_U_LL---J 

tail ~ 

The undefined member values occur because mall oc 0 is not required to initialize 
memory to zero. 

10.4 Some List Processing Functions 

We will write two additional recursive functions. The first counts the elements ir: a list, 
and the second prints the elements of a list. Both involve recurring down the lIst a~d 
terminating when the NULL pointer is found. All these functions use the header file 
list.h. 

The function count 0 returns 0 if the list is empty; otherwise, it returns the number 
of elements in the list. 

1* Count a list recursively. *1 

int count(LINK head) 
{ 

} 

if (head == NULL) 
return 0; 

else 
return (1 + count(head -> next)); 



456 Chapter 10 ... Structures and List Processing 

An iterative version of thi f ' s unction replaces the recursion with a for loop. 

/* Count a list iteratively. */ 

int count_it(UNK head) 
{ 

} 

int cnt 0' , 

for ( ; head !~ NULL; head 
++cntj 

return cnt; 

head -> next) 

Keep in mind that head is p d" II b " 
destroy access to the list in athSSeecall~a - y-~alue, so that invoking cou nt_it 0 does not 

mg enVIronment. 
The routine pri nt 1 i stO ' 

member variable d: - recursIvely marches down a list printing the value of 

/* Print a list recursively. */ 

{aid print_list(LINK head) 

if (head == NULL) 
printf("NULL")' 

else { , 

} 

printf("%c -->" head -> d)j 
print_list(head ~> next); 

} 

To illustrate the use of these fun t' '11' 
string "ABC" t I' d' c IOns, we WI wYlte a program that will convert the a a 1st an prmt it: . 

In file prn_list.c 

#include <stdio.h> 
#include <stdlib.h> 
#include "list.hl! 

LINK 
void 
int 

string_to_list(char []); 
print_list(LINK); 
count(LINK); 

i nt mai n (voi d) 
{ 

LINK h; 

10.4 ... Some List Processing Functions 

h =: string_to_list("ABC"); 
printf(I!The resulting list is\n"); 
pri nt_l i st (h) j 

} 

printf(I!\nThis list has %d elements.\n", count(h))i 
return 0; 

The program produces the following output: 

The resulting list is 
A --> B --> C --> NULL 
This list has 3 elements. 

457 

Often one wishes to take two lists and return a single combined list. The concatena
tion of lists a and b, where a is assumed to be nonempty, will be the list b added to the 
end of list a. A function to concatenate will march down list a looking for its end, as 
marked by the null pointer, It will keep track of its last non-null pointer and will attach 
the b list to the next link in this last element of list a. 

/* Concatenate list a and b with a as head. */ 

void concatenate(LINK a, LINK b) 
{ 

} 

assert(a != NULL); 
if (a -> next =:=: NULL) 

a -> next =: b; 
else 

concatenate(a -> next, b); 

Recursion allows us to avoid using any auxiliary pointers to march down the a list. In 
general, the self-referential character of list processing makes recursion natural to use. 
The form of these recursive functions is as follows: 

void gener;c_recursion(LINK head) 
{ 

} 

if (head == NULL) 
do the base case 

else 
do the general case and recur with 

generic_recursion(head -> next) 



458 Chapter lOT Structures and List Processing 

Insertion 

One of the most useful properties of lists is that insertion takes a fixed amount of time 
once the position in the list is found. In contrast, if one wished to place a value in a 
large array, retaining all other array values in the same sequential order, the insertion 
would take, on average, time proportional to the length of the array. The values of all 
elements of the array that come after the newly inserted value would have to be moved 
over one element. 

Let us illu~trate .insertion into a list by having two adjacent elements pointed at by pI 
and p2, and msertmg between them an element pointed at by q. 

Before insertion 

Pl~ P2~ 
... ~I'---A-~-=-~ ___ -"'''''''''''Ir--c-...----~--. 

q ~I B INUlll 
The follOwing function i nsertO places the element pointed at by q between the ele

ments pointed at by pI and p2: 

/* Inserting an element in a linked list. */ 

void insert(LINK pI { , LINK p2, LINK q) 

} 

assert(pl -> next == 
pI -> next = q; 
q -> next = p2; 

p2); 
/,~ i nsert ,~ / 

After insertion 

P2~ 

r--I -c ~.~~ ... 

10.4 T Some list Processing Functions 459 

Deleting an element is very simple in a linked linear list. The predecessor of the ele
ment to be deleted has its link member assigned the address of the successor to the 
deleted element. Again, let us first illustrate the delete operation graphically. Here is 
the picture that we start with: 

Before deletion 

Now we execute the following code: 

p -> next = p -> next -> next; 

After deletion 

P~ 
... ~~-~--

As the diagram shows, the element containing 'B J is no longer accessible and is of no 
use. Such an inaccessible element is called garbage. Because memory is frequently a 
critical resource, it is desirable that this storage be returned to the system for later us~. 
This may be done with the stdlib.h function freeO. When called as free(p), preVI
ously allocated storage for the object pOinted to by p is available to the system. The for
mal argument to free 0 is pointer to voi d. 

Using free 0, we can write a deletion routine that returns allocated list storage to 
the system. 

/* Recursive deletion of a list. */ 

void delete_list(LINK head) 
{ 

} 

if (head != NULL) { 
delete_list(head -> next); 
free(head); 

} 
/* release storage */ 



._-----_ ... - .. _-_ .. -

460 Chapter 10 l' Structures and List Processing 

Because free () takes a single argument of type vo; d ~'. we can pass a pointer of any 
type to free (). We do not have to use a cast because voi d ~'is the generic pointer 
type. 

10.5 Stacks 

We presented the abstract data type stack as an array in Section 9.10, "The ADT Stack!) 
on page 430. Here, we will reimplement the ADT stack with a linear linked list. A stadk 
has access restricted to the head of the list, which will be called its top. Furthermore 
insertion and deletion occur only at the top, and under these restrictions the operation~ 
are knmvTI as push and pop, respectively. 

A stack ~an be visualized as a pile of trays. A tray is always picked up from the top 
and a tray IS always returned to the top. Graphically, stacks are drawn vertically. 

A stack implementation 

stack elem 

I~-Lrf--_at_a I 

~ 
I data I 

NULL 

10.5 l' Stacks 461 

We will write a stack program that consists of a .h file and two .c files. Here is the 

header file: 

In file stack.h 

/* A linked list implementation of a stack. */ 

#include <stdio.h> 
#include <stdlib.h> 

#define 
#define 

EMPTY 
FULL 

o 
10000 

char typedef 
typedef enum {false, true} 

struct elem { 
data 
struct elem 

} ; 

d; 
'~next ; 

typedef struct elem 

struct stack { 
int cnt; 
e 1 em ~'top; 

} ; 

elem; 

data; 
boolean; 

/* an element on the stack */ 

/* a count of the elements */ 
/* ptr to the top element */ 

typedef struct stack stack; 

void 
void 
data 
data 
boolean 
boolean 

initialize(stack *stk); 
push(data d, stack *stk); 
pop (stack ""stk); 
top(stack ""stk); 
empty(const stack *stk); 
full(const stack *stk); 

The function prototypes of the six standard stack operations that we are going to 
implement are listed at the bottom of our header file. Conceptually, these functions 
behave like those we presented in Section 9.10, "The ADT Stack," on page 430. Here, our 
use of the type data makes our code reusable. (See Section 10.6, "An Example: Polish 
Notation and Stack Evaluation," on page 464, where we use the code again.) 



462 Chapter 10 l' Structures and List Processing 

In file stackc 

/* The basic stack routines. */ 

#include "stack.h" 

void initialize(stack *stk) 
{ 

stk -> cnt :: 0; 
stk -> top NULL; 

} 

{Oid push(data d, stack *stk) 

el em "'p; 

p = malloc(sizeof(elem)); 
p -> d :: d; 
p -> next = stk -> top; 
stk -> top p; 

} 
stk -> cnt++; 

data pop (stack *stk) 
{ 

} 

data d; 
elem '~p; 

d = stk -> top -> d; 
p = stk -> top; 
stk -> top = stk -> top -> next; 
stk -> cnt--· 
free(p); , 
return d; 

data top (stack *stk) 
{ 

} 
return (stk -> top -> d); 

boolean empty(const stack *stk) 
{ 

} return ((boolean) (stk -> cnt __ EMPTY)); 

boolean full(const stack *stk) 
{ 

return ((boolean) (stk -> cnt 
} 

10.5 l' Stacks 463 

FULL)); 

The pu s h 0 routine uses the storage allocator ma 11 DC 0 to create a new stack element, 
and the popO routine returns the freed-up storage back to the system. 

A stack is a last-in-first-out (LIFO) data structure. The last item to be pushed onto the 
stack is the first to be popped off. So if we were to push first 'a' and second 'b' onto 
a stack, then popO would first pop' b'. In mai nO, we use this property to print a 
string in reverse order. This serves as a test of our implementation of the ADT stack 

In file main.c 

/* Test the stack implementation by reversing a string. */ 

#include "stack.h" 

int main(void) 
{ 

} 

char 
i nt 
stack 

str[] 
i ; 
s; 

liMy name is Joanna Kelley!"; 

initialize(&s); /* initialize the stack */ 
pri ntf(" In the stri ng: %s\n", str); 
for (i 0; str[i] != '\0'; ++i) 

if (!full(&s)) 
push(str[iJ, &s); /* push a char on the stack */ 

printf("From the stack: "); 
while (Jempty(&s)) 

putchar(pop(&s)); /* pop a char off the stack */ 
putchar('\n'); 
return 0; 

Observe that our function ma; nO is very similar to what we wrote in Section 9.10, "The 
ADT Stack," on page 434. Although here we have implemented the ADT as a linked list 
and in Section 9.10, "The ADT Stack," on page 431, we implemented the ADT as a 
string, the use of the operations is similar. Here is the output of our program: 

In the string: My name is Joanna Kelley! 
From the stack: !yelleK annaoJ si eman yM 



464 Chapter 10 'f' Structures and List Processing 

10.6 An Example: Polish Notation and Stack Evaluation 

Ordinary notation for writing expressions is called infix, where operators separate argu
ments. Another notation for expressions, one that is very useful for stack-oriented eval
uation, is called Polish, or parenthesis-free, notation. In Polish notation, the operator 
comes after the arguments. Thus, for example, 

3, 7, + is equivalent to the infix notation 3 + 7 

In Polish notation, going from left to right, the operator is executed as soon as it is 
encountered. Thus 

17, 5, 2, 'i', + is equivalent to 17 + (5 ,~ 2) 

A Polish expression can be evaluated by an algorithm using two stacks. The Polish 
stack contains the Polish expression, and the evaluation stack stores the intermediate 
values during execution. Here is a two-stack algorithm that evaluates Polish expressions 
where all operators are binary: 

~l\ll,lQ.=g~~k algorithm to evaluate Polish expressions 

1 If the Polish stack is empty, halt with the top of the evaluation stack as the 
answer. 

2 If the Polish stack is not empty, pop the Polish stack into d. (We will use d, d1, 
and d2 to hold data.) 

3 If d is a value, push d onto the evaluation stack. 

4 If d is an operator, pop the evaluation stack twice, first into d2 and then into dl. 
Compute dl and d2 operated on by d, and push the result onto the evaluation 
stack. Go to step 1. 

We illustrate this algorithm in the following diagram, where the expression 

13 .,4, -, 2, 3, '", + 

is evaluated. 

10.6 'f' An Example: Polish Notation and Stack Evaluation 465 

A two-stack algorithm to evaluate Polish expressions 

E 
v 
a 
1 13 

p u 4 4 
0 a 2 2 
1 t 2 2 

3 3 3 
; ; 3 3 3 2 'i' 2 6 

~, 4 * 'i' 
:L..J! ~ s 0 ,~ ,~ 

:L..J! ± 9. 
h-.n ---± ±-.ll :L_H :L..J! 

. 1 ents this two-stack algorithm. A key idea will be 
Let us write a prograIn: that lillP eIn: value in the form of an integer or an oper-

to redefine data so that 1t can store e1ther a will consist of a .h file and five .c files. 
ator in the form of a character. Our program 

Here is our header file: 

In file polish.h 

l,'st ,'mplementation of a Polish stack. */ r A linked 

#include <assert.h> 
#include <ctype.h> 
#include <stdio.h> 
#include <stdlib.h> 

#define 
#define 

EMPTY 
FULL 

o 
10000 

struct data { 
enum {operator, value} kind; 

union { 
char op; 
int val; u; } 

} ; 

typedef 
typedef 

struct data 
enum {false, true} 

struct elem { 
data d; 
struct elem *next; 

} ; 

typedef struct elem elem; 

data; 
boolean; 

/* an element on the stack */ 



466 Chapter 10 v Structures and list Processing 

struct stack { 
int cnt; 

} ; 
el em ~'top; /* a count of the elements */ 

/* ptr to the top element */ 

typedef 
boolean 
int 
void 
boolean 
void 
data 
void 
void 
void 
data 

struct stack stack; 
empty(const stack *stk); 
evaluate(stack *polish); 
fill(stack *stk, const char *str); 
full(const stack *stk); 
initialize(stack *stk); 
pop (stack i'stk); 
prn_data(data ;~dp); 
prn_stack(stack *stk); 
push(data d, stack *stk); 
top (stack *stk); 

Observe that this header file is similar to the one we used in our stack program in 
Section 10.5, "Stacks," on page 461. The main difference is that we have defined data to 
be a structure type. The structure contains a uni on that can hold either an i nt value or 
an operator in the form of a char. It also contains a "flag" in the form of an enumera
tion type. The flag will tell us which kind of data is being stored. 

In file main.c 

/* Test the two-stack Polish evaluation algorithm. */ 

#include "polish.h" 

int main(void) 
{ 

} 

char 
stack 

s t r [] = "13, 4, - 2, 3, '{', + " ; 
polish; 

printf("\n%s%s\n\n", 
"Polish expression: ", str); 

fill(&polish, str); /* fill stack from string */ 
prn_stack(&polish); /* print the stack */ 
printfC"\n%s%d\n\n", 

"Polish evaluation: " 
return 0; evaluateC&polish)); 

In mai nO, we fill the Polish stack from a string and print the stack to check that every
thing is working properly. The function that is of most interest is the one that evaluates 
the Polish stack. Let us present that function next. 

10.6 v An Example: Polish Notation and Stack Evaluation 

In file eval.c 

/* Evaluation of the Polish stack. */ 

#intlude "polish.h" 

int evaluate(stack *polish) 
{ 

} 

data 
stack 

d, dl, d2; 
eval; 

initializeC&eval); 
while (!empty(polish)) { 

d = pop(polish); 
switch Cd.kind) { 
case value: 

} 

pushed, &eval); 
break; 

case operator: 
d2 = pop(&eval); 
dl pop(&eval); d '/ 
d.kind = value; 1" begin overwriting " 

switch (d.u.op) { 
case '+': 

d.u.val dl.u.val + d2.u.val; 
break; 

case '-': 
d.u.val dl.u.val - d2.u.val; 
break; 

case ';~': 

d.u.va = .u. 1 dl val * d2.u.val·, 
} 
pushed, &eval); 

} 

d pop(&eval); 
return d.u.val; 

467 

1 te) function embodies the two-stack algorithm that we presented earlier. 
The :va ~a d ~rom the pol i sh stack, If it is a value, we push it on~o t~e eva 1 st~c~, If 
~~ fust p p d2 d dl off the eva 1 stack, perform the mdlcated operatIOn, It IS an operator, we pop an . 1 . ty p d 
and push the results onto the eva 1 stack. When the po 11 sh stac <: IS emp ,we po 
from the eva 1 stack and return the i nt value d. u . val. .. f d'ff t 

. fil k Ex t for the mcluslOn 0 a I eren We write the stack operations m the e stac .c. cep . S l' 
header file, there is no difference at all from the file stack-c, which we wrote III ec IOn 
10.5, "Stacks," on page 461. 



468 Chapter lOT Structures and List Processing 

In file stack.c 

1* The basic stack routines. *1 

#include "polish.h" 

void initialize(stack *stk) 
{ 

} 

stk -> cnt 
stk -> top 

0; 
NULL; 

void push(data d, stack *stk) 
{ 

} 

elem "'p; 

p = malloc(sizeof(elem)); 
p -> d = d; 
p -> next = stk -> top; 
stk -> top = p; 
stk -> cnt++; 

In the stack implementation in Section 10.5, "Stacks," on page 461, the type data was 
equivalent to char; here data is a structure type. By using a typedef to embody the 
idea of "data," we have made the ADT stack implementation reusable. This is an impor
tant point. By using code that has already been written and tested, the programmer has 
less work to do in the current project. 

We need to be able to fill a stack from a string that contains a Polish expression. Here 
is our function that does this: 

In file fill. c 

#include "polish.h" 

void fill(stack *stk, const char *str) 
{ 

const char 
char 
boolean 
data 
stack 

,.,p = str; 
c1, c2; 
b1, b2; 
d; 
tmp; 

initialize(stk); 
initialize(&tmp); 

} 

10.6 T An Example: Polish Notation and Stack Evaluation 

I'~ 
II First process the string and push data on tmp. 
'·'1 
while (*p != '\0') { 

whi 1 e (i sspace (>"p) I I "'p == ',') 
++p; 

469 

b1 = (boolean) ((c1 = '.'p) == '+' II c1 '-' II c1 == "."); 
b2 = (boolean) ((c2 = '.'(p + 1)) == ',' II c2 == '\0'); 
if (b1 && b2) { 

d.kind operator; 
d.u.op c1; 

} 
else { 

d.kind = value; 
assert(sscanf(p, "%d" , &d.u.val) == 1); 

} 
if (!f~ll(&tmp)) 

pushed, &tmp); 1* push data on tmp *1 
while (*p != ',' && *p != '\0') 

} 
I'·' 
II Now pop data from tmp and push on stk. 
"1'1 
while (!empty(&tmp)) { 

d = pop(&tmp); 1* pop data from tmp *1 
if (! full (stk)) 

pushed, stk); 1* push data on stk *1 
} 

First we process the string to extract the data. As we find the data, we push it onto the 
stack tmp. After we finish processing the string, we pop the data off of tmp and push it 
onto the stack pointed to by stk. We do this so that the element in the stack pointed to 
by stk will be in the right order. 

We write two printing functions so that we are able to check that our code is working 
properly. Here are the functions: 



470 Chapter 10 T Structures and List Processing 

In file print.c 

#include "polish.h" 

void prn_data(data *dp) 
{ 

switch (dp -> kind) { 
case operator: 

pri ntf("%s%3c\n lf , 
"kind: operator 

break; 
op:", dp -> u.op); 

case value: 
printf("%s%3d\n", 
"kind: value 

} 
val:", dp -> u.val); 

} 

void prn_stack(stack *stk) 
{ 

data d; 

printf(lfstack count:%3d%s", 
stk -> cnt, (stk -> cnt 0)? n\n" : " 

if (!empty(stk)) { 
d = pop(stk); /* pop the data */ 
prn_data(&d); /* print the data */ 
prn_stack(stk); /* recursive call */ 
pushed, stk); /* push the data */ 

} 
} 

The algorithm to print the stack is quite simple. First, pop d off the stack and print it. 
Then make a recursive call to prn_stackO. Finally, push d back onto the stack. The 
effect of this is to print all the data in the stack and to leave the stack in its original 
state. Here is the output from our program: 

Polish expression: 13, 4, 2, 3, * + , , 
stack count: 7 kind: value val: 13 stack count: 6 kind: value val: 4 stack count: 5 kind: operator op: stack count: 4 kind: value val: 2 stack count: 3 kind: value val: 3 stack count: 2 kind: operator op: ,~ 

stack count: 1 ki nd: operator op: + stack count: 0 

Polish evaluation: 15 

10.7 T Queues 471 

Queues 

queue is another abstract data type (ADT) that we can implement as a linear linked 
list. A queue has a front and a rear. Insertion occurs at the rear of the list, and deletion 
occurs at the front of the list. 

A queue implementation 

queue 
cnt 

.---+front 

rear-+--------------------, 

elem elem elem 

L-! d_at_a--,-I_~---, ! data! ~~ta! NUll! ---
Our implementation of the ADT queue will include a number of the standard queue 

functions. Here is our header file: 

In file queue.h 

/* A linked list implementation of a queue. */ 

#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 

#define 
#define 

EMPTY 
FULL 

o 
10000 

typedef 
typedef 

unsigned int 
enum {false, true} 

struct elem { 
data 
struct elem 

} ; 

d; 
"'next; 

data; 
boolean; 

/* an element in the queue */ 

'-



-
472 Chapter 10.. Structures and List Processing 

typedef struct elem elem; 
struct queue { 

int cnt; 
elem *front; 

} ; 
elem '''rear; 

typedef 
void 
void 
data 
data 
boolean 
boolean 

struct queue queue' 
initialize(queue *q); 
enqueue(data d, queue 
dequeue(queue *q); 
front(const queue *q); 
empty(const queue *q); 
full (const queue *q); 

/* a count of the elements */ 
/* ptr to the front element */ 
/* ptr to the rear element */ 

"'q) ; 

At the bottom of the header file, we put the list of function prototypes. We write the 
~unction definitions in the file queue.c. These functions, together with this header file, 
Implement the ADT queue. 

In file queue.c 

/* The basic queue routines. */ 

#include "queue.h" 

void initialize(queue 
{ 

q -> cnt 0-, 
q -> front = NULL; 
q -> rear NULL; 

} 

In file queue.c 

data dequeue(queue *q) 
{ 

data d; 
elem '''Pi 

;'q) 

d q -> front -> d; 

} 

p q -> front; 
q -> front = q -> front -> next; 
q -> cnt--; 
free(p) ; 
return d; 

void enqueue(data d, queue *q) 
{ 

} 

e 1 em "'p; 

p malloc(s;zeof(elem)); 
p -> d = d; 
P -> next = NULL; 
if (! empty(q)) { 

q -> rear -> next p; 
q -> rear = p; 

} 
else 

q -> front 
q -> cnt++; 

q -> rear 

data front(const queue *q) 
{ 

return (q -> front -> d); 
} 

boolean empty(const queue *q) 
{ 

return ((boolean) (q -> cnt 
} 

boolean full (const queue *q) 
{ 

return ((boolean) (q -> cnt 
} 

10.7 .. Queues 473 

p; 

EMPTY)); 

FULL)) ; 

The enqueue () routine uses the storage allocator ma 11 oc () to create a new queue 
element, and the dequeue () routine returns the freed up storage back to the system. 

A queue is a first-in-flrst-out (FIFO) data structure. The first item to be placed onto the 
queue is the first to be removed. Queues are very useful for a variety of system pro
gramming applications. For example, they are often used to schedule resources in an 
operating system. They are also useful in vvriUng event simulators. 

As an example, let us write an elementary resource scheduler for a two-processor 
system. We will assume that a process can request to be serviced by either processor A 
or processor B. The process will have a unique process identification (pid) number. 
After reading all the requests, the scheduler will print the schedule of processes served 
by each processor. 



474 Chapter lOT Structures and List Processing 

In file main.c 

} 

/* Using queues to schedule two resources. */ 

#include "queue.h" 

int main(void) 
{ 

0' , 
0' , 

i nt 
int 
int 
data 
queue 

c; 
cnt_a 
cnCb 
pid; 
a, b; / 1, 'd process 1 number */ 

~n~t~alize(&a); 
1 m tl al i ze(&b) . 
/*.Enqueue the'requests.*/ 
whlle. ((c = getchar()) 1= EOF) { 

swltch (c) { 
case 'A': 
~ssert(scanf("%u", &pid) __ 
1 f (I full (&a)) 

enqueue(pid, &a)' 
break; , 

case 'B': 

1) ; 

~ssert(scanf("%u", &pid) 
If (Ifull (&b)) 1) ; 

} 
enqueue(pid, &b); 

} 

/*.Dequ~ue the requests and print them.*/ 
pr~ntf( \nA's schedule:\n")' 
Whll~ (Iempty(&a)) { , 

pld = dequeue(&a)' 

} printf(" JOB%u'isO%d\n", ++cnCa, pid); 
pr~ntf("\nB's schedule:\n")' 
Whll~ (Iempty(&b)) { , 

pld = dequeue(&b)' 
} printf(" JOB %u'is %d\n" , ++cnCb, pid); 

return 0; 

To test our program, we create the following input file: 

B 7702 
A 1023 
B 3373 
A 5757 
A 1007 

When we give the command 

scheduler < input 

the following gets printed on the screen: 

A's schedule: 
JOB 1 is 1023 
JOB 2 is 5757 
JOB 3 is 1007 

B's schedule: 

10.8 

JOB 1 is 7702 
JOB 2 is 3373 

Binary Trees 

10.8 T Binary Trees 475 

A tree is a finite set of elements called nodes. A tree has a unique node, called the root 
node, where the remaining nodes are a disjoint collection of subtrees. If node r has 
T 1, T 2, ... , Tn as subtrees, then rio r2, ... , rn, the roots of these subtrees, are the children 
of r. A node with no children is called a leaf node. 



476 Chapter 10.. Structures and List Processing 

A general tree 

root node 

/ 
Y%~Of /i~ 

[ 

~b f h 

sUbtree / I ~ I J 
c d e 9 ~ 

leaf nodes 

A binary tree is a tree whose elements have two children. A binary tree considered 
a data structure is an object made up of elements that are characterIzed by two 
fields, called left child and right child. Each link must point at a new object not 
pointed at or be NULL. In this representation, a leaf node has both left and right child 
the value NULL. The following structures and type specifications will be used to 
binary trees. 

In file tree.h 

#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 

typedef char 

struct node { 
DATA 

} ; 

struct node 
struct node 

DATA; 

d; 
'~l eft; 
*right; 

typedef struct node 
typedef NODE 

#include "fct_proto.h" 

NODE; 
1'BTREE; 

/* function prototypes */ 

The file tree.h must be included with all binary tree functions defined in this section. 
A key advantage of a binary tree over a linear list is that elements are normally 

reached, on average, in a logarithmic number of link traversals. This gain in time effi
ciency for retrieving information is at the expense of the space needed to store the 
extra link field per element. We illustrate this advantage in the exercises. 

10.8 .. Binary Trees 477 

nary Tree Traversal 

. to march down a linear list, namely from head to tail. However, there 
rhe::::r~~~:;al ways to visit the elements of a binary tree. The three commonest are 

Inorder: left subtree Preorder: root Postorder: left subtree 

root left subtree right subtree 

right subtree right subtree root 

These stan ar me d d thods of visitation are the basis for recursive algorithms that 
manipulate binary trees. 

/* Inorder binary tree traversal. */ 

void inorder(BTREE root) 
{ 

} 

if (root != NULL) { 
inorder(root -> left); 
printf("%c If, roo~ -> ~); 
inorder(root -> rlght), 

} 

/* recur left */ 

/* recur right */ 

The function i norderO will print the values of each nOd.e in the bina~ tr~e pointed 
at by root. The pictured binary tree would be traversed by 1 norderO, prmtmg 

A B C D E F G H I J 

A binary tree 

G 

/~ 
0 

/~ /~ 
B F H J 
/~ / 

A C E 



478 Chapter 10 yo Structures and List Processing 

The corresponding pr d 
eor er and postorder functions are as follows: 

/* Preorder and postorder b 
inary tree traversal. */ 

{oid preorder(BTREE root) 

} 

if (r~ot != NUll) { 
pn ntf("%c ", root -> d)' 
preorder(root -> left). ' 

} preorder(root -> right)j 

{aid postorder(BTREE root) 

if (root 1= NUll) { 
postorder(root -> left). 
po~torder(root -> right). 

} pn ntf("%c ", root -> d); 

} 

Preorder visitation of the binary tree J'ust h 
s own would print 

G DBA C F E I H J 

Postorder visitation would print 

A C B E F D H J I G 

T~~ re~der unfamiliar with these method ' 
VISItatIOn is at the heart of most t al s ~hould carefully verify these results by hand 

ree gonthms. . 

Creating Trees 

We will create a binary tree from data valu 
use the dynamic storage allocator malloco~s stored as an array.: As with lists, we will 

/* Creating a binary tree. */ 

~TREE new_node(void) 

} return (malloc(sizeof(NODE)))j 

1 0.9 yo General Linked Lists 479 

BTREE init_node(DATA dl, BTREE pl, BTREE p2) 
{ 

} 

BTREE t; 

t new_node 0 ; 
t -> d = dl; 
t -> left = pi; 
t -> right = p2j 
return t; 

We will use these routines as primitives to create a binary tree from data values 
in an array. There is a very nice mapping from the indices of a linear array into 

nodes of a binary tree. We do this by taking the value a[i] and letting it have as child 
a[2*i+l] and a[2'~i+2J. Then we map a[0] into the unique root node of the 

resulting binary tree. Its left child will be a [lJ, and its right child will be a [2]. The 
function create_tree 0 embodies this mapping. The formal parameter si ze is the 
number of nodes in the binary tree. 

/* Create a linked binary tree from an array. */ 

BTREE create_tree(DATA a[], int i, int size) 
{ 

} 

if (; >= size) 
return NULL; 

else 
return (init_node(a[;], 

create_tree(a, 2 * i + 1, size), 
create_tree(a, 2 * ; + 2, size»); 

10.9 General Linked Lists 

For some data structures, we wish to combine the use of arrays with the use of lists. 
The arrays provide random accessing, and the lists provide sequential accessing. We 
will show one such example in this section, an implementation of a general tree. In a 
general tree, a node can have an arbitrary number of children. It would be very wasteful 
to specify a structure using the maximum number of links for each node. 

We will represent a general tree as a number of linear linked lists, one for each node 
in the tree. Each list will be the children of a single node. The lists will have an array 
that will point at the first child of the corresponding node. The base element of the 



480 Chapter 10 T Structures and List Processing 

array will' h 
this case r°Int 

at t e root node. The following diagram shows such a representation 
476: or the general tree at the beginning of Section 10.8, "Binary Trees," on • 

A general tree and associated list structure t[8\ 
a 

~ 
b f 

+ ~ c d ... ... e 9 

~ ~ ~ ~ NULL NULL NULL NULL 

Such trees can be represented using the follOwing header file: 

In file gtree.h 

#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 

typedef char DATA; 

struct node { 
int 
DATA 

child_no; 
d' , 

} ; 
struct node *sib; 

typedef struct node 
typedef NODE 

NODE; 
*GTREE; 

h .... 

~ 
NULL 

#include "fct_proto.h" 
/* function prototypes */ 

10.9 T General Linked Lists 481 

We will use an array of type GTREE, say t, where t [0] points to the root element rep
sented as type NODE. Siblings will be reached by linear list chaining, and children by 

indexing. Let us examine the creation of a particular such tree. We first write rou-
to create a single node. I 

/* Create a new node. */ 

GTREE new_9node(void) 
{ 

return (malloc(sizeof(NODE))); 
} 

GTREE init_9node(DATA d1, int num, GTREE sibs) 
{ 

} 

GTREE tmp; 

tmp new_9node(); 
tmp -> d = d1; 
tmp -> child_no = num; 
tmp -> sib = sibs; 
return tmp; 

Let us use these routines to create the tree of the previous diagram. Because it con
tains eight nodes, we need an array t [] of size 9 and type NODE, where t [0] is the 
pointer to the root node. 

t [0J 
t [1] 
t[l] 
t [1] 
t[2J 
t [2J 
t[2J 
t[3J 
t [4J 
t[5] 
t[6J 
t[7J 
t[8J 

= init_9node('a', 1, NULL); 
= init_9node('b', 2, NULL); 
-> sib init_9node('f', 6, NULL); 
-> sib -> sib = init_9node('h', 8, 
= init_gnode('c', 3, NULL); 
-> sib = init_gnode('d', 4, NULL); 
-> sib -> sib = init_gnode('e', 5, 

NULL; 
NULL; 
NULL; 
iniL9node('g', 7, NULL); 
NULL; 
NULL; 

NULL); 

NULL); 

It is easy to detect certain properties in this representation, such as whether a node is a 
leaf node or how many children a node has. For node n, if t [nJ points at NULL, then the 
node is a leaf. 



482 Chapter lOy Structures and List Processing 

Traversal 

Traversal becomes a combination of (1) moving along lists and (2) indexing into 
elements that point at the lists. Generalizing the traversal ordering of pre order, 
order, and inorder to these structures is quite straightforward. Once again, these 
rithms are prototypes for more complicated functions that can be done on a 
because they guarantee that each element will be reached in linear time. 

/* Preorder traversal of general trees. */ 

void preorder_g(GTREE t, int ind) 
{ 

} 

GTREE tmp; /* tmp traverses the sibling list */ 

tmp = tEind]; /* tEind] is the root node */ 
while (tmp != NULL) { 

} 

pri ntf("%c %d\n", tmp -> d, tmp -> chil d_no); 
preorder_9(t, tmp -> child_no); 
tmp = tmp -> sib; 

The function preorder -gO differs from the corresponding binary tree function 
that a whil e loop is necessary to move along the linear list of siblings. Notice 
recursion allows each subtree to be handled cleanly. 

The Use of calloc() and Building Trees 

The library function ca 11 oc 0 provides contiguous allocation of storage that can be 
used for arrays. Its function prototype is given in stdlib.h as 

void '~calloc(size_t n, size_t size); 

Thus, the arguments to ea 11 oeO are converted to type si ze_t, and the value returned 
is of type pointer to voi d. Typically, si ze_t is equivalent to unsi gned. A function call of the form 

eal10c(n, size) 

returns a pointer to enough contiguous storage for n objects, each of size bytes. This 
storage is initialized to zero by the system. Thus, call oe 0 can be used to dynamically 
allocate storage for a run-time defined array. This allows the user to allocate space as 

10.9 y General Linked Lists 483 

rather than specifying during compilation an array size that is very large so as 
11 th t might be of interest. 

accommodate a c,ases a . that can build a general tree from a list of edges 
For example, we wIll wantfa rou~l~et have an array of size 10 to store the tree headan array of type DATA. I we WIS a 

we can write 

t = calloc(10, sizeof(GTREE)); 

. II d arra t of type pointer to GTREE to a func-
we can pass the dynamIcally at ocatte gener~l tree This function will take an edge b '1 d 0 in order to cons ruc a. . 

Ul tre~ d te its general list structure representatiOn, list representation of a tree an compu 

f* Function bui1dtree creates a tree from an array of edges. ~, / 

typedef 
int 
int 

} PAIR; 

struct { f* PAIR represents an edge in a tree *f 
out; 
in; 

void bui1dtreeCPAIR edges[], DATA d[], 
{ 

int 
int 

i ; 
x, y; 

int n, GTREE t[]) 

f* points of edge *f 

t[0] l'nit_gnode(d[l] , 1, NULL); 'f 
f* t[0] takes node 1 as root H 

} 

for (i = 1; i <= n; ++i) 
t[i] = NULL; 

fo r (i = 0; i < n - 1; ) { 
x = edges[i].out; 
y = edges[iJ.in; 
t[x] init_gnode(d[y], y, t[x]); 

} 

S' 'lar data structures and functions can be used to develop representations of gen
erat;aPhs, sparse matrices, and complicated networks. 



484 Chapter lOT Structures and List Processing 

Summary 

1 Self-referential structures use pointers to address identically specified elements. 

2 The simplest self-referential structure is the linear linked list. Each element 
to its next element, with the last element pointing at NULL, defined as O. 

3 The function mall oc 0 is used to dynamically allocate storage. It takes an 
ment of type si ze_t and returns a pointer to voi d that is the address of the 
cated storage. 

4 The function freeO is a storage management routine that returns to a ~UUJJJlC 

storage the block of memory pointed at by its argument. 

5 Standard algorithms for list processing are naturally implemented recursively. 
quently, the base case is the detection of the NULL link. The general case recurs 
moving one link over in the list structure. 

6 When algorithms are implemented iteratively, one uses an iterative loop, terminat 
ing when NULL is detected. Iterative algorithms trade the use of auxiliary pointers 
for recursion. 

7 The abstract data type (ADT) stack is implement able as a linked list, with access 
restricted to its first element, which is called the top. The stack has a LIFO (last-in
first-out) diScipline implemented by the routines pushO and popO. 

8 The ADT queue is also implementable as a linked list, with access restricted to its 
front and rear ends. The queue has a FIFO (first-in-first-out) discipline implemented 
by the routines enqueueO and dequeueO. 

9 Binary trees are represented as structures with 11vo link members and combine the 
dynamic qualities of linear lists with, on average, significantly shorter access paths 
to each element. The distances to elements of binary trees are usually logarithmic. 

10 Binary trees are traversed most often in one of three major patterns: preorder, inor
der, or postorder. Each ordering is determined by when the root is visited. Pre order 
visits the root first; inorder, after the left subtree; and postorder, last. These tra
versal patterns are readily implemented as recursions, chaining down both left and 
right subtrees. 

T Exercises 485 

Data structures of formidable complexity, involving both lists and arrays, can be 
speCified. One example of their use is in the implementation of a general tree, 
where a node has an arbitrary number of children. The children of a node are repre
sented as a list pointed to by an array of header elements. 

1 Try the following code. Why does your compiler complain? Fix the code so it com
piles correctly: 

struct husband { 
int 
char 
struct wife 

} a; 

age; 
name[10]; 
spouse; 

struct wife { 
int 
char 
struct husband 

} b; 

age; 
name[10]; 
spouse; 

2 Change the type definition of DATA in the file list.h to 

typedef 
char 
int 
int 

} DATA; 

struct { 
name[10]; 
age; 
weight; 

and write a function c rea te_1 0 that transforms an array of such data into a linear 
list. Write another routine, one that will count the number of people above a given 
weight and age. 

3 Given a linear list of the type found in the previous exercise, write a routine 
sort_ageO that will sort the list according to its age values. Write a function 
sort_nameO that will sort in lexicographic order based on the name values. 

4 Combine the sorting functions in the previous exercise so that they share the most 
code. This is best done by defining a routine called compareO that returns either 0 



486 Chapter 10" Structures and List Processing 

or 1, depending on which element is larger. Use this function as a parameter to 
linear list sorting function. 

5 Draw the list that would result from concatenate (a, a), where a points at a 
of two elements. What happens if the resulting list pointed at by a is passed 
pri ncl i st(a)? 

6 The previous exercise was used to construct a cycle. A cycle is a pointer chain 
points back to itself. Cycles are particularly nasty run-time bugs that can be hard 
recognize. Write a function i scycl e (head) that returns 1 if a cycle is detected 
o otherwise. Hint: Save the address of the initial element of the list and move 
around until either NULL is reached or the initial address is encountered. 

7 Write an iterative version of the function pri nC 1 i stO. 

8 Modify concatenateO so that it returns the address of the head of the resulting 
list. Also, if the first list is NULL, it should return the second list. Have it test to see 
if both lists are the same. If they are, a cycle will result, and the program should 
return a warning to that effect. (See exercises 5 and 6 above.) 

9 Write a routine copy_cat(a, b) that returns a concatenated copy of the lists a and 
b. The original lists a and b should remain undisturbed. 

10 Write an iterative version of the function concatenate 0 that you wrote in exercise 
8 above. 

11 Write an insertion function that inserts an element at the head of the list. 

12 Write an insertion function that inserts an element at the tail of the list. 

13 Write an insertion function that inserts an element at the first position in the list 
following an element storing a particular DATA item. 

14 Generalize the previous three exercises. Write an insertion function that inserts an 
element in the nth position in a list, where 0 means the element is placed at the 
head of the list. If n is larger than the length of the list, insert the element at the tail 
of the list. 

" Exercises 487 

An element of a doubly linked linear list can be defined as 

typedef struct dllist { 
DATA d; 
struct dllist *prev; 
struct dllist *next; 

} ELEMENT; 

This adds an extra member but allows easier traversal along the list. 

A doub~y linked list 

Write iterative routines to perform insertion and deletion. 

16 Write a routine del_dupl 0 that deletes duplicate valued elements in a doubly 
linked list. 

17 Evaluate the following Polish expressions by hand: 

7, 6, -, 3, * 
9, 2, 3, ~', 4, ,+ 
1, 2, +, 3, 4, +, * 

18 Write corresponding Polish expressions for the following: 

(7 + 8 + 9) * 4 
(6 2) * (5 + 15 * 2) 
6 2 * 5 + 15 * 2 

19 Use the polish program that we wrote in Section 10.6, "An Example: Polish Notation 
and Stack Evaluation," on page 466, to evaluate the six Polish expressions given or 
derived from the two above exercises. 



488 Chapter 10... Structures and List Processing 

20 The following lines occur in the evaluate () function in. the polish program: 
/ 

case operator: 
d2 = pop(&eval); 
dl = pop(&eva1); 

What happens if we write 

case operator: 
dl pop(&eval); 
d2 = pop(&eval); 

instead? The program should work properly on some Polish expressions but not 
others. Explain. 

21 Create another version of the polish program. First, write a routine that reverses the 
order of the elements in a stack. Next, append this routine to the file stack.c, and 
add the function prototype to the header file. Then rewrite the function fi 11 () so 
that it makes use of your routine. Finally, test your program. 

22 Write a routine that allows you to interactively initialize the contents of a Polish 
stack. Write a program to test your routine. 

23 When we tested our polish program, the Polish expression we used did not have any 
unary operators in it. Try the program with the following expression: 

2, -3, -, -4, 7, +, -1, -1, +, *, * 

Is the polish program able to handle this correctly? (It should be able to.) Write 
another version of the polish program that can handle both unary plus and unary 
minus operators in the list. For example, your program should be able to handle the 
following Polish expression: 

2, -,3, -, -, 4, +,7, +, -1, -, +, +, 1, +, ~', ~, 

In this expression, some of the plusand minus signs are unary and some are binary. 

24 Write a function whose prototype is 

queue data_to_queue(data de], int n); 

where n is the size of the array d. When passed an array of type data, this function 
should use the elements in the array to build a queue that gets returned. 

Write a function whose prototype is 

data *queue_to_data(queue q); 

... Exercises 489 

f d' the queue The size of the array 
that builds a data array out of the values oun m . 

should be q. cnt. 
o ram that we wrote in Section 10.7, "Queues," on 

26 ::n;;:,t~~:e!~~ ~~~~~~~ai~e; simple. Try the following input: 

B 1188 yyy zzz C 3397 3398 A 4545 X surprise? 
x x x A 2323 

Are you surprised that it works? Explain. 

27 Write a four-resource version of the scheduler program. 

f he revious exercise to allow for priorities. 
28 Modify the program that you ",'fate ~~a~ h:S both a processor ID number and a pri

Change the type data to a structure. d number between 0 and 9. Create sched
orlty. The priority should b~ a~ unslgne are serviced first. Caution: Do not 
ules where the highest PrIOrIty processes 
confuse the concepts of "process" and "processor." 

29 Write routines for binary trees that 

1 count the number of nodes 

h mber of nodes having a particular value, say 
2 count t e nu 

3 print out the value of only leaf nodes 

'b' 

f i nts such that a left child has value less than 
30 Create a binary tree fro~ an hia:lr~Yh 0 

value greater than or equal to the value of its 
its root's value, and a nght c as . . . 
root. Such a tree is displayed in the followmg dIagram. 

2 

A binary tree with ordered values 
8 

/~15 
4~ /~ 

/ 6 B 17 



490 Chapter lOT Structures and List Processing 

Insert a new element by comparing its value to the root and recurring down 
proper subtree until NULL is reached. 

31 Ffr th~tree of the , previous exercise, write a function that uses inorder traversal 
pace t e values of the nodes in sorted order in an array key [] , 

32 w,rtlh'teha p~ogram that deletes the root node of a binary tree and replaces the ro 
WI t e nghtmost leaf node. 

Deleting the root node with replacement 

Before: After: 
a 

c 

33 ~AdV~~ed) ,:rite ~eapsort O. This is a sorting routine based on an ordered binary 
d::: Thi:ap IS a bmary tree in which a node has value smaller than any of its chil-

. h' property guarantees that the root is the smallest element in the tree We 
Wd ItS to t~ke an unordered array of values and create a heap with these value's as 

a a entrIes. 

0iven a heap 

1 Delete the root, placing it in an output array as the smallest element. 

2 Take the rightmost leaf node and make it the new root. 

3 tcompalre the root value to both children and exchange with the smaller of the 
wo va ues. 

4 chi~nldtinue to exchange values until the current node is smaller in value than its 
c rea . 

~~w t~e tr~ is ~n~e again a heap. Repeat these steps until the tree is empty and the 
ay as t e ongmal tree values in sorted order. You must figure out how to get 

T Exercises 491 

the tree into heap order to begin with; see Aha, Hopcroft, and WIman, Data Struc
tures and Algorithms (Reading, r..1A: Addison-Wesley, 1987). 

Print out the nodes of a binary tree in level order. The root node is at level O. On the 
next level of nodes are the children of the previous level. First, print the root node. 
Then print the left child and the right child that are at levell. Continue printing the 
nodes from left to right, level by level. This is also called breadth-first traversal. 

Write a routine that computes the maximum level leaf node of a general tree. 

36 Write a function that converts a binary tree into a general tree representation. 

37 Add a field called wei ght to our general tree structure. Write functions to 

1 compute the sum of all node weights 

2 compute the maximum weighted path, where the weighted path of node i is the 
weights of the nodes from the root to node i 

It can be proved that the maximum weighted path occurs at a leaf, given that all 
weights are nonnegative. 

38 Use a general linked list structure to program sparse matrix addition. A sparse 
matrix is one in which most of its values are zero. A nonzero element of a sparse 
matrix will be represented by the triple (i, j, value). For each row i, the triples will be 
linked as a linear list headed by an array of pointers row[i J. Similarly, for each col
umn j, the triples will be linked as a linear list headed by an array of pointers 
co 1 [j]. To add matrix A to matrix B, we take each row and merge them into a 
matrix C. If both rows have a triple with the same column value, then in the output 
row Ci,j is the sum ai,j + bj,j' Otherwise, the element with smallest column number 
becomes the next element of the output row. 

39 (Advanced) The representation in the previous exercise can also be used to do 
sparse matrix multiplication. Although addition can be performed with just row
linked lists, both row- and column-linked lists are used for multiplication. Write a 
program to do sparse matrix multiplication. 

40 (Project) Implement the sparse polynomial ADT'. Use a linked list of elements to 
represent the nonzero terms of the polynomial. A term is a real coefficient and a 
power. Write a complete polynomial manipulation package. Your package should be 
able to input and output polynomials, and it should be able to add, subtract, multi
ply, and copy polynomials. 



hapter 11 

nputjOutput and the 
perating System 

this chapter, we explain how to use some of the input/output functions in the stan
dard library, including the functions printfO and scanfO. Although we have used 
these functions throughout this text, many details still need to be explained. We 
present extensive tables showing the effects of various formats. The standard library 
provides functions related to pri ntfO and scanfO that can be used for dealing with 
files and strings. The use of these functions is explained. 

General file input/output is important in applications where data reside in files on 
disks and tapes. We will show how to open files for processing and how to use a pointer 
to a file. Some applications need temporary files. Examples are given to illustrate their 
use. 

The operating system provides utilities for the user, and some of these utilities can 
be used by the programmer to develop C software. A number of the more important 
tools for programmers will be discussed, including the compiler, make, touch, grep, 
beautifiers, and debuggers. 

11.1 The Output Function pr; ntf() 

The pri ntfO function has two nice properties that allow flexible use at a high leveL 
First, a list of arguments of arbitrary length can be printed, and second, the printing is 
controlled by simple conversion specifications, or formats. The function pri ntfO 
delivers its character stream to the standard output file stdout, which is normally con
nected to the screen. The argument list to pri ntfO has two parts: 

co n troL string and other_arguments 



494 Chapter 11., Input/Output and the Operating System 

In the example 

printf("she sells %d %s for fll, 99, "sea shells", 3.77); 

we have 

controL string : 
other_arguments: 

"she sells %d %s for f" 
99, "sea shells", 3.77 

The expressions in other_arguments are evaluated and converted according to the 
mats in the control string and then placed in the output stream. Characters in the 
trol string that are not part of a format are placed directly in the output stream. The 
s:nn~ol intr,oduces a conversion specification, or format. A Single-conversion sp 
non IS a strmg that begins with % and ends with a conversion character: 

Conversion 
character 

c 

d, ; 

u 

0 

x, X 

e 

E 

f 

g 

G 

s 

p 

n 

% 

pri ntfO conversion characters 

How the corresponding argument is printed 

as a character 

as a decimal integer 

as an unsigned decimal integer 

as an unsigned octal integer 

as an unsigned hexadecimal integer 

as a floating-point number; example: 7.123000e+00 

as a floating-point number; example: 7.123000E+00 

as a floating-point number; example: 7.123000 

in the e-format or f-format, whichever is shorter 

in the E-format or f-format, whichever is shorter 
as a string 

the corresponding argument is a pOinter to void' its value is 
printed as a hexadecimal number ' 

the corresponding argument is a pointer to an integer into 
which the number of characters ,vritten so far is printed; the 
argument is not converted 

with the format %% a single % is written to the output stream; 
there is no corresponding argument to be converted 

11.1 ., The Output Function pri ntfO 495 

The function pri ntfO returns as an i nt the number of characters printed. In the 

printf("she sells %d %s for f", 99, "sea shells", 3.77); 

can match the formats in the control string with their corresponding arguments in 
the argument list. 

I Format Corresponding argument 

I %d 99 

%s "sea shells" 

I %f 3.77 

Explicit formatting information may be included in a conversion specification. If it is 
not induded, then defaults are used. For example, the format %f with corresponding 
argument 3 . 77 will result in 3.770000 being printed. The number is printed with six 
digits to the right of the decimal point by default. 

Between the % that starts a conversion specification and the conversion character 
that ends it, there may appear in order 

.. zero or more flag characters that modify the meaning of the conversion specifica
tion. These flag characters are discussed below. 

.. an optional positive integer that specifies the minimum field width of the converted 
argument. The place where an argument is printed is called its field, and the num
ber of spaces used to print an argument is called its field width. If the converted 
argument has fewer characters than the specified field width, then it will be padded 
with spaces on the left or right, depending on whether the converted argument is 
right- or left-adjusted. If the converted argument has more characters than the 
specified field width, then the field width will be extended to whatever is required. 
If the integer defining the field width begins with a zero and the argument being 
printed is right-adjusted in its field, then zeros rather than spaces will be used for 
padding. 

.. an optional precision, which is speCified by a period followed by a nonnegative inte
ger. For d, i, 0, U, x, or X conversions, it specifies the minimum number of digits to 
be printed. For e, E, and f conversions, it specifies the number of digits to the right 
of the decimal point. For 9 and G conversions, it specifies the maximum number of 
significant digits. For an s conversion, it specifies the maximum number of charac
ters to be printed from a string. 



496 Chapter 1 1 'f Input/Output and the Operating System 

III an optional h or 1, which is a "short" or "long" modifier, respectively. If an h is 
lowed by a d, i, 0, u, x, or X conversion character, the conversion specific 
applies to a short i nt or unsi gned short i nt argument. If an h is followed 
an n conversion character, the corresponding argument is a pointer to a short 
or unsigned short int. If an 1 is followed by a d, i, 0, u, x, or X conversion 
the conversion specification applies to along i nt or unsi gned long i nt 
:nent. ~f an I is followed by an n conversion character, the corresponding 
IS a pomter to along i nt or unsi gned long i nt. 

III an o~tional L, which is a "long" modifier. If an L is followed by an e, E, f, 9, or G 
verSlOn character, the conversion specification applies to along double 

The flag characters are 

III a. minus sign, which means that the converted argument is to be left-adjusted in 
fIeld. If there is no minus sign, then the converted argument is to be 
in its field. 

II a pl~s s~gn, which means that a nonnegative number that comes from a signed con~ 
verSIOn IS to have a + prepended. This works with the conversion characters die 
E, f, 9, and G. All negative numbers start with a minus sign. ' , ,. 

III a,spa.ce, which means that a nonnegative number that comes from a si gned ('nTH1","_ 

SIan IS to have a space prepended. This works with the conversion characters d i 
e, E, f, g, and G. If both a space and a + flag are present, the space flag is ignored. ' 

III a #, which means that the result is to be converted to an "alternate form" that 
depends on the conversion character. With conversion character 0, the # causes a 
zero to be prep ended to the octal number being printed. In an x or X ,conversion, 
the # causes Ox or OX to be prepended to the hexadecimal number being printed. In 
a g ~r G ~onversion, it causes trailing zeros to be printed. In an e, E, f, 9, and G con
versIOn, It causes a decimal point to be printed, even with precision O. The behavior 
is undefined for other conversions. 

III ~ zero, which means that zeros instead of spaces are used to pad the field. With d, 
1, 0, U, x, X, e, E, f, g, and G conversion characters, this can result in numbers with 
leading zeros. Any sign and any Ox or OX that gets printed with a number will pre
cede the leading zeros. 

. In a format, the field width or precision or both may be specified by a ,~ instead of an 
mteger, which indicates that a value is to be obtained from the argument list. Here is an 
example of how the facility can be used: 

int 
double 

m, n; 
x 333.7777777; 

11.1 ,. The Output Function pri ntfO 497 

/* get m and n from somewhere */ 
pri ntf(l!x == %,~. "'f\nl!, m, n, x); 

If the argument corresponding to the field width has a negative value, then it is taken as 
a - flag followed by a positive field width. If the argument corresponding to the preci
sion has a negative value, then it is taken as if it were missing. 

The conversion specification %% can be used to print a single percent symbol in the 
output stream. It is a special case because there is no corresponding argument to be 
converted. For all the other formats, there should be a corresponding argument. If there 
are not enough arguments, the behavior is undefined. If there are too many arguments, 
the extra ones are evaluated but otherwise ignored. 

The field width is the number of spaces used to print the argument. The default is 
whatever is required to properly display the value of the argument. Thus, the integer 
value 255 (decimal) requires three spaces for decimal conversion d or octal conversion 
0, but only two spaces for hexadecimal conversion x. 

When an argument is printed, characters appropriate to the conversion specification 
are placed in a field. The characters appear right-adjusted unless a minus sign is 
present as a flag. If the specified field width is too short to properly display the value of 
the corresponding argument, the field width will be increased to the default. If the 
entire field is not needed to display the converted argument, then the remaining part of 
the field is padded with blanl(s on the left or right, depending on whether the converted 
argument is right- or left-adjusted. The padding character on the left can be made a 
zero by specifying the field width with a leading zero. 

The precision is specified by a nonnegative number that occurs to the right of the 
period. For string conversions, this is the maximum number of characters to be printed 
from the string. For e, E, and f conversions, it specifies the number of digits to appear 
to the right of the decimal point. 

Examples of character and string formats are given in the next table. We use double
quote characters to visually delimit the field. They do not get printed. 



498 Chapter 11 V Input/Output and the Operating System 

Declarations and initializations 

Corresponding How it is printed in 
Format argument its field Remarks 

%c c fiAtt field vvidth 1 by default 

%2c c TI An field width 2, right adjusted 

%-3c c "A " field width 3, left adjusted 

%5 s "Blue moon!" field width 10 by default 

%35 5 "Blue moon!" more space needed 

%.65 5 "Blue m" precision 6 

%-11.85 5 "Blue moo preciSion 8, left adjusted 

Examples of formats used t . t b 
double-quote characters to ViS~~l;; d~~t ~~e a~:lgdiVTehn indthe next tabl~. Again, we 

Declarations and initializations 

int i = 123; 
double x = 0.123456789; 

Corresponding 
Format argument 

%d i 

%05d i 

%70 

%-9x i 

%-#9x i 

%10.5f x 

%-12.5e x 

. ey 0 not get prmted. 

How it is printed in its 
field 

"123" 

"00123" 

173" 

"7b " 
"0x7b " 

" 0.12346" 

"1. 23457e-01 " 

Remarks 

field width 3 by default 

padded with zeros 

right adjusted, octal 

left adjusted, hexadecimal 

left adjusted, hexadecimal 

field width la, preciSion 5 

left adjusted, e-format 

11.2 v The Input Function scanfO 499 

The Input Function scanf() 

function scanfO has two nice properties that allow flexible use at a high level. The 
is that a list of arguments of arbitrary length can be scanned, and the second is 
the input is controlled by simple conversion specifications, or formats. The func
scanfO reads characters from the standard input file stdi n. The argument list to 

f 0 has two parts: 

controLstring and other_arguments 

char 
i nt 
double 

a, b, c, s[100]; 
n; 
x; 

scanf("%c%c%c%d%s%lf", &a, &b, &c, &n, s, &x); 

controLstring: 
other_arguments: 

"%c%c%c%d%s%l 
&a, &b, &c, &n, s, &X 

other arguments following the control string consist of a comma-separated list of 
pointer expressions, or addresses. Note that in the preceding example, writing &5 

would be wrong; the expression 5 by itself is an address. 



500 

c 

d, 

! U 

0 

x, 

e, 

s 

p 

n, 

Chapter 11 T Input/Output and the Operating System 

Conversion 
character 

; 

X 

E, f, g, G 

%, [ ... ] 

scanf() conversion characters 

Characters in the input stream 
that are matched 

any character, including white space 

an optionally signed decimal integer 

an optionally signed decimal integer 

an optionally signed octal integer 

char 

integer 

unsigned integer 

unsigned integer 

an optionally signed hexadecimal integer uns; gned integer 

an optionally signed floating-point number a fl oati ng type 

a sequence of nonwhite space cbaracters char 

what is produced by %p in pri ntfO, usu- vo; d " 
ally an unsigned hexadecimal integer 

see the next table 

Three conversion characters are of a special nature, and one of these, [ ... J, is not 
a character, although the construct is treated as such. 

scanf() conversion characters 

Conversion 
character Remarks 

n No characters in the input stream are matched. The corresponding 
is a pointer to an integer, into which gets stored the number of characters 
so far. 

! % A single % character in the input stream is matched. There is no COlTe~;pOnQln: 
argument. 

[ ... ] The set of characters inside the brackets [ 1 is called the scan set. It det:errmnes 
what gets matched. (See the following explanation.) The corresponding argu
ment is a pointer to the base of an array of characters that is large enough to 
hold the characters that are matched, including a terminating null character 
that is appended automatically. 

11.2 T The Input Function scanfO 501 

control string may contain 

white space, which matches optional white space in the input stream. 

ordinary nonwhite space characters, other than %. Each ordinary character must 
match the next character in the input stream. 

conversion specifications that begin with a % and end with a conversion character. 
Between the % and the conversion character, there may be an optional ,~ that indi
cates assignment suppression, followed by an optional integer that defines a maxi
mum scan width, followed by an optional h, 1, or L that modifies the specification 
character. 

the modifier h, which can prececle ad, i, 0, U, x, X conversion character. It indicates 
that the converted value is to be stored in a short i nt or in an unsi gned short 
into 

the modifier 1, which can precede either a d, i I 0, U, X, X conversion character or an 
e, E, f, g, G conversion character. In the first case, it indicates that the converted 
value is to be stored in a long int or in an unsigned long into In the second 

. case, it indicates that the converted value is to be stored in a doub 1 e. 

the modifier L, which can precede an e, E, f, g, G conversion character. It indicates 
that the converted value is to be stored in along doubl e. 

The characters in the input stream are converted to values according to the conver
speCifications in the control string and placed at the address given by the corre

sponding pointer expression in the argument list. Except for character input, a scan 
field consists of contiguous nonwhite characters that are appropriate to the specified 
conversion. The scan field ends when a nonappropriate character is reached, or the 
scan width, if specified, is exhausted, whichever comes first. When a string is read in, it 
is presumed that enough space has been allocated in memory to hold the string and an 
end-of-string sentinel \0, which will be appended. The format %ls can be used to read 
in the next nonwhite character. It should be stored in a character array of size at least 2. 
The format %nc can be used to read in the next n characters, including white space 
characters. When one or more characters are read in, white space is not skipped. As 
with strings, it is the programmer's responsibility to allocate enough space to store 
these characters. In this case a null character is not appended. A format such as %1 f 
can be used to read in a doub 1 e. Floating numbers in the input stream are formatted as 
an optional sign followed by a digit string with an optional decimal point, followed by 
an optional exponent part. The exponential part consists of e or E, followed by an 
optional sign followed by a digit string. 



502 Chapter 11., Input/Output and the Operating System 

A conversion specification of the form % [string] indicates that a special string is 
be read in. If the first character in string is not a circumflex character A then the . , 
IS to be made up only of the characters in string. However, if the first character in 
is a circumflex, then the string is to be made up of all characters other than those 
string. Thus, the format %[abc] will input a string containing only the letters a, b, 
C, and will stop if any other character appears in the input stream, including a 
The format %[Aabc] will input a string terminated by any of a, b, or c, but not by 
space. The statement 

scanf("%[AB \n\t]", s); 

will read into the character array s a string containing A's, B's, and the white space 
acters blanl<, newline, and tab. 

These conversion specifications interact in a predictable way. The scan width is 
number of characters scanned to retrieve the argument value. The default is wha 
is in the input stream. The specification %s skips white space and then reads in 
white space characters until a white space character is encountered or the 
mark is encountered, whichever comes first. In contrast to this, the specification 
skips white space and then reads in nonwhite characters, stopping when a white 
character is encountered or an end-of-file mark is encountered or five characters 
been read in, whichever comes first. 

The function scanfO returns the number of successful conversions performed. 
value EOF is returned when the end-of-file mark is reached. Typically, this value is 
The value a is returned when no successful conversions are performed, and this 
is always different from EOF. An inappropriate character in the input stream can 
trate expected conversions, causing the value a to be returned. As long as the 
stream can be matched to the control string, the input stream is scanned and values 
converted and assigned. The process stops if the input is inappropriate for the 
conversion specification. The value returned by scanfO can be used to test that 
occurred as expected, or to test that the end of the file was reached. 

An example illustrating the use of scanfO is 

i nt i; 
char c; 
char string[15]; 

scanf("%d , %'~s %% %c %5s %5", &i, &c, string, &string[5]); 

With the following characters in the input stream 

11.3 ., The Functions fprintfO, fscanfO, sprintfO, and sscanfO 503 

value 45 is placed in i, the comma is matched, the string "ignore_this" is 
the % is matched, the character C is placed in the variable c, the string" read_" 

laced in stri ng [0] through stri ng [5] with the terminating \0 in stri ng [5], and 
the string Hi n_ thi s **" is placed in st ri ng [5] through st ri ng [14], with 

ri ng [14] containing \0. Because four conversions were successfully made, the value 
is returned by scanfO. 

The Functions fprintf(), fscanf(), sprintf(), 
and sscanf() 

functions fpri ntfO and fscanfO are file versions of the functions pri ntfO 
and scanfO, respectively. Before we discuss their use, we need to know how C deals 

files. 
The identifier FILE is defined in stdio.h as a particular structure, with members that 

e the current state of a file. To use files, a programmer need not know any 
details concerning this structure. Also defined in stdio.h are the three file pointers 
stdi n, stdout, and stderr. Even though they are pointers, we sometimes refer to 
them as files. 

Written in C Name Remark 

stdin standard input file connected to the keyboard 

stdout standard output file connected to the screen 

stderr standard error file connected to the screen 

The function prototypes for file handling functions are given in stdio.h. Here are the 
prototypes for fpri ntfO and fscanfO: 

int fprintf(FILE *fp, canst char *format, ... ); 
int fscanf(FILE *fp, canst char *format, ... ); 

A statement of the form 

fprintf(file_ptr, con troL string , other_arguments); 

writes to the file pointed to by file_ptr. The conventions for controLstring and 
other_arguments conform to those of pri ntfO. In particular, 



504 Chapter 11 'f Input/Output and the Operating System 

fprintf(stdout, ... ); is equivalent to printf( ... ); 

In a similar fashion, a statement of the form 

fscanf (filLptr, con troL string , other_arguments); 

reads from the file pointed to by file_ptr. In particular, 

fscanf(stdi n, ... ); is equivalent to scanf( ... ) j 

In the next section, we will show how to use fopen 0 to open files and how to 
fprintfO and fscanfO to access them. 

The functions spri ntfO and sscanfO are string versions of the 
pri ntfO and scanfO, respectively. Their function prototypes, found in stdio.h, 

int sprintf(char *5, const char *format, ... ); 
int sscanf(const char '~s, const char "'format, ... )i 

The function sp ri ntfO writes to its first argument, a pointer to char (string), 
of to the screen. Its remaining arguments conform to those for pri ntfO. The 
sscanfO reads from its first argument instead of from the keyboard. Its 
arguments conform to those for scanfO. Consider the code 

char 
int 

str1[] :=: "1 2 3 go", str2[lee] , tmp[le0]i 
a, b, c; 

sscanf(str1, "%d%d%d%s", &a, &b, &c, tmp)i 
sprintf(str2, "%s %s %d %d %d\n", tmp, tmp, a, b, c); 
printf("%s", str2); 

The function sscanfO takes its input from strl. It reads three decimal integers 
string, putting them into a, b, c, and tmp, respectively. The function spri ntfO 
to st r2. More preCisely, it writes characters in memory, beginning at the address st 
Its output is two strings and three decimal integers. To see what is in str2, we 
p ri ntf O. It prints the follovving on the screen: 

go go 1 2 3 

Caution: It is the programmer's responsibility to provide adequate space in u.~".u_,",J.L' 
for the output of sprintfO. 

Reading from a string is unlike reading from a file in the following sense: If we 
sscanfO to read from str1 again, then the input starts at the beginning of the string, 
not where we left off before. 

11.4 'V The Functions fopenO and fcloseO 505 

The Functions fopen() and fclose() 

tly, a file can be thought of as a stream of characters. After a file has been 
ened, the stream can be accessed with file handling functions in the standard library. 
this section, we want to explain the use of fopen 0 and fc lose O. 

have several important properties: They have a name. They must be opened and 
. They can be written to, or read from, or appended to. Conceptually, until a file is 

nothing can be done to it. It is like a closed book. When it is opened, we can 
access to it at its beginning or end. To prevent accidental misuse, we must tell the 

which of the three activities-reading, writing, or appending-we will be per
on it. When we are finished using the file, we close it. Consider the following 

#include <stdio.h> 

int main(void) 
{ 

int a, sum = 13; 
FILE *ifp, *ofp; 

ifp = fopen("my_file", "rfl) i 
ofp '" fopen("outfile", "w") j 

/* open for reading */ 
/* open for wri ng */ 

This opens two files in the current directory: myJile for reading and outfile for writing. 
(The identifier i fp is mnemonic for "infile pointer," and the identifier ofp is nmemonic 
for "outfile pointer.") After a file has been opened, the file pointer is used exclusively in 
all references to the file. Suppose that my_file contains integers. If we want to sum 
them and put the result in outfile, we can write 

while (fscanf(ifp, H%d H, &a) == 1) 
sum += a; 

fprintf(ofp, "The sum is %d.\n", sum); 

Note that fscanf 0, like scanf 0, returns the number of successful conversions. After 
we have finished using a file, we can write 

fclose(ifp); 

This closes the file pointed to by i fp. 



506 Chapter 11 T Input/Output and the Operating System 

A function call of the form fopen (filename, mode) opens the named file in a 
lar mode and returns a file pointer. There are a number of possibilities for the mode. 

Mode Meaning 

urn open text file for reading 

"w" open text file for writing 
Ha U open text file for appending 

"rb" open binary file for reading 

"wb" open binary file for writing 

"ab" open binary file for appending 

Each of these modes can end with a + character. This means that the file is to be 
for both reading and writing. 

Mode Meaning 

"r+" open text file for reading and writing 

"w+" open text file for writing and reading 
••• &,. 

Opening for reading a file that cannot be read, or does not exist, will fail. In this 
fopen 0 returns a NULL pointer. Opening a file for writing causes the file to be 
if it does not exist and causes it to be overwritten if it does. Opening a file in 
mode causes the file to be created if it does not exist and causes writing to occur at 
end of the file if it. does. 

A file is opened for updating (both reading and writing) by using a + in the 
However, between a read and a write or a write and a read there must be an 
call to ffl ush 0 to flush the buffer, or a call to one of the file positioning function 
fseekO, fsetposO, or rewi ndO. 

In some operating systems, including UNIX, there is no distinction between 
and text files, except in their contents. The file mechanism is the same for both types 
files. In MS-DOS and other operating systems, there are different file mechanisms 
each of the two types of files. (See exercise 22, on page 549, for further discussion.) 

A detailed description of file handling functions such as fopen 0 and fc lose 0 
be found in Section A.12, "Input/Output: <stdi o. h>," on page 655. Consult the 
dix as necessary to understand how the various functions are used. 

11.5 T An Example: Double Spacing a File 507 

An Example: Double Spacing a File 

Let us illustrate the use of some file handling functions by Vl.Titing a program to double
space a file. In rna in 0, we open files for reading and writing that are passed as com
mand line arguments. After the files have been opened, we invoke doubl LspaceO to 
accomplish the task of double spacing. 

#include <stdio.h> 
#include <stdlib.h> 

void double_space(FILE *, FILE *); 
void prn_info(char *); 

int rnain(int argc, char **argv) 
{ 

} 

FILE *ifp, *ofp; 

if (argc != 3) { 
prn_info(argv[0]); 
exit(l); 

} 
ifp = fopen(argv[l] , Url!); 
ofp = fopen(argv[2] , "w"); 
double_space(ifp. ofp); 
fclose(ifp); 
fclose(ofp); 
r-eturn 0; 

/* open for reading */ 
/* open for writing */ 

void double_space(FILE '~ifp, FILE *ofp) 
{ 

} 

i nt c; 

while ((c = getc(ifp)) != EOF) { 
putc(c, ofp); 
if (c == '\n') 
putc('\n',ofp); /* found a newline duplicate it */ 

} 



508 Chapter 11 'f Input/Output and the Operating System 

void prn_info(char *pgm_name) 
{ 

} 

printf(It\n%s%s%s\n\n%s%s\n\n lt
, 

"Usage: ", pgm_name, n i nfi 1 e 
"The contents of infile will be 
"and wri tten to outfil e. ") ; 

outfile", 
double-spaced" 

Suppose we have compiled this program and put the executable code in the 
dbLspace. When we give the command 

dbLspace file 1 file2 

the program will read from filel and write to file2. The contents of file2 will be the s 
as filel, except that every newline character will have been duplicated. 

• • 
Dissection of the dbLspace Program 

• #include <stdio.h> 
#include <stdlib.h> 

void double_space(FILE *, FILE *); 
void prn_info(char *); 

We have included stdlib.h because it contains the function prototype for exi to, 'u"'-'-u"> 

gets used in prn_ info O. The identifier FILE is a structure defined in stdio.h. To 
use of files, we do not need to know system-implementation details of how the 
mechanism works. The function prototype for daub 1 e_space 0 shows that it takes two 
file pointers as arguments. 

• int main(int argc, char **argv) 
{ 

FILE *ifp, *afp; 

if (argc != 3) { 
prn_info(argv[0]); 
exit(l); 

} 

The identifiers i fp and ofp are file pointers. More explicitly, they are of type pointer to 
FILE. The program is designed to access n'\lo files entered as command line arguments. 
If there are too few or too many command line arguments, p rn_ info 0 is invoked to 

11.5 ... An Example: Double Spacing a File 509 

print information about program and ex; to is invoked to exit the program. By 
convention, ex; t 0 returns a nonzero value when something has gone wrong. 

ifp = fopen(argv[l] , "r"); 
ofp = fopen(argv[2] , "wit). 

/* open for reading */ 
/* open for writing */ 

We can think of argv as an array of strings. The function fopenO is used to open the 
file named in argv [1] for reading. The pointer value returned by the function is 
assigned to i fp. In a similar fashion, the file named in a rgv [2] is opened for writing. 

double_space(ifp, ofp); 

The two file pointers are passed as arguments to doub 1 e_space 0, which then does the 
work of double spacing. One can see that other functions of this form could be written 
to perform whatever useful work on files was needed. 

fclose(ifp); 
fclose(ofp); 

The function fc lose 0 from the standard library is used to close the files pointed to by 
i fp and ofp. It is good programming style to close files explicitly in the same function 
in which they were opened. Any files not explicitly closed by the programmer are closed 
automatically by the system on program exit. 

• void double_space(FILE *ifp, FILE *ofp) 
{ 

int c' , 

The identifier c is an i nt. Although it will be used to store characters obtained from a 
file, eventually it will be assigned the value EOF, which is not a character. 

• while ((c = getc(ifp») 

} 

putc(c, ofp); 
if (c == '\n') 

putc('\n', ofp); 

EOF) { 

/* found a newline duplicate it */ 

The macro getcO reads a character from the file pointed to by ifp and assigns the 
value to c. If the value of c is not EOF, then putc 0 is used to write c into the file 
painted to by ofp. If c is a newline character, another newline character is written into 
the file as wen, double spacing the output file. This process continues repeatedly until 
an EOF is encountered. The macros getcO and putcO are defined in stdio.h. 

• 



510 Chapter 11 T Input/Output and the Operating System 

11.6 Using Temporary Files and Graceful Functions 

In ANSI C, the programmer can invoke the library function tmpfi 1 eO to create a 
porary binary file that vvill be removed when it is closed or on program exit. The file 
opened for updating with the mode "wb+". In MS-DOS, a binary file can also be used 
a text file. In UNIX, binary and text files are the same. In this section, we write an 
mentary program that illustrates the use of tmpfi 1 eO and a graceful version 
fopenO. 

The name of our program is dbL witfLcaps. First, it reads the contents of a file into 
temporary file, capitalizing any letters as it does so. Then the program adds the 
tents of the temporary file to the bottom of the first file. 

In file dbLwith_caps.c 

/* Replicate a file with caps. */ 

#include <ctype.h> 
#include <stdio.h> 
#include <stdlib.h> 

FILE *gfopenechar *filename, char *mode); 

int maineint argc, char **argv) 
{ 

} 

int Cj 

FILE ;'fp, '~tmp_fp; 

if eargc != 2) { 

} 

fprintfestderr, "\n%s%s%s\n\n%s\n\n" , 
"Usage: ", argv [0], II fi 1 ename" , 
"The file will be doubled and some letters capitalized."); 

ex;t(l); 

fp = gfopen(argv[l] , "N"); 
tmp_fp = tmpfile(); 
while ((c = getc(fp)) 1= EOF) 

putc(toupper(c), tmp_fp); 
rewind(tmp_fp); 
fprintf(fp, "---\n"); 
while ((c = getc(tmp_fp)) 1= EOF) 

putc(c, fp); 
return 0; 

11.6 T USing Temporary Files and Graceful Functions 

FILE *gfopen(char *filename, char *mode) 
{ 

} 

FILE "'fp; 

if ((fp fopen(filename, mode)) == NULL) { 

} 

fprintf(stderr, "Cannot open %s - bye!\n", filename); 
exit(l); 

return fp; 

511 

Before we explain the program, let us see its effects. Suppose that in'file apple we have 
the line 

A is for apple and alphabet pie. 

After we give the command 

dbLwith_caps apple 

the contents of the file will be 

A is for apple and alphabet pie. 

A IS FOR APPLE AND ALPHABET PIE. 

• 
Dissection of the dbL with_caps Program 

• fp = gfopen(argv[l] , "r+"); 

We are using a graceful version of fopen 0 to open a file for both reading and writing. 
If for some reason the file cannot be opened, a message will be printed and the program 
exited. 

• tmp_fp = tmpfile(); 

ANSI C provides the function tmpfi 1 eO to open a temporary file. The file mode is 
"wb+". On program exit, the file will be removed by the system. (See Section A 12, 
"Input/Output: <stdi o. h>," on page 656, for the function prototype and other details.) 



512 Chapter 11.... Input/Output and the Operating System 

• while ((c getc(fp))!= EOF) 
putc(toupper(c) , tmp_fp); 

The macros getc 0 and putc 0 are defined in sldio.h. They are being used to read 
one file and to write to another. The function prototype for toupperO is given 
ctype.h. If c is a lowercase letter, toupper(c) returns the corresponding uppercase 
ter; otherwise, it returns c. Caution: Some ANSI C compilers do not get this right; 
hope that they will improve with time. (See exercise 12, on page 400, in Chapter 8, 
Preprocessor," for further discussion.) You may have to write 

while ((c getc(fp))!= EOF) 
if (islower(c)) 

putc(toupper(c) , tmp_fp); 
else 

putc(c. tmp_fp); 

• rewind(tmp_fp); 

This causes the file position indicator for the stream pointed to by tmp_fp to be set 
the beginning of the file. This statement is equivalent to 

• fseek(tmp_fp. 0, 0); 

See Section A.12, "Input/Output: <stdi o. h>," on page 657, for the function Y\1"I'>t-{),h 

and for an explanation of fseekO. 

• fprintf(fp, " ___ \n"); 
while ((c = getc(tmp_fp)) != EOF) 

putc(c, fp); 

Now we are reading from the stream pointed to by tmp_fp and writing to the 
pointed to by fp. Note that a call to rewi nd 0 occurred before the switch from "vri 
to reading on the stream pointed to by tmp_fp. 

• FILE *gfopen(char *filename, char *mode) 
{ 

This is a graceful version of fopen O. If something goes wrong, a message is printed 
the screen and we exit the program. Note that we wrote to stderr. In this program, 
could just as well have written to stdout. However, in other programs that use this 
function, there is an advantage to writing to stderr. (See exercise 1, on page 542.) 

11.7 .... Accessing a File Randomly 513 

Accessing a File Randomly 

The library functions fseek 0 and fte 11 () are used to access a file randomly. An 
expression of the form 

ftel1 Cfile_ptr) 

returns the current value of the file position indicator. The value repre",'3ents the number 
of bytes from the beginning of the file, counting from zero. Whenever a character is 
read from the file, the system increments the position indicator by 1. Technically, the 
file position indicator is a member of the structure pointed to by file_plr. Caution: The 
file pointer itself does not point to individual characters in the stream. This is a concep
tual mistake that many beginning programmers make. 

The function fseekO takes three arguments: a file pointer, an integer offset, and an 
integer that indicates the place in the file from which the offset should be computed. A 
statement of the form 

fseekCfile_ptr, offset, place); 

sets the file position indicator to a value that represents offset bytes from place. The 
value for place can be 0, 1, or 2, meaning the beginning of the file, the current position, 
or the end of the file, respectively. Caution: The functions fseekO and fte11 0 are 
guaranteed to work properly only on binary files. In MS-DOS, if we want to use these 
functions, the file should be opened with a binary mode. In UNIX, any file mode will 
work. 

A common exercise is to write a file backwards. In the follOWing program, the prompt 
to the user is written to stderr so that the program will work with redirection. (See 
exercise 1, on page 542.) We opened the file with mode Ifrb lf so that the program will 
work in both MS-DOS and UNIX. 

Here is a program that writes a file backwards: 



514 Chapter 11 T Input/Output and the Operating System 

In file backward.c 

/* Write a file backwards. */ 

#include <stdio.h> 
#define MAXSTRING 100 

int main(void) 
{ 

char fname[MAXSTRING]; 
i nt c; 
FILE ~(i fp; 

fprintf(stderr, "\nInput a filename: ") ; 
scanf("%s" , fname); 

/~( binary mode fo r I"1S_DOS ,', / ifp = fopen(fname, "rb"); 
fseekGifp, 0, SEEK_END); 
fseek(ifp, --1, SEEK_CUR); 
while (ftell(ifp) > 0) { 

I'"~ mov'e to end of the fil e ,', / 
j'f' back up one characte r ~'/ 

c getc(ifp); /* move ahead one character ,~ / 
putchar(c); 
fseek(ifp, -2, SEE~CUR); /'" 

} 
back up two characters */ 

return 0; 
} 

11.8 File Descriptor Input/Output 

A file descriptor is a nonnegative integer associated with a file. In this section, we 
describe a set of library functions that are used with file descriptors. Although these 
functions are not part of ANSI C, they are available on most C systems in both MS-DOS 
and UNIX. Because of minor differences, care is needed when porting code from UNIX 
to MS-DOS or vice versa. 

File name 

standard input 

standard output 

standard error 

Associated file descriptor 

o 
1 

2 

11.8 T File Descriptor Input/Output 515 

Functions in the standard library that use a pointer to FILE are usually buffered. In 
contrast, functions that use file descriptors may require programmer-specified buffers. 
Let us illustrate the use of file descriptors with a program that reads from one file and 
writes to another, changing the case of each letter. 

In file change_case.c 

/* Change the case of letters in a file. */ 
#include <ctype.h> 
#include <fcntl.h> 
#include <unistd.h> /* use io.h in MS_DOS */ 

• 

#define BUFSIZE 1024 

int main(int argc, char **argv) 
{ 

} 

char mybuf[BUFSIZE], *p; 
int in_fd, out_fd, n; 

in_fd = open(argv[lJ, O_RDONLY); 
out_fd = open(argv[2] , O_WRONLY I O_EXCL 
while ((n = read(in_fd, mybuf, BUFSIZE» 

for (p = mybuf; p mybuf < n; ++p) 
if (islower(~'p» 

*p = toupper(*p); 
else if (isupper(*p» 

*p = tolower(*p); 
write(out_fd, mybuf, n); 

} 
close(in_fd); 
close(ouLfd); 
return 0; 

Dissection of the change_case Program 

O_CREAT, 0600); 
> 0) { 

• #include <ctype.h> 
#include <fcntl.h> 
#include <unistd.h> /* use io.h in MS-DOS */ 

The header file fcntl.h contains symbolic constants that we are going to use. The header 
file unistd.h contains the function prototypes for open 0 and read O. In MS-DOS, we 
would include io.h instead. 



516 Chapter 11 'f Input/Output and the Operating System 

.. in_fd = open(argv[lJ, O_RDONLY); 

The first argument to open 0 is a file name; the second argument specifies how the 
is to be opened. If there are no errors, the function returns a file descriptor; otherwise, 
the value -1 is returned. The identifier i n_fd is mnemonic for "in file descriptor." On 
both MS-DOS and UNIX systems, the symbolic constant O_RDONL Y is given in {cntl.h. It is 
mnemonic for "open for reading only." 

The symbolic constants in fcntl.h that are used to open a file can be combined with the 
bitwise OR operator. Here, we are specifying that the file is to be opened for writing 
only, that the file is to be opened exclusively (meaning that it is an error if the file 
already exists), and that the file is to be created if it does not exist. O_EXCL gets 
only with O_CREAT. If the file is created, then the third argument sets the file permis
sions; otherwise, the argument has no effect. We will explain about file permissions 
below. 

.. while ((n = read(in_fd, mybuf, BUFSIZE)) > 0) { 

A maximum of BUFSIZE characters are read from the stream associated with i n_fd and 
put into mybuf. The number of characters read is returned. The body of the whi 1 e loop 
is executed as long as read 0 is able to get characters from the stream. In the body of 
the loop the letters in mybuf are changed to the opposite case. 

.. write(out_fd, mybuf, n); 

n characters in mybuf are written to the stream indicated by out_fd. 

.. close(in_fd); 
close(out_fd)j 

This closes the two files. If the files are not explicitly closed by the programmer, the 
system will close them on program exit. 

• 
Caution: This program is not user-friendly. If you give the command 

change_case file 1 file2 

and file2 already exists, then the file does not get overwritten, which is the behavior we 
wanted. A better-designed program would say something to the user in this case. 

11.9 T File Access Permissions 517 

& 

11.9 File Access Permissions 

In UNIX, a file is created with associated access permissions. The permissions deter
mine access to the file for the owner, the group, and for others. The access can be read, 
write, execute, or any combination of these, including none. When a file is created by 
invoking open 0, a three-digit octal integer can be used as the third argument to set the 
permissions. Each octal digit controls read, write, and execute permissions. The first 
octal digit controls permiSSions for the user, the second octal digit controls permis
sions for the group, and the third octal digit controls permissions for others. ("Others" 
includes everybody.) 

Meaning of each octal digit in the file permissions 

Mnemonic Bit representation Octal representation 

r-- 100 04 

-w- 010 fJ 02 

--x 001 01 
I 

rw- 110 06 

r-x 101 05 

-wx 011 03 

rw:x 111 07 

Now, if we pack three octal digits together into one number, we get the file access per
missions. The mnemonic representation is the easiest to remember. The first, second, 
and third group of three letters refers to the user, the group, and others, respectively. 

Examples of file access permissions 

Mnemonic Octal representation 

rw------- 0600 

rw----r-- 0604 

rwxr-Xf-X I 0755 

rwxrwxrvvx 0777 



518 Chapter 11 T Input/Output and the Operating System 

The permissions rwxr-xr-x mean that the owner can read, write, and execute the file' , 
that the group can read and execute the file; and that others can read and execute the 
file. In UNIX, the mnemonic file access permissions are displayed with the Is -1 com
mand. In MS-DOS, file permissions exist, but only for everybody. 

11.10 Executing Commands from Within a C Program 

The library function system() provides access to operating system commands. In both 
MS-DOS and UNIX, the command date causes the current date to be printed on the 
screen. If we want this information printed on the screen from within a program, we 
can write 

system(ltdate lt ); 

The string passed to system() is treated as an operating system command. When the 
statement is executed, control is passed to the operating system, the command is exe
cuted, and then control is passed back to the program. 

In UNIX, vi is a commonly used text editor. Suppose that from inside a program we 
want to use vi to edit a file that has been given as a command line argument. We can 
write 

char command[MAXSTRING]; 

sprintf(command, "vi %S", argv[l])' 
printf("vi on the file %5 is comin~ up ... \n", argv[l]); 
system(command); 

A similar example works in MS-DOS, provided we replace vi by an editor that is avail
able on that system. 

As a final example, let us suppose we are tired of looldng at all those capital letters 
produced by the dir command on our MS-DOS system. We can write a program that 
interfaces with this command and writes only lowercase letters on the screen. 

11.10 T Executing Commands from Within a C Program 

In file 10weLcase.c 

/* Write only lowercase on the screen. */ 

#include <ctype.h> 
#include <stdio.h> 
#include <stdlib.h> 

#define MAXSTRING 100 

int main(void) 
{ 

} 

char 
i nt 
FILE 

command [MAXSTRING], ~'tmp_ fi 1 ename; 
c; 
~'i fp; 

tmp_filename = tmpnam(NULL); 
spri ntf(command , "dir > %5", tmp_filename); 
system(command)j 
i fp = fopen(tmp_fil ename, n r"); 
while ((c = getc(ifp)) != EOF) 

putchar(tolower(c)); 
remove(tmp_filename); 
return 0; 

519 

First we use the library function tmpnamO to create a temporary file name. Then we 
invoke system() to redirect the output of the dir command into the temporary file. 
Then we print on the screen the contents of the file, changing each uppercase letter to 
lowercase. Finally, when we are finished using the temporary file, we invoke the library 
function remove() to remove it. (See Section A.12, "Input/Output: <stdi o. h>," on page 
662, for details about these functions.) 



520 Chapter 11 V Input/Output and the Operating System 

11.11 Using Pipes fron1 Within a C Program 

UNIX systems provide popenO and pcloseO to communicate with the operating 
tern. These functions are not available in MS-DOS systems. Suppose we are tired of 
ing at all those lowercase letters produced by the Is command on our UNIX system. 

In file uppeccase.c 

#include <ctype.h> 
#include <stdio.h> 

int main(void) 
{ 

} 

i nt 
FILE 

c' , 
*ifp; 

ifp = popen("ls", "r"); 
while ((c = getc(ifp)) != EOF) 

putchar(toupper(c)); 
pclose(ifp); 
return 0; 

T~e first argument to popen 0 is a string that is interpreted as a command to the oper
atmg system; the second argument is a file mode, either II r II or "w". When the function 
is invoked, it creates a pipe (hence the name popen) between the calling environment 
and the system command that is executed. Here, we get access to whatever is produced 
by the Is command. Because access to the stream pointed to by i fp is via a pipe, we 
cannot use file positioning functions. For example, rewi nd (i fp) will not work. We can 
only access the characters sequentially. A stream opened by popen 0 should be closed 
by pc los eO. If the stream is not closed explicitly, then it will be closed by the system 
on program exit. 

11.12 v Environment Variables 521 

a 

11.12 Environment Variables 

Environment variables are available in both UNIX and MS-DOS. The following program 
can be used to print them on the screen: 

#include <stdio.h> 

int main(int argc, char *argv[], char *env[]) 
{ 

} 

i nt i; 

for (i 0; env[iJ ! NULL; ++i) 
printfC"%s\n" , env[i]); 

return 0; 

The third argument to mai nO is a pointer to pointer to char, which we can think of as 
an array of pointers to char, or as an array of strings. The system provides the strings, 
including the space for them. The last element in the array env is a NULL pointer. On 
our UNIX system, this program prints 

HOME=/c/c/blufox/center_manifold 
SHELL=/bin/csh 
TERM=vt102 
USER=blufox 

To the left of the equal sign is the environment variable; to the right of the equal sign is 
its value, which should be thought of as a string. On our MS-DOS system, this prograrry 
~~ : 

COMSPEC=C:\COMMAND.COM 
BASE=d:\base 
INCLUDE=d:\msc\include 

The UNIX system provides a command to display the environment variables, but th.~ 
command depends on which shell you are running. In the C shell, the command is 
printenv, whereas in the Bourne shell and in MS-DOS, the command is set. The outpr.t of 
the command is the same as the output of our program. . 



522 Chapter 11,. Input/Output and the Operating System 

By con:rention, environment variables are usually capitalized. In a C program, we 
use the lIbrary function getenv() to access the value of an environment v 
passed as an argument. Here is an example of how getenvO can be used: 

printf("%s%s\n%s%s\n%s%s\n%s%s\n" 
II , 

" Name: ", getenv("NAME"), 
II User: ", getenv("USER"), 

. Shell: ", getenv("SHELL"), 
"Home d t II 1 ree ory: ,getenv("HOME")); 

The functi?n prototyp~ is provided in stdlib.h. If the string passed as an argument is 
not an enVIronment vanable, the NULL pointer is returned. 

11.13 The C Compiler 

There are many C compilers, and an operating system may provide any number of 
them. Here are Just a few of the possibilities: 

Command The C compiler that gets invoked 

ee The system supplied native C compiler 
acc An early version of an ANSI C compiler from Sun Microsystems 

be Borland CjC++ compiler, integrated environment 
~ ... ~~~----~.-------

bee Borland CjC++ compiler, command line version 
r---------4-----~ 

gee GNU C compiler from the Free Software Foundation 

he High C compiler from Metaware 
ace Oregon C compiler from Oregon Software 
qe nick C compiler from Microsoft 

Turbo C compiler, integrated environment, from Borland 

C compiler, command line version, from Borland 

In this section, we discuss some of the options that can be used with the ee command 
on UNIX systems. Other compilers provide similar options. 

If a complete program is contained in a single file, say pgm.e, then the command 

cc pgm.c 

11.13 ,. The C Compiler 523 

translates the C code in pgm,e into executable object code and writes it in the file a.out. 
(In MS-DOS, the executable file is pgm.exe.) The command a.out executes the program. 
The next ec command will overwrite whatever is in a.out. If we give the command 

cc -0 pgm pgm.c 

then the executable code will, instead, be written directly into the file pgm; whatever is 
in a,out will not be disturbed. 

The cc command actually does its work in three stages: First, the preprocessor is 
invoked, then the compiler, and finally the loader. The loader, or linker, is what puts all 
the pieces together to make the final executable file. The -c option can be used to com
pile only-that is, to invoke the preprocessor and the compiler, but not the loader. This 
is useful if we have a program written in more than one file. Consider the command 

cc -c main.c filel.c file2.c 

If there are no errors, corresponding object files ending in .0 will be created. To create 
an executable file, we can compile a mixture of .C and .0 files. Suppose, for example, 
that we have an error in main.c. We can correct the error in main.e and then give the 
command 

cc -0 pgm main.c file 7.0 file2.0 

The use of .0 files in place of .e files reduces compilation time, 

Some useful options to the compiler 

-c Compile only, generate corresponding ,0 files. 

-g Generate code suitable for the debugger. 
r-----

Put executable output code in name. -0 name 

-p Generate code suitable for the profiler. 

-v Verbose option, generates a lot of information. 

-0 name=def Place at the top of each .c file the line. 

#defi ne name def. 

-E I Invoke the preprocessor but not the compiler. 

-I dir Look for #i ncl ude files in the directory dir. 

-M Make a makefile. 

-0 Attempt code optimization. 

-5 Generate assembler code in corresponding .s files. 



524 Chapter 11 Y Input/Output and the Operating System 

Your compiler may not support all of these options, and it may provide others. 
may use different flag characters. Compilers in MS-DOS usually support different 
ory models. Consult the documentation for your compiler for a detailed list of 
Suggestion: If you have never tried the -v option, do so. Some compilers produce a 
of information, and this information can be very useful when you are trying to 
stand all the details about the compilation process. 

11.14 Using the Profiler 

In UNIX, the -p option used with cc causes the compiler to produce code that counts 
number of times each routine is called. If the compiler creates an executable file, 
is arranged so that the library function moni torO is automatically invoked and a 
man. out is created. The file man. out is then used by the prof command to generate 
execution profile. 

As an example of how this all works, suppose we want an execution profile of 
quicksort routine that we v\!Tote in Section 8.5, "An Example: Sorting with qsortO," 
page 3 72. Here is our function ma in 0: 

In file main.c 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#define N 50000 

void quicksort(int *, int *); 

int main(void) 
{ 

} 

i nt a [NJ, i; 

srand(time(NULL)); 
for Ci = 0; i < N; ++i) 

a[iJ = rand() % 10000; 
quicksort(a, a + N - 1); . 
for (i = 0; i < N - 1; ++1) 

if (a[;] > a[i + 1]) { 
printf(tlSORTING ERROR 
exit(l); 

} 
return 0; 

11.14 " Using the Profiler 525 

- bye!\nH); 

To obtain an execution profile of our program, we first compile it with the -p option: 

cc -p -0 quicksort main.c quicksort.c 

Next, we give the command 

quicksort 

This causes the file man. out to be created. Finally, to get an execution profile, we give 

the command 

prof quicksort 

This causes the following to be printed on the screen: 

%time cumsecs #call ms/call name 

46.9 7.18 9931 0.72 _partition 

16.1 9.64 1 2460.83 _main 

11.7 11.43 19863 0.09 3ind_pivot 

10.8 13.08 mcount 

6.9 14.13 50000 0.02 _rand 

6.4 15.12 19863 0.05 _quicksort 

1.4 15.33 _monstartup 

0.0 15.33 1 0.00 _gettimeofday 

0.0 15.33 1 0.00 _profil 

0.0 15.33 1 0.00 _srand 

0.0 15.33 1 0.00 _time 

Not all the named functions are user-defined; some of them, such as _getti meofd~y, 
are system routines. An execution profile such as this can be very useful when workmg 

to improve execution time efficiency. 



526 Chapter 11 T Input/Output and the Operating System 

11.1 5 Libraries 

Many operating systems provide a utility to create and manage libraries. In UNIX 
utility is called the archiver, and it is invoked with the ar command. In the Ms-n 
world, this utility is called the librarian, and it is an add-on feature. The Micros 
librarian, for example, is lib, whereas the Turbo C librarian is tUb. By convention, 
files end in .a in UNIX, and end in .lib in MS-DOS. We will discuss the situation as it 
tains to UNIX, but the general ideas apply to any librarian. 

In UNIX, the standard C library is usually in the file /lib/libc.a, but the s 
library can exist wholly or in part in other files as well. If UNIX is available to you 
the command ' 

ar t /usr/lib/llbe.a 

The key t is used to display titles, or names, of files in the library. There are more 
than you care to look at. To count them, you can give the command 

ar t /usr/lib/libe.a I we 

This pipes the output of the ar command to the input of the we command 
lines, words, and characters to be counted. (The name we stands for "word co~nt.") It 
not too surprising that the standard library grows with time. On a DEC VAX 11 
from the 1980s, the standard library contained 311 object files. On a Sun machine 
was relatively new in 1990, the standard library contained 498 object files. On the Sun 
machine that we happen to be using today, the number of object files is 563. 

Let us illustrate how programmers can create and use libraries of their own. We 
d~ this in the context of creating a "graceful library." In Section 11.6, "Using 
FlIes and Graceful Functions," on page 511, we presented gfopenO, a graceful ,,~,,~,~.,
~f fopen O. In a directory named g_lib, we have 11 such graceful functions, and we 
tmue to add more from time to time. These are functions such as gfc1oseO, gca1 
1 oc 0, gma 11 oc 0, and so forth. Each is written in a separate file, but for the 
of building a library, they could just as well be in one file. To reinforce the idea of 
functions, we give the code for 9 ca 11 oc 0 : 

11.15 T Libraries 

#inc1ude <stdio.h> 
#inc1ude <stdlib.h> 

void ~'gca11oc(int n, unsigned sizeof_something) 
{ 

} 

void *p; 

if ((p = calloc(n, sizeof_something)) NULL) { 

} 

fprintf(stderr, "\nERROR: ca11ocO failed - bye.\n\n"); 
exit(l); 

return p; 

527 

To create our library, we must first compile the .e files to obtain corresponding .0 files. 
After we have done this, we give the two commands 

ar ruv fl_lib.a gfopen.o gfclose.o flealloc.o ... 
ranlib fl_lib.a 

The keys ruv in the first command stand for replace, update, and verbose, respectively. 
This command causes the library g_lib.a to be created if it does not already exist. If it 
does exist, then the named .0 files replace those of the same name already in the 
library. If any of the named .0 files are not in the library, they are added to it. The ranlib 
command is used to randomize the library in a form that is useful for the loader. 

Now suppose we are writing a program that consists of main.e and two other .e files. 
If our program invokes gfopen 0, we need to make our library available to the com
piler. The following command does this: 

CC -0 pgm main.e file I.e file2.c g_lib.a 

If our program invokes a function and does not supply its function definition, then it 
will be searched for, first in g_lib.a and then in the standard library. Only those func
tions that are needed will be loaded into the final executable file. 

If we write lots of programs, each consisting of many files, then each of the programs 
should be written in its own directory. Also, we should have a separate directory for our 
libraries such as g_lib.a, and another directory for associated header files such as 
g_lib.h. For each function in g_lib.a, we put its prototype in g_lib.h. This header file then 
gets included where needed. To manage all of this, we use the make utility. (See Section 
11.17, "The Use of make," on page 532.) 



528 Chapter 11'" Input/Output and the Operating System 

11.16 How to Time C Code 

Most operating systems provide access to the underlying machine's internal clock. 
this section, we show how to use some timing functions. Because our functions 
meant to be used in many programs, we put them into the library u_lib.a, our 
library. In Section 11.17, "The Use of make," on page 532, we will discuss a pro 
that uses functions from both of our libraries g_lib.a and u_lib.a. 

Access to the machine's clock is made available in ANSI C through a number of 
tions whose prototypes are in time.h. This header file also contains a number of 
constructs, including the type definitions for c 1 ocLt and ti me_ t, which are useful 
dealing with time. Typically, the two type definitions are given by 

typedef 
typedef 

long 
long 

clock_t; 
time_t; 

and in turn, these types are used in the function prototypes. Here are the 
for the three functions we will use in our timing routines: 

clock(void); 
time(time_t "'p); 

cloelet 
time_t 
double difftime(time_t timel, time_t time0); 

When a program is executed, the operating system keeps track of the processor 
that is being used. When clockO is invoked, the value returned is the system's 
approximation to the time used by the program up to that point. The clock units can 
vary from one machine to another. The macro 

#define 60 /* machine-dependent */ 

is provided in time. h. It can be used to convert the value returned by c 1 oc k 0 to sec
onds. Caution: In preliminary versions of ANSI C, this macro was called CLie TCK. 

The function ti me 0 returns the number of seconds that have elapsed since 1 Janu
ary 1970. Other units and other starting dates are possible, but these are the ones typi
cally used. If the pointer argument passed to ti me 0 is not NULL, then the value 
returned gets assigned to the variable pointed to as welL One typical use is 

srand(time(NULL)); 

This seeds the random-number generator. If two values produced by ti me 0 are passed 
to di ffti me 0, the difference expressed in seconds is returned as a doub 1 e. 

11.16 ... How to Time C Code 529 

We want to present a set of timing routines that can be used for ~any ?ur~osf~~' 
including the development of efficient code. We keep these functIOns m tel e 

time_keeper.c. 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#define MAXSTRING 100 

typedef struct { 
clocLt begin_c~ock, save_~lo~k; 
time_t begin_tlme, save_tlme, 

} time_keeper; 

static time_keeper tk; 
r known only to this file "'/ 

void start_time(void) 

{ tk.begin_clock tk.save_clock := c10ckO; 
tk.begin_time tk.save_time:= time(NULL); 

} 

double prn_time(void) 
{ 

} 

char 
int 
double 

sl[MAXSTRING], s2[MAXSTRING]; 
field width, nl, n2; 
clocks_per _second == (double) CLOCKS_PER_5EC, 
user_time, real_time; 

user_time == (clockO -.tk.save_clock) / cl<?cks-;-per_second; 
real_time == difftime(tlme(NULL) , tk.save_tlme) , 
tk.save_clock := clock(); 
tk.save_time = time(NULL); 

/* print the values found, and do it neatly */ 

nl sprintf(sl, ''%.If'' , user_t~me); 
n2 == sprintfCs2, ''%.If'' , real_tlme); 
field width = (n1> n2) ? n1 : n2; 
pri ntf(ll%s%'" .If%s\n%s%''' .If%s\n\n'' I • 

"User time: ", field_width, user_t"~me, 
"Real time: ", field_width, real_tlme, 

return user_time; 

" seconds", 
" seconds"); 



530 Chapter 11.., Input/Output and the Operating System 

Note that the structure tk is external to the functions and is known only in this file. It 
used for communication between the functions. When s ta rt_ time 0 is invoked, 
values returned from clockO and timeO are stored in tk. When prn_timeO 
invoked, new values from clockO and timeO are used to compute and print the 
elapsed user time and the elapsed real time, and new values are stored in tic User time 
is whatever the system allocates to the running of the program; real time is wall
time. In a time-shared system they need not be the same. 

The function p rn_ tota L ti me 0 is also in the file, but is not shown. It is similar to 
p rn_ ti me 0, except that the elapsed times are computed relative to the last invocation 
of start_ti me 0 rather than the last invocation of any of the three functions. 

Because our timing routines are meant to be used in a variety of programs, we put 
them into u_lib.a, our utility library. The following commands do this: 

cc -c time_keeper.c; .. 
ar ruv u_lih.a time_keeper. 0; 
ranlih u_lih.a 

In the header file u_lib.h, we put the prototypes of the functions in u_lib.a. The header 
file then gets included elsewhere as needed. 

Now we demonstrate how our timing routines can be used. In certain applications, 
fast floating-point multiplication is desired. Should we use variables of type float or 
doubl e? The follOwing program can be used to test this: 

In file mulLtime.c 

/* Compare float and double multiplication times. */ 

#include <stdio.h> 
#include "u_lib.h" 

#define N 100000000 /* one hundred million */ 

i nt mai n (voi d) 
{ 

long 
float 
double 

i ; 
a, b = 3.333, c = 5.555; 
x, Y = 3.333, z = 5.555; 

11.16 .., How to Time C Code 

/* arbitrary values */ 

printf("Number of multiplies: %d\n\n", N); 
printf("Type float:\n\n"); 

} 

start_timeO; 
for (i = 0; i < N; ++i) 

a = b ,~ c; 
prn_timeO; 
printf("Type double:\n\n"); 
for (i = 0; i < N; ++i) 

x = y ,', z; 
prn_timeO; 
return 0; 

531 

On an older machine with a traditional C compiler, we find, much to our surprise, that 
single-precision multiplication is slower than double-precision multiplication! In tradi
tional C, any float is automatically promoted to a doub 1 e. Perhaps the results are due 
to the time it takes the machine to do the conversion. On another machine with an ANSI 
C compiler, we find that single-precision multiplication is about 30 percent faster. This 
is in line with what we expected. When we try the program on a Sun Sparcstation 10, we 
obtained the following results: 

Number of mUltiplies: 100000000 
Type float: 
User time: 33.6 seconds 
Real time: 34.0 seconds 
Type double: 
User time: 33.5 seconds 
Real time: 33.0 seconds 

Once again we are surprised! We expected that multiplication with floats would yield a 
30 percent saving in time, but that is not the case. Note that the real time listed for 
doubl es is less than the user time. This happens because the clocking mechanism as a 
whole is only approximate. Caution: To get an accurate measure of machine multiplica
tion time, the overhead of the fo r loops themselves, as well as general program over
head (relatively negligible), has to be taken into account. 



532 Chapter 11 T Input/Output and the Operating System 

11.1 7 The Use of make 

For both the programmer and the machine, it is inefficient and costly to keep 
one file a moderate or large size program that has to be recompiled repeatedly. A 
better strategy is to write the program in multiple .C files, compiling them 
needed. The make utility can be used to keep track of source files and to provide 
nient access to libraries and their aSSOciated header files. This powerful utility is 
available in UNIX and often available in MS-DOS, where it is an add-on feature. Its 
greatly facilitates both the construction and the maintenance of programs. 

Let us suppose we are writing a program that consists of a number of .h and .c 
Typically, we would place all these files in a separate directory. The make '-~-,=;u<U 
reads a file whose default name is makef'ile. This file contains the dependencies of 
various modules, or files, making up the program, along with appropriate actions to 
taken. In particular, it contains the instructions for compiling, or recompiling, the 
gram. Such a file is caned a makefile. 

For Simplicity, let us imagine that we have a program contained in two files, 
mainc and sum,c, and that a header file, say sum.h, is included in each of the .c 
We want the executable code for this program to be in the file sum. Here is a si 
makefile that can be used for program development and maintenance: 

sum: main.o sum.o 
cc -0 sum main.o sum.o 

main.o: main.c sum.h 
cc -c main.c 

sum.o: sum.c sum.h 
cc -c sum.c 

The first line indicates that the file sum depends on the two object files maino 
sum.o. It is an example of a dependency line; it must start in column 1. The second . 
indicates how the program is to be compiled if one or more of the .0 files have been. 
changed. It is called an action line or a command. can be more than one 
follovving a dependency line. A dependency line and the action lines that follow it make 
up what is called a rule. Caution: Each action line must begin with a tab character. On 
the screen, a tab character looks like a sequence of blanks. 

By default, the make command will make the first rule that it finds in the makefile. 
But dependent files in that rule may themselves be dependent on other files as speci
fied in other rules, causing the other rules to be made first. These files, in turn, may 
cause yet other rules to be made. 

11.17 T The Use of make 533 

., tates that maino depends on the two files main.c 
second rule ,m our makefII~ s. h n ed then the action line shows what must 

sum.h. If either of these two fIlh~S IS C1 arr has been created, the programmer can 
done to update maino. After t IS rna (e. 1 .e mm nd 

or recompile the program sum by glvmg the co a 

make 

this command, rna e rea s k d the file make file, creates for itself a dependency tree, 
takes whatever action is necessary. 

The dependency tree used internally by make 

sum 

I. 
I 

maln.O sum.o 

II II 
main.c sum.h sum.c sum.h 

. I bUI'It l'nto make including the rule that a .0 file depends on the cor-Certam ru es are , f'}' , b 
d· fI'Ie Because of this an equivalent make I e IS gIVen y respon mg.c _ , , 

sum: main.o sum.o 
cc -0 sum main.o sum.o 

main.o: sum.h 
cc -c main.c 

sum.o: sum.h 
cc -c sum.c 

The make utility recognizes a number of built-in macros. Using one of them, we get yet 
another equivalent makefile: 

sum: main.a sum.o . 
cc -a sum maln.a sum.a 

main.o sum.o: sum.h 
cc -c $". c 

files depend on sum.h. If we edit swrz.h, then Here, the second rule states thabt the tw~.o The macro $'" . c expands to ma; n. c when 
b th main 0 and sum.o must e rema e. , , d 
::ain.o is b~ing made, and it expands to sum. c when sum.o IS bemg rna e. 



534 Chapter 11 T Input/Output and the Operating System 

A make file consists of a series of entries called rules that specify dependencies 
actions. A rule begins in column 1 with a series of blank-separated target files, L~LLVVV"''' 
by a colon, followed by a blank-separated series of prerequisite files, also called 
files. All the lines beginning "vith a tab that follow this are the actions-such as 
lation-to be taken by the system to update the target files. The target files are n"~n"' .. , ~ 

dent in some wayan the prerequisite files and must be updated when the nrc"rpnlli 

files are modified. 
In exercise 33, on page 406 in Chapter 8, "The Preprocessor," we suggested that 

serious comparison of qsortO and qui eksortO be undertaken. We wrote a nr/'\(Tl',,_ 

to do this that compared the running times for three sorting routines: our own qui 
sortO, the system-supplied qsortO, and a qsortO from another system for 
we were able to borrow the code. The borrowed qsortO consisted of some 200 lines 
code in a single file. Including this file, our program consisted of approximately 40 
lines written in files. Here is the makefile that we used: 

In file makefile 

• 

# Makefile 
BASE 
CC 
CFLAGS 
EFILE 
INCLS = 
LIBS 

to compare sorting routines. 
/home/blufox/base 
gee 
-0 -Wall 
$(BASE)/bin/eompare_sorts 
-I$(LOC)/inelude 
$(LOC)/lib/g_lib.a \ 
$(LOC)/lib/u_lib.a 
/usr/loeal LOC 

OBJS main.o another_qsort.o ehk_order.o \ 
eompare.o quieksort.o 

$(EFILE): $(OBJS) 
@eeho "linking II 

@$(CC) $ (CFLAGS) -0 $(EFILE) $(OBJS) $(LIBS) 
$(OBJS): eompare_sorts.h 

$(CC) $ (CFLAGS) $(INCLS) -e $1'.e 

Dissection of the Makefile for the compare_sorts Program 

• # Makefile to compare sorting routines. 

Comments can be put in a makefile. A comment begins with a # and extends to the end 
of the line. 

11 17 T The Use of make 535 

BASE /home/blufox/base 

is an example of a macro definition. The general form of a macro definition is 

replacemenLstring 

convention, macro names are usually capitalized, but they do not have to be. The 
string can contain white space. If a backslash \ occurs at the end of the 

then the replacement string continues to the next line. Our home directory on this 
machine is /home/b 1 ufox. We created the subdirectory base to hold all our 

major subdirectories. We think of it as our ubase of operation." The macro BASE 
refers to this subdirectory. 

CC 
CFLAGS 

gee 
-0 -Wall 

The first macro specifies the C compiler that we are using, in this case the GNU C com
piler. The second macro specifies the options, or "C flags," that will be used when gee 
gets invoked. The -0 option turns on the optimizer; the -Wall option asks for all warn
ings. If we had written 

CC gee 
CFLAGS 

instead, then the replacement string for CFLAGS would be empty. 

EFILE $(BASE)/bin/eompare_sorts 

The macro EFILE specifies where we want to put our executable file. Macro evaluation, 
or invocation, occurs with a construct of the form $ (macro_name). This produces the 
string value (possibly empty) of macro_name. The string value of the macro is also 
called its replacement string. Thus 

EFILE $(BASE)/bin/eompare_sorts 

is equivalent to 

EFILE /home/blufox/base/bin/eompare_sorts 



._._-_._--- -----------

536 Chapter 11... Input/Output and the Operating System 

II INCLS -I$(LOC)/include 
$(LOC)/lib/g_lib.a \ 
$(LOC)/lib/u_lib.a 
/usr/local 

LIBS 

LOC 

The f~rst :nacro sp.ecifies the - I option followed directly by the name of a directory 
con tams mclude files. The second macro specifies two libraries. The third macro 
nes another directory. Note that a backslash is used to continue to the next line 
first library, g_lib.a, is the graceful library, which we discussed in Section 11.15 . 
~es," o~ page 526. The second library, u_lib.a, is the utility library, which we di 
m Se~tlon 11.16, "How to Time C Code," on page 530. Because our program 
functIOns from these libraries, the libraries must be made available to the compiler. 
keep the associated header files g_lib.h and u_lib.h in the directory $ (LOC) /i ncl 
The compiler will have to be told to look in this directory for header files. Note 
macro can be evaluated before it has been defined. 

II OBJS = main.o another_qsort.o chk_order.o \ 
compare.o quicksort.o 

The macro ?BJ5 is defined to be the list of object files that occurs on the right 
the. equ~l SIgn. Note that we used a backslash to continue the line. Although we 
mazno fITst and then list the other .0 files alphabetically, order is unimportant. 

II $(EFILE): $(OBJ5) 
@eeho "linking 
@$(CC) $ (CFLAGS) 

" 
-0 $(EFILE) $(OBJ5) $(LIBS) 

The first line is a dependency line. The second and third lines specify the actions to 
t~ken. Note carefully that action lines begin with a single tab character. (It looks 
eight blank spaces on the screen.) The @ symbol means that the action line itself is 
to be echoed on the screen. (See exercise 28, on page 552.) Because macro 
has the form 

$( macro_name ) 

the construct $(EFILE) is replaced by 

$(BASE)/bin/compare_sorts 

which in turn is replaced by 

/home/blufox/base/bin/compare_sorts 

1 1 .1 7 .., The Use of make 537 

, $(OBJS) is replaced by the list of object files, and so forth. Thus, the depen-
'''~'--'-li 'ne states that the executable file depends on the object files. If one or more of 

object files has been updated, then the specified actions occur. The second action 
is expanded to 

@gcc -0 -Wall -0 /home/blufox/base/bin/compare_sorts main.o \ 
another_qsort.o chlcorder.o compare.o quicksort.o \ 
/home/blufox/base/lib/9_1ib.a /home/blufox/base/lib/u_lib.a 

we have written it on three lines because of space limitations on the printed 
this is actually generated as a single line. Suggestion: If make is new to you, build 

makefiles without the @ symbol at first. Later, after you understand its effects, you 
use the @ symbol to prevent echoing. 

$(08JS): compare_sorts.h 
$(CC) $(CFLAGS) $(INCLS) -c $*.c 

first line is a dependency line; it says that all the object files depend on the header 
compare_sons.h. If the header file has been updated, then all the object files have to 

updated, too. This is done through the action line. In UNIX, action lines must begin 
a tab. In MS-DOS, they can start with a tab or with one or more blanks. The con

$~' that occurs in the action line is a predefined macro called the base filename 
macro. It expands to the filename being built, excluding any extension. For example, if 
maino is being built, then $~'. c expands to mai n. c, and the action line becomes 

gee -0 -Wall -I/usr/local/include -e main.e 

Certain dependencies are built into the make utility. For example, each .0 file depends 
on the corresponding .c file. This means that if a.c file is changed, then it will be recom
piled to produce a new .0 file, and this in turn will cause all the object files to be 
relinked. 

-I/usr/local/include 

An option of the form -Idir means "look in the directory dir for #i ncl ude files." This 
option complements our use of libraries. At the top of the .c files making up this pro
gram, we have the line 

#include "eompare_sorts.h" 

and at the top of compare_sorts.h we have the lines 



"-"---------~ 

538 Chapter 11 T Input/Output and the Operating System 

#inelude "g_lib.h" 
#inelude "u_lib.h" 

These hea~er files contain the function prototypes for the functions in our 
The - I optIOn tells the compiler where to find these header files. 

The make utility can be u· d t " . C M se 0 mamtam programs m any language, not just C 

d
++· dare ?enerally, ma.ke can be used in any kind of project that consists of files 
epen enCles and assoCIated actions. 

11.18 The Use of touch 

The touch tTt . I '. 
. U 1 1 Y IS a ways avaIlable m UNIX and is often available in MS-DOS It t 

new tIme on a file The m k tT d . . " pu s 
tim d h' a e u I Ity eCldes which actions to take by comparing 

es, an touc can be used to direct what make does 
T 'U . 

pre~~u~:~~~~~h~ use O~:;U~h, let us assume we have the makefile discussed in the 
th fil ' ong WI t e relevant ·h .c, and .0 files. To put the current date on 

e e compare_sons.h, we can give the command 

touch compare_sorts.h 

Thi 
it NsOcwa~sfes th~ filehto have a more recent time than all the object files that depend on 

. ,1 we gIVe t e command 

make 

all the .c files will be rec 'I d d l' ompl e an Inl<ed to create a new executable file. 

11.19 T Other Useful Tools 539 

11.19 Other Useful Tools 

Operating systems provide many useful tools for the programmer. Here, we will list a 
few of the tools found on UNIX systems, along with some remarks. Comparable utilities 
are sometimes available in MS-DOS. 

Command Remarks 

" cb The C beautifier; it can be used to "pretty print" C code. 

dbx A source-level debugger; code must be compiled with the -g option. 

diff Prints the lines that differ in two files. 

gdb The GNU debugger; code must be compiled with the -g option. 

grep Searches for a pattern in one or more files; a major tool for programmers. 

indent A C code "pretty printer" with lots of options. 

we Counts lines, words, and characters in one or more files. 

The cb utility reads from stdi n and writes to stdout. It is not very powerful. To see 
what it can do, try the command 

cb < pgm.c 

where pgm.c is poorly formatted. The utility indent is more powerful, but unlike cb, it is 
not universally available. To make serious use of indent, you will need to read the 
online manuaL 

A debugger allows the programmer to step through the code a line at a time and to 
see the values of variables and expressions at each step. This can be extremely helpful 
in discovering why a program is not acting as the programmer expected. The program
ming world is full of debuggers, and dbx is not a particularly good one. It just happens 
to be one that is generally available on UNIX systems. In the MS-DOS world, debuggers 
are an add-on product. Borland, Microsoft, and others provide excellent products. 

Tools such as dirt. grep, and wc are of a general nature. They get used by everyone, 
not just programmers, Although these are UNIX tools, they are often available in MS
DOS as well, especially grep, which is very useful to programmers. 

Finally, let us mention that C can be used in conjunction with other high-level tools, 
some of which are languages in their own right. 



540 Chapter 1 1 V Input/Output and the Operating System 

Utility Remarks 

awk A pattern scanning and processing language 

bi son GNU's version of yace 

csh The C shell, which is programmable 

fl ex GNU's version of lex 

1 ex Generates C code for lexical analysis 

nawk A newer, more powerful, version of awk 

perl Practical extraction and report language 

sed A stream editor that takes its commands from a file 

yacc "Yet another compiler-compiler," used to generate C code 

Of particular importance to programmers are lex and yacc, or the corresponding GNU 
utilities, flex and bison; see The UNIX Programming Environment by Brian Kernighan 
and Rob Pike (Englewood Cliffs, N.].: Prentice-Hall, 1984). The Free Software Foundation 
produces GNU tools. These tools run on many platforms, and they can be obtained via 
the Internet. (The Internet provides access to other tools from other places as well.) If 
you have an Internet connection, the command 

ftp prep.ai.mit.edu 

will connect you to a machine from which you can download GNU tools. (First-time ftp 
users will need assistance.) 

V Summary 541 

Summary 

1 The functions pri ntfO and seanfO, and the related file and string versions of 
these functions, all use conversion specifications in a control string to deal with a 
list of arguments of variable length. 

2 The standard header file stdio.h is included if files are used. It contains the defini
tions of the identifier FILE (a structure) and the file pointers stdi n, stdout, and 
stderr. It also contains prototypes of many file handling functions and definitions 
for the macros geteO and puteO. The function call gete(ifp) reads the next 
character from the file pointed to by i fp. 

3 To open and close files, we use fopen 0 and fel ose 0, respectively. After a file has 
been opened, the file pointer is used to refer to the file. 

4 A file can be thought of as a stream of characters. The stream can be accessed 
either sequentially or randomly. When a character is read from a file, the operating 
system increments the file position indicator by 1. 

5 The system opens the three standard files stdi n, stdout, and stderr at the begin
ning of each program. The function pri ntfO writes to stdout. The function 
seanfO reads from stdi n. The files stdout and stderr are usually connected to 
the screen. The file stdi n is usually connected to the keyboard. Redirection causes 
the operating system to make other connections. 

6 Files are a scarce resource. The maximum number of files that can be open simulta
neously is given by the symbolic constant FOPEN_MAX in sldio.h. This number is sys
tem-dependent; typically, it is in the range from 20 to 100. It is the programmer's 
responsibility to keep track of which files are open. On program exit, any open files 
are closed by the system automatically. 

7 A set of functions that use file descriptors is available in most systems, even 
though these functions are not part of ANSI C. They require user-defined buffers. 
The file descriptors of stdi n, stdout, and stderr are 0, 1, and 2, respectively. 

8 An operating system command can be executed from within a program by invoking 
systemO. In MS-DOS, the statement 

system(Hdi r"); 



542 Chapter 1 1... Input/Output and the Operating System 

will cause a list of directories and files to be listed on the screen. 

9 In UNIX, t~e function popen 0 can be used to conununicate with the operating 
tem. ConsIder the command 

we *.e 

It prints on the screen the word count of all the .c files in the current directory T 
ge~ access to this stream of characters from within a program the progranuner' 0 
WrIte ' 

FILE '~ifp; 
ifp = popen("wc '~.c", "r"); 

Streams that are opened with popenO should be closed with pcloseO. 

10 Many ??er,ating systems provide a utility to create and manage libraries. In UNIX 
the Utllrty IS c~lle~ ~he, archiver, and it is invoked with the ar conunand. In the MS~ 
DOS world, this utility IS called the librarian, and it is an add-on feature. 

11 The make ~tilit! can be used to keep track of source files and to provide convenient 
access to lIbranes and associated header files. 

Exercises 

1 Rewrite the dbLspac~ program in Section n.s, "An Example: Double Spacing a File," 
on pag~_ 507, so that It gets the name of the input file as a conunand line argument 
and wntes to stdout. After this has been done, the command 

dbtsp infile > outfi/e 

canF~e used to double-space whatever is in infile, with the output being written into 
out, I e, B~cause the ?rogram is intended to be used with redirection, it now makes 
sense to mvoke fprl ntf(stderr, .. ,) rather than pri ntf( ... ) in prn i nfoO 
!~ the error message is written to stdout, it will be redirected; the user will not se~ 

e message on the screen, The symbol> is used to redirect whatever is written to 
stdo~t~ l,t d,oes not affect whatever is written to stderr, Try writing the program 
two Y\a) s, WIth the error message being written first to stderr and then to stdout. 

... Exercises 543 

Experiment with the two versions of the program so that you understand the differ
ent effects. 

2 Rewrite the dbLspace program in Section 11.5, "An Example: Double Spacing a File," 
on page 507, so that it uses a command line option of the form -n, where n can be 
1, 2, or 3. If n is 1, then the output should be single spaced. That is, two or more 
contiguous newline characters in the input file should be written as a single newline 
character in the output file. If n is 2, then the output file should be strictly double 
spaced. That is, one or more contiguous newline characters in the input file should 
be rewritten as a pair of newline characters in the output file. If n is 3, the output 
file should be strictly triple spaced. 

3 Write getstri ng 0 and putstri ng () functions. The first function should use a 
file pointer, say i fp, and the macro getc 0 to read a string from the file pointed to 
by i fp. The second function should use a file pointer, say ofp, and the macro 
putcO to 'write a string to the file pointed to by ofp. Write a program to test your 
functions. 

4 Write a program to number the lines in a file. The input file name should be passed 
to the program as a conunand line argument. The program should write to stdout. 
Each line in the input file should be written to the output file with the line number 
and a space prepended. 

5 Read about the ungetcO function in Section A.12, "Input/Output: <stdi o. h>," on 
page 660. After three characters have been read from a file, can ungetcO be used 
to push three characters back onto the file? Write a program to test this. 

6 Write a program that displays a file on the screen 20 lines at a time. The input file 
should be given as a conunand line argument. The program should display the next 
20 lines after a carriage return has been typed. (This is an elementary version of the 
more utility in UNIX.) 

7 Modify the program you wrote in the previous exercise to display one or more files 
given as conunand line arguments. Also, allow a command line option of the form 
-n to be used, where n is a positive integer specifying the number of lines that are 
to be displayed at one time. In MS-DOS, the command to clear the screen is cls; in 
UNIX it is clear. Try either one or the other of these conunands on your system so 
that you understand its effects. Use either system("cl s") or system("cl ear") in 
your program just before you write each set of lines to the screen. 



544 Chapter 11 'f Input/Output and the Operating System 

8 The library function fgets 0 can be used to read from a file a line at a time. 
about fgets 0 in Section A.12, "Input/Output: <stdi o. h>," on page 659. Write 
program called search that searches for patterns. If the command 

search hello mY_file 

is given, then the string pattern hello is searched for in the file my _file. Any line 
contains the pattern is printed. (This program is an elementary version of 
Hint: Use the following code: 

char line[MAXLINE], *pattern; 
FILE *ifp; 
if (argc != 3) { 

} 

if ((ifp = fopen(argv[2] , "r")) == NULL) { 
fprintf(stderr, "\nCannot open %s\n\n", argv[2]); 
exit(l); 

} 

pattern = argv[l]; 
while (fgets(line, MAXLINE, ifp) != NULL) { 

if (strstr(line, pattern) != NULL) 

9 Modify the function you wrote in the previous exercise. If the command line option 
-n is present, then the line number should be printed as well. 

10 Compile the following program and put the executable code into a file, say try_me: 

#include <stdio.h> 

int main(void) 
{ 

} 

fprintf(stdout, "She sells sea shells\n"); 
fprintf(stderr, "by the seashore.\n"); 
return 0; 

Execute the program so that you understand its effects. What happens when you 
redirect the output? Try the command 

'f Exercises 545 

Make sure you read the file tmp after you do this. In UNIX, you should also try the 
command 

try_me > & tmp 

This causes the output that is written to stderr to be redirected, too. Make sure 
that you look at what is in tmp. You may be surprised! 

11 Write a program called wrLrand that creates a file of randomly distributed num
bers. The filename is to be entered interactively. Your program should use three 
functions. Here is the first function: 

void get_info(char *fname, int *n_ptr) 
{ 

} 

printf("\n%s\n\n%s", 
"This program creates a file of random numbers.", 
"How many random numbers would you like? "); 

scanf("%d", n_ptr); 
printf("\nln what file would you like them? "); 
scanf("%s", fname); 

After this function has been invoked in ma in 0, you could write 

ofp fopen(fname, "w"); 

However, the named file may already exist; if it does, overwriting it will destroy 
whatever is in the file currently. In this exercise, we want to write cautious code. If 
the file already exists, report this fact to the user and ask permission to overwrite 
the file. Use for the second function in your program the following "careful" version 
of fopenO: 



546 

} 

Chapter 11... Input/Output and the Operating System 

?LE *cfopen(char '''fname, char ;'mode) 

char reply[2]; 
FILE '''fp; 

if (s~rcmpSmod~, "w"~ == 0 && access (fname, F OK) == 
pr1ntf( \nFlle eXlstS. Overwrite it? ");
~canf("%ls", reply); 
1f (*:eply! 'y' && *reply 'Y') { 

} 
} 

pr:ntf("\nByel\n\n")' 
eXlt(I); , 

fp gfopen(fname, mode); 
return fpi 

0) { 

(Read about acces sO in S t' A ". 
functio . f ec IOn .16, MIscellaneous," on page 680.) The third 
tion 11 ~ l~,Jsiope; 0 

I the gra~eful version of fopen 0 that was presented in Sec-
w't " ng emporary FlIes and Graceful Functions" on page S 11 Hint· T 

n e your randomly distributed numbers neatly, use the f~nowing code: . . 0 

for (i. 1; i <= n; ++i) { 
~Pr1rytf(ofp, "%12d", randO); 
1 f (1 %6 == 0 II i == n) 

fprintf(ofp, "\n"); 
} 

12 ~~~~:~~g k:::~;~~;~; ~~ accessing a. file. W~en a file is opened, the file position 
nism fo . . ere you are III the file. There is no comparable mecha-
what ge;<; ~:~~~f:~~;ta~~~~~I~\ that contains the following lines and explain 

char 
int 
FILE 

c, s[] = "abc" , *p = s; 
i ; 
"'ofpl, '''ofp2; 

of pI fopen("tmpl", "w"); 
ofp2 . fopen~"tmp2", "w"); 
for (1 = 0; 1 < 3; ++i) { 

sscanf(s, "%C" &c)' 
fpri ntf(ofpl, "'%c",' c); 

} 

for (i = 0; i < 3; ++i) { 
sscanf(p++, "%c", &c); 
fprintf(ofp2, "%c", c); 

} 

V Exercises 547 

13 In this exercise, we examine a typical use of sscanfO. Suppose we are writing a 
serious interactive program that asks the user to input a positive integer. To guard 
against errors, we can pick up as a string the line typed by the user. The follov.ing is 
one way to process the string: 

char line[MAXLINE]; 
int error, n; 

do { 
printf("Input a positive integer: "); 
fgets(line, MAXLINE, stdin)j 
error = sscanf(line, "%d", &n) 1= 1 I I n <= 0; 
if (error) 

printf("\nERROR: Do it again.\n"); 
} while (error); 

This will catch some typing errors, but not all. If, for example, 23e is typed instead 
of 233, the error will not be caught. Modify the code so that if anything other than a 
digit string surrounded by optional white space is typed, the input is considered to 
be in error. Use these ideas to rewrite the wrtJand program that you wrote in exer
cise 11, on page 545. 

14 The two conversion characters x and X can be used to print an expression as a hexa
decimal number. Are the two conversion characters equivalent? Hint: Try 

printf("11259375 %#lx\n", 11259375); 
printf("11259375 = %#lX\n", 11259375); 

(In case you are wondering, the number 11259375 was carefully chosen.) 

15 Can your compiler handle the conversion character n correctly? (A few years ago, all 
the ones we tried could not, but now they can.) Try the following: 

int a, b, c; 

printf(" a%nb%nc%n %d %d %d\n", &a, &b, &c, a, b, c); 



548 Chapter 11" Input/Output and the Operating System 

16 Can we give flag characters in a conversion specification in any order? The ANSI 
document is not too specific about this point, but it seems that the intent is for 
order to be acceptable. See what happens with your compiler when you try the f 
lowing code: 

printf("%0+17d\n", 1); 
printf("%+017d\n", 1); 

17 Will the following code get a hexadecimal number from a string? What happens 
0x is deleted in the string? 

char s[] = "0xabc"; 
int n; 

sscanf(s, "%x", &n); 
printf("Value of n: %d\n", n); 

18 Did you read the table of conversion characters for scanfO carefully? Does the fol
lOwing code make sense? Explain. 

char 
unsigned 

s[] ::: "_1"; 
n; 

sscanf(s, H%U", &n); 
printf("Value of n: %u\n", n); 

19 Investigate how tmpnam 0 makes its names. Try executing, for example, the follow
ing program: 

#include <stdio.h> 

i nt mai n (va; d) 
{ 

char tfn(100]; 

tmpnam(tfn); 
printf("I: tfn %s\n", 
tmpnam(tfn); 
pri ntf("2: tfn %s\n" , 
tmpnam(tfn); 
printf("3: tfn ::: %s\n" I 

return 0; 
} 

l" tfn tmp fi 1 ename ~,/ 

tfn); 

tfn); 

tfn); 

'f' Exercises 549 

Execute the program repeatedly so that you understand its effects. Notice that tfn 
changes one way within the program, and it changes another way with each execu
tion of the program. On our system, the following line occurs in stdio.h: 

#define TMP_MAX 17576 /* 26 * 26 * 26 */ 

In ANSI C, repeated calls to tmpnamO are supposed to generate at least TrvlP _MAX 
unique names. On our system, exactly TMP _MAX unique names are generated. What 
happens on your system? 

20 Is the Borland C/C++ compiler available to you? If so, try the command 

bee 

When no files are given with the command, then a list of all the options is printed 
on the screen. This is a very nice feature. Try it. 

21 Our program that double-spaces a file can be invoked ,vith the command 

dbLspaee infile outfi/e 

If outfile exists, then it will be overwritten. This is potentially dangerous. Rewrite 
the program so it writes to stdout instead. Then the program can be invoked with 
the command 

dbLspaee infile > outfife 

This program design is much safer. Of all the system commands, only a few are 
designed to overwrite a file. After all, nobody likes to lose a file by accident. 

22 In the early days of MS-DOS, a control-z character within the file was used as an 
end-of-file mark. Although this is not done now, if a file has a control-z in it, and it 
is opened as a text file for reading, characters beyond the control-z may be inacces
sible. Write a program with the following lines in it: 

char 
int 
FILE 

cntrl_z = '\032'; 
c; 
'''; fp, ~'ofp; 

/* octal escape for control-z */ 



550 Chapter 11 T Input/Output and the Operating System 

ofp = fopen("tmp", "w"); 

fprintf(ofp, "%s%c%s\n" 
"A is for apple", cntrl_z, 

fclose(ofp); 
ifp = fopen("tmp" "r")' 
while ((c getc(1fp)) i= EOF) 

putchar(c); 
fclose(ifp); 
printf("\n---\n")' 
i fp = fopen("tmp"' "rb")' 
while ((c getc(1fp))!~ EOF) 

putchar(c); 

II and alphabet pie. "); 

/* open as a text file */ 
/* print the file */ 

/* serves as a marker */ 
/* open as a binary file */ 
/* print the file */ 

What gets printed? (Does the program act differently on a UNIX system?) In MS
DOS, try the command 

type tmp 

Only the characters before the control-z are printed. How do you know that there 
are more characters in the file? Hint: Try the dir command. Normally, control-z 
characters are not found in text files, but they certainly can occur in binary files. 
Subtle problems can occur if you open a binary file for processing with mode II r" 
instead of "rb". 

23 If UNIX is available to you, experiment to see what the following program does: 

#include <stdio.h> 
#include <stdlib.h> 

#define MAXSTRING 100 

int main(int argc, char **argv) 

char command[MAXSTRING]; 

} 

sprintf(command, "sort r %s", argv[l]); 
system(command); 
return 0; 

Actually, the program needs improvement. Re"WTite it so that it prints a prompt to 
the user. Give the command 

man sort 

to read about the sort utility. 

T Exercises 551 

24 If you are a C programmer, should you care about assembler code? Surprisingly, the 
answer is yes. The -5 option causes your compiler to produce a .s file, and that file 
can be useful to you, even if you cannot read a line of assembler code. Write a sim
ple program that contains the following lines: 

i nt i = 10; 

while (--i != 0) 
printf("i =%d\n", i); 

/* inefficient? */ 

The value of the expression --i ! = 0 controls the execution of the whi 1 e loop. Is 
the control mechanism inefficient? Write another program that contains the lines 

int ; = 10; 

whil e (--1) 
pri ntf("; 

/,~ bette r? ~(/ 

%d\n", i); 

Compile both of your programs with the -5 option. Then look at the difference 
between the two .s files. In UNIX, this can be done with the command 

diff pgm 1.S pgm2.s 

Is your second program more efficient than your first? 

25 Is Turbo C available to you? If so, make the following modifications to the 
change_case program we presented in Section 11.8, "File Descriptor Input/Output," 
on page 515. Include the standard header files io.h and sys\stat.h. Replace the octal 
constant 0600 by S_IREAD I S_IWRITE. (These symbolic constants are discussed 
in the Turbo C manual.) With these changes the program should compile and exe
cute. Does it? 

26 If UNIX is available to you, give the command 

Is -I 

This provides a long listing of all the files and subdirectories in the current direc
tory. Note that file modes are displayed. Read about the chmod utility in the online 
manual. To further your understanding about file modes, try commands similar to 
the following lines which have octal numbers. Are the leading zeros necessary? 

date > tmp; Is -I tmp 
chmod a+rwx tmp; Is -I tmp 
chmod 0660 tmp; Is -I tmp 
chmod 0707 tmp; Is -I tmp 



552 Chapter 1 1 'f Input/Output and the Operating System 

27 Look carefully at the execution profile we presented in Section 11.14, "Using 
Profiler," on page 524. You can see that rand 0 was called 50,000 times. This is 
rect because the size of the array is 50,000. Note that the number of function 
to fi nd_pi vot 0 equals the number of calls to qui cksort O. By looking at 
code, we easily convince ourselves that this, too, is correct. But what about the 
tionship between the number of calls to parti ti on 0 and the number of calls to 
qui cksortO? Can you give a precise explanation? 

28 The last makefile that we presented in this chapter is a real one. Even though we 
dissected it, anyone who has not had experience with make will find the concepts 
difficult to grasp. If this utility is new to you, try the make command after you have 
created the following file: 

In file makefile 

# Experiment with the make command. 
go: hello date list 

@echo Goodbye! 
hello: 

@echo He 11 o! 
date: 

@date; date; date 
list: 

@pwd; 1 s 

What happens if you remove the @ characters? What happens if a file named hello or 
date exists? 

29 Create the following file, and then give the command make. What gets printed? 
Write your answer first; then experiment to check it. 

In file make file 

# Experiment with the make command! 
Start: Al A2 

@echo Start 
AI: A3 

@echo Al 
A2: A3 

@echo A2 
A3: 

@echo A3 

30 What gets printed? 

#include <stdio.h> 

int main(void) 
{ 

} 

pri ntf("Hell o! \n"); 
fclose(stdout); 
pri ntfC'Goodbye! \n") ; 
return 0; 

'f Exercises 553 



hapter 12 

Advanced Appl ications 

C has the ability to be close to the machine. It was originally used to implement UNIX, 
and building systems is still one of its important uses. In this chapter, we describe 
some advanced applications, including material useful for systems programmers. We 
also discuss the use of matrices for engineers and scientists. 

12.1 Creating a Concurrent Process with fork() 

UNIX is a multiuser, multiprocessing operating system. Each process has a unique pro
cess identification number. The following command will show you what your machine 
is currently doing: 

ps -aux 

Here is an example of its output: 

USER 
blufox 
amber 
root 

PID %CPU %MEM 
17725 34.0 1.6 
17662 1.4 7.0 
143 0.5 0.1 

SZ 
146 
636 

5 3 

RSS TT STAT START TIME COMMAND 
105 i2 R 15:13 0:00 ps -au x 
469 j5 S 15:10 0:08 vi find.c 
? S Jul 31 10:17 jete/update 

The first line contains headings. The remaining lines supply information about each 
process: the user's login name, the process identification number, and so forth. (Read 
the online manual to find out more about the ps command.) The operating system runs 
many processes concurrently by time-sharing the machine resources. 



556 Chapter 12 'f Advanced Applications 

In UNIX, the programmer can use forkO to create a new process, called the ch 
process, that runs concurrently with the parent process. (It is not part of ANSI C.) 
function fo rk 0 takes no arguments and returns an i nt. The following is a simple 
gram illustrating its use: 

#include <stdio.h> 

int main(void) 
{ 

} 

int fork(void) , value; 

value =: forkO; 
printf("In main: value =: %d\n", value); 
return 0; 

/* new process */ 

The output of this program changes each time we run it. Here is example output: 

In main: value 
In main: value 

17219 
o 

As noted, when forkO is invoked, it creates a new process, the child process. This new 
process is an exact copy of the calling process, except that it has its own process identi
fication number. The function call forkO returns a to the child, and it returns the 
child's process ID to the parent. In the output of our program, the first line was printed 
by the parent, the second line by the child. 

Let us modify this program by adding to the code a second copy of the statement 

value =: forkO; 

Here is what gets printed: 

In main: 
In main: 
In main: 
In main: 

value 
value 
value 
value 

17394 
o 
o 
17395 

The children have unique process identification numbers. The program created four 
concurrent versions of mai nO. The order of execution of these processes is system
dependent and nondeterministic-that is, the order is not necessarily the same for each 
execution of the program. (See exercise 1, on page 586.) Caution: Invoking forkO too 
many times can cause the system to fail by exhausting all available processes. 

When forkO is invoked, it creates two processes, each with its ovvn set of variables. 
If a file pointer is used, however, care must be taken because the file pointer in each of 
the processes will refer to the same underlying file. 

12.1 'f Creating a Concurrent Process with forkO 557 

1 dby fork() can be used in an if-else statement to discriminate 
The va ue returne . mpute 

the actions of the child and the parent. In our next program, we co 
b~t~::~i numbers in the child process and print elapsed time in the pa:ent process. 
~~ use sleep 0 to suspend execution of the parent process for 2-second mtervals. 

. numbers and print time asynchronously. */ /* Compute Fibonaccl 

#include <stdio.h> 
#include <time.h> 

int fib(int); 
int fork(void); 
void sleep(unsigned); 

int main(void) 
{ 

int begin = time(NULL) , i; 
r chi 1 d ;( / 

if (fork() == 0) 
for (i = 0; i < 30; ++i) 

printf("fib(%2d) %d\n", i, fibCi)); 
el se 

for Ci = 0; i < 30; ++i) { 

/* parent ,~/ 

sleep(2); b .) 
printf("elapsed time = %d\n", time(NULL) - egln; 

} 
return 0; 

} 

i nt fi b (i nt n) 
{ 

if (n <= 1) 
return n; 

el se 
return (fib(n 

} 

1) + fib(n - 2)); 

When this program is executed, the outputs of the two processes are intermixed in a 

nondeterministic fashion. 



558 Chapter 12 V Advanced Applications 

12.2 Overlaying a Process: the exec . .. () Family 

From within a program, the current process, meaning the program itself, can be 
laid with another process. To do this, the programmer calls a member of 
exec ... () family. (See Section A.16, "Miscellaneous," on page 682, for a list of 
members.) These functions are not part of ANSI C, but, typically, they are available 
both MS-DOS and UNIX. 

We want to use the execl () function to illustrate how one process can be overlaid 
with another. The function prototype is 

int execl(char *path, char *arg0, ... ); 

In MS-DOS, this prototype is provided typically in the header file process.h. In UNIX, 
can be in this header file or in some other. The first argument is the path of the eXl~CUT' 
able file-that is, the new process. The remaining arguments correspond to the c 
mand line arguments expected by the new process. The argument list ends with the 
null pointer O. The value -1 is returned if the executable file cannot be found or is non
executable. 

Before we use execl () in a program, let us write two other small programs. We will 
use the compiled code to overlay another process. 

In file pgml.c 

#include <stdio.h> 

1nt ma1n(1nt argc, char **argv) 
{ 

} 

i nt 1 . , 

pr1ntf("%s: ", argv[0]); 
for (1 = 1; i < argc; ++1) 

printf("%s ", argv[i]); 
putchar('\n'); 
return 0; 

/* print the arg list */ 

12.2 V Overlaying a Process: the exec ... 0 Family 559 

In file pgm2.c 

#include <stdio.h> 

int main(int argc, char **argv) 
{ 

i nt i, sum = 0, value; 

for (i = 0; i < argc; ++i) /* sum the arguments */ 
if (sscanf(argv[iJ, "%d", &value) == 1) 

sum += value; " [0J 
pri ntf("%s: sum of command 1 i ne args = %d\n ,argv , 
return 0; 

sum); 

} 

Next, we compile the two programs: 

cc -0 pgm 7 pgm I.e; ec -0 pgm2 pgm2.e 

Observe that pgml and pgm2 are executable files in the current director:. In our next 
program, we will overlay the parent process with one of these tvvo processes. 

#include <stdio.h> 
#include <process.h> 

i nt mai n (voi d) 
{ 

} 

int choice = 0; 

printf("%s\n%s\n%s", 
"The parent process will be overlaid.", 
"You have a choice.", 
"Input 1 or 2: "); 

scanf("%d", &choice); 
putchar('\n'); 
if (choi ce == 1) 

execl ("pgm1", "pgm1", "a", lib", "c", 0); 

if (choi ce == ~)" 2" "1" "2" "3", "go", 0); execl ("pgm2, pgm, , , 
printf("ERROR: You did not input 1 or 2.\n"); 
return 0; 



560 Chapter 12.., Advanced Applications 

If we nm this program under MS-DOS and enter 1 when prompted, here is what app 
on the screen: 

The parent process will be overlaid. 
You have a choice. 
Input 1 or 2: 1 

C:\CENTER\PGM1.EXE: abc 

When a process is successfully overlaid, there is no return to the parent. The new pro
cess takes over completely. 

In UNIX, forkO is often used when overlaying one process with another. 

if (forkO == 0) 
execl("/c/c/bf/bin/mmf", "mmf", "-f" , 0); 

/* execute mmf *1 
else 

1* do something else *1 

Using the spawn ... () Family 

~os,t C systems in MS-DOS provide the spawn ... 0 family of functions. This family is 
slllniar to the exec ... 0 family, except that the first argument is an integer mode. 

Modes for the spawn ... O family Meaning 

0 Parent process waits until child process com-
pletes execution. 

I 
1 Concurrent execution-not yet implemented. 
2 I Child process overlays the parent process; I 

i same as equivalent exec ... 0 call. i 

MS-DOS is not a multiprocessing operating system. Where a programmer might use 
:orkO and execl 0 in UNIX, spawnl (0, ... ) could be used instead in MS-DOS. Here 
IS a call to spawn 10 that invokes chkdsk: 

spawnl(0, "c:\chkdsk" "chkdsk" "c," "If" 0)' , ,.," 

Because the mod,e is 0, the parent process will wait until the child process c:\chkdsk 
completes executlOn before continuing with its work. 

12.3 .., Interprocess Communication Using pi peO 561 

a 

12.3 Interprocess Communication Using pipe() 

In UNIX, the programmer can use pi pe 0 to communicate between concurrent pro
cesses. The function prototype is given by 

int pipe(int pd[2J); /* pd stands for pipe descriptor. *1 

The function call pi pe(pd) creates an input/output mechanism called a pipe. Associ
ated file descriptors, or pipe descriptors, are assigned to the array elements pd [0J and 
pd [lJ. The function call returns ° if the pipe is created, and returns -1 if there is an 
error. 

After a pipe has been created, the system assumes that two or more cooperating pro
cesses created by subsequent calls to fo rk 0 vvill use read 0 and wri te () to pass data 
through the pipe. One descriptor, pd [0J, is read from, and the other, pd [1J, is written 
to. The pipe capacity is implementation-dependent, but is at least 4,096 bytes. If a write 
fills the pipe, the pipe is blocked until data are read out of it. As with other file descrip
tors, closeO can be used to explicitly close pd [0] and pd [1J. 

To illustrate the use of pi pe 0, we will write a program that computes the sum of the 
elements of an array. We compute the sum of each row concurrently in a child process 
and write the values on a pipe. In the parent process, we read the values from the pipe. 

In file concurrenLsum.c 

1* Use pipes to sum N rows concurrently. *1 

#include <stdio.h> 
#include <stdlib.h> 

#define N 3 

int add_vector(int v[J); 
void error_exit(char *s); 
int fork(void); 
int pipe(int pd[2]); 
int read(int fd, void *buf, unsigned len); 
int write(int fd, void *buf, unsigned len); 



562 

} 

Chapter 12., Advanced Applications 

int main(void) 
{ 

int ~[N][N] = {{I, 1, I}, {2, 2, 2}, {3, 3, 3}}, 
1, row_sum, sum 0 
pd[2]; , 

/* pipe descriptors 
if (pipe(pd) == -1) 

error _exit("pi peO fail ed")' 
fo r ( i = 0; i < N' ++ i ) , 

if (fork() == 0) { 
/* create a pipe */ 

/* child process */ 
:ow_su~ = add_vector(a[i]); 
lf (wrlte(pd[l] , &row_sum, sizeof(int)) == -1) 

error _exit("writeO failed H). 
return; , /* return from child } 

for.(i = 0; i < N; ++i) { 
lf (read(pd~0J, &row_sum, sizeof(int)) 

error_exlt("readO failed"); 

} 
sum += row_sum; 

printf(HSum of the array = %d\n", sum); 
return 0; 

== -1) 

int add_vector(int v[]) 
{ 

} 

int i, vector_sum = e· , 
for (i = 0; i < N; ++i) 

vector_sum += v[iJ; 
return vector_sum; 

void error_exit(char '~s) 
{ 

} 

fprintf(stderr . , 
eXlt(l); 

"\nERROR: %s - byeJ\n", s); 

12.3 ., Interprocess Communication Using pi peO 563 

Dissection of the concurrenLsum Program 

• if (pipe(pd) == -1) /* create a pipe */ 
error _exit("pipeO fai 1 ed"); 

A pipe is created before other processes are forked. If the call to pi pe 0 fails, we 
invoke e r ro r _exi tOto write a message to the user and exit the program. 

• for (i = 0; i < N; ++i) 
if (forkO == 0) { r chil d process * / 

row_sum = add_vector(a[i]); 
if (write(pd[l] , &row_sum, sizeof(int)) == -1) 

error_exit("writeO failed"); 
return; /* return from child */ 

} 

Each time through the loop, we use forkO to create a child process. After row_sum has 
been computed, we write it on the pipe ""1th the function call 

write(pd[l] , &row_sum, sizeof(int)) 

If the call to wri teO fails, we invoke error _exi to to write a message to the user and 
exit the program. Note carefully that we explicitly retu rn from the child after the call 
to wri te O. If we do not do this, then the children will themselves create children each 
time through the loop. 

• for (i = 0; i < N; ++i) { 

} 

if (read(pd[0] , &row_sum, sizeof(int)) 
error_exit(" readO failed"); 

sum += row_sum; 

-1) 

In the parent process, we invoke readO to read row_sum from the pipe. If the call to 
readO fails, we invoke error_ex; to to write a message to the user and exit. 

• • 



564 Chapter 12 T Advanced Applications 

12.4 Signals 

An exceptional condition, or signal, is generated by an abnormal event. For example, 
the user may type a control-c to effect an interrupt, or a program error may cause a 
error or a segmentation fault. A floating-point exception occurs when two very large 
floating numbers are multiplied, or when division by zero is attempted. ANSI C 
vides the function signal 0 in the standard library. Its function prototype and 
macros are in signal.h. The material in this section applies to both MS-DOS and UNIX. 

The exceptional conditions that can be handled by the operating system are ~~ .... '-.u 

as symbolic constants in signal.h. Some examples are ' 

#define 
#define 
#define 
#define 

SIGINT 2 
SIGILL 4 
SIGFPE 8 
SIGSEGV 11 

/,~ inter rupt ,/, / 
1* illegal instruction *1 
/* floating-point exception *1 
/* segment violation *1 

Although the signals that can be handled are system-dependent, the ones that we have 
listed are common to most C systems. 

If an exceptional condition is raised in a process, then the typical default action of 
the operating system is to terminate the process. The programmer can use si gna 10 to 
invoke a signal handler that replaces the default system action. The function prototype 
is 

void (*signal(int sig, void C*func)(int)))(int); 

This function takes two arguments, an i nt and a pOinter to a function that takes an 
i nt, and retnrns nothing. The function retnrns a pointer to a function that takes an i nt 
and returns nothing. 

The function call signal (sig, func) associates the signal sig with the signal han
dler funcO. This causes the system to pass si 9 as an argument to funcO and invoke 
it when the signal s i g is raised. 

Some special signal handlers are defined as macros in signal.h. We will use two of 
them: 

#define 
#define 

((void (*)Cint)) 0) 
((void (*)(int)) 1) 

1* default "'1 
I'" ignore -i'l 

The casts cause the constants to have a type that matches the second argument to si g
na 1 O. Here is an example of how the second macro gets used: 

12.4 T Signals 565 

signal (SIGFPE, SIG_IGN); /* ignore floating-point exceptions *1 

ThiS causes floating-point exceptions to be ignored by the system. If at some later point 
we want to resume the default action, we can write 

signal (SIGFPE, SIG_DFL); /* take default action */ 

If a standard signal handler is inappropriate in a given application, the programmer 
can use si gna 10 to catch a signal and handle it as desired. Imagine wanting to use an 
interrupt to get the attention of a program without terminating it. The following pro-

gram illustrates this: 

/* Using a signal handler to catch a control-c. */ 

#include <5tdio.h> 
#include <signal.h> 
#include <stdlib.h> 

#define MAXSTRING 100 

void cntrl_c_handler(int 5ig); 
int fib(int n); 

i nt mai n (vo; d) 
{ 

} 

i nt i; 

signal (SIGINT, cntrl_c_handler); 
for (i = 0; i < 46; ++i) 

printf("fib(%2d) = %d\n", i, fib(i)); 
return 0; 

void cntrl_c_handler(int sig) 
{ 

} 

char answer[MAXSTRING]; 

printfC"\n\n%s%d\n\n%s" , 
"Interrupt received! Signal ", 5;g, 
"Do you wish to continue or quit? "); 

scanf("%s", answer); 
if (*answer == 'c') 

signalCSIGINT, cntrl_c_handler); 
else 

exit(l); 



566 Chapter 12 V Advanced Applications 

The function fi bOis not shown. It is the same function that we used in Section 1 
"Creating a Concurrent Process with forkO," on page 557. 

• 
Dissection of the fib_signal Program 

• 5ignal(SIGINT, cntrl_c_handler); 

If the SIGINT signal is raised, the system catches it and passes control to the function 
cntrl_c_handler(). 

• void cntrl_c_handler(int 5ig) 
{ 

char answer[MAXSTRING]; 
printf(l\n\n%5%d\n\n%s", 

"Interrupt received! Signal = ", 5ig, 
"Do you wish to continue or quit? "); 

When 5 i gna 1 0 passes control to this function, a message is printed on the screen. 

• if ('~answer f C ') 

5ignal(SIGINT, cntrl_c_handler); 
else 

ex;t(l); 

Depending on the answer typed by the user, we either reset our Signal handling mecha
nism or we exit the program. The interrupt signal is special. On some systems, after an 
interrupt has occurred, the system reverts to default action. The statement 

5ignal(SIGINT, cntrl_c_handler); 

allows us to catch another interrupt. 

• • 

12.5 V An Example: The Dining Philosophers 567 

$2 

12.5 An Example: The Dining Philosophers 

The dining philosophers problem is a standard model for synchronizing concurrent 
processes that share resources. Five philosophers are seate~ ar?und a circ~lar ta~le. 
Each philosopher has one chopstick at his side and a bowl of nee m front of him. Eatmg 
rice requires two chopsticks. There are only five chopsticks, so at most two philoso
phers can be eating at anyone time. Indeed, if each philosopher picked up one chop
stick, none could have two and they would all be deadlock~d. A philosopher ~ay 
acquire only the chopsticks to his or her immediate left or rIght. The problem IS to 
write a program with concurrent processes representing the philosophers, where each 
philosopher gets to eat fairly often. 

Touch my 
chopstick and 

you'll KNOW what 
non-existence is! 

o 0 o 

Hey! I don't 
even LIKE rice! 0 0 0 0 

Fifty years of 
reading books ... 

for THIS? 

o 
o 

o 

It's true! A single 
chopstick is without 

MEANING! 

0° 
o 

What! No 
SOY sauce!? 

o 0 



568 Chapter 12.., Advanced Applications 

In our program, each philosopher will be an identically forked process. The 
will require the use of semaphores implemented as pipes. A semaphore is a special 
able allowing wait and signal operations. (The si gna 10 function that we use here 
nothing to do with si gna lOin the standard library, which we discussed in the 
ous section.) The variable is a special location for storing unspecified values. The 
operation expects one item and removes it. The Signal operation adds one item. 
wait operation blocks a process until it can accomplish its removal operation. The 
nal operation can start up a blocked process. 

In file dining.c 

1* The dining philosopher program. *1 

#include <stdio.h> 
#include <stdlib.h> 1* for callocO and exitO '~I 

#define 
#define 
#define 
#define 
#define 

typedef 

semaphore 
int 
semaphore 
void 
void 
int 
void 
int 
void 
void 
void 
i nt 

N 5 
Busy_Eating 
Busy_Thinking 
Left(p) 
Right(p) 

1 
1 
(p) 
(((p) 

1* number of philosophers *1 

1* chopstick macros *1 
+ 1) % N) 

int * semaphore; 

chopstick[N]; 1* global array *1 
fork(void); 
make_semaphore(void); 
philosopher(int me); 
pi clcup(i nt me); 
pipe(int pd[2]); 
put_down(int me); 
read(int fd, void *buf, unsigned len); 
signal(semaphore s); 
sleep(unsigned seconds); 
wait(semaphore s); 
write(int fd, void *buf, unsigned len); 

int main(void) 
{ 

i nt i; 

12.5 T An Example: The Dining Philosophers 569 

for (i = 0; i < N; ++i) { 1* put chopsticks on the table *1 

} 

chopstick[i] make_semaphore(); 
signal(chopstick[i]); 

} 
for (i = 0; i < N - 1; ++i) 

if (fork() == 0) 
break; 

philosopher(i) ; 
return 0; 

1* create philosophers *1 

1* all executing concurrently *1 

The function mai nO creates each chopstick as a semaphore. Each chopstick starts out 
as an available resource. Then each philosopher is created as a concurrent forked pro
cess. Each philosopher executes philosopher(i), the routine that attempts to alter
nately eat and think. 

1* Acquire chopsticks, input is philosopher number. *1 

voi d pi clcup(i nt me) 
{ 

} 

if (me == 0) { 
wait(chopstick[Right(me)]); 

} 

printf("Philosopher %d picks up right chopstick\n", me); 
sleep(l); 1* simulate slow picking encourage deadlock "'I 
wait(chopstick[Left(me)]); 
printf("Philosopher %d picks up left chopstick\n", me); 

else { 
wait(chopstick[Left(me)]); 

} 

printf("Philosopher %d picks ~p left chopstick\n", me);,~ 
sleep(l); /* simulate slow plck up encourage deadlock I 
wait(chopstick[Right(me)]); . 
printf("Philosopher %d picks up right chopstlck\n", me); 

/* Relinquish chopsticks, input is the philosopher number. */ 

void put_down(int me) 
{ 

} 

signal (chopstick[Left(me)]); 
signal(chopstick[Right(me)]); 



570 Chapter 12... Advanced Applications 

/* Philosopher process, input is the philosopher number. */ 

void philosopher(int me) 
{ 

char *s; 
i nt i == 1; 

for ( ; ; ++i) { Ii' forever -:'/ 
piclLup(me); 

} 

s == i ==== 1 ? "st" : ,. == 2 7 "d" ' . n :1====3?"rd":"th"; 
printf("Phi~osopher %d eating for the %d%s time\n", 

me, 1, s); 
sleep(Busy_Eating); 
put_down(me); 
printf("Philosopher %d thinking\n", me); 
sleep(Busy_Thinking); 

} 

The h'l ' f ,p 1 osopherO routme attempts to acquire a left and right chopstick. If 
ill, It. eats and returns the chopsticks and resumes thinking. It acquires the 
b~ usmg the. semaphore o~eration wait 0 on its left and right chopsticks, The 
P',clLupO IS blocked untIl both chopsticks are acquired. It releases the chopsticks 
usmg the sen:aphor~ operation si gna lOon its left and right chopsticks. The Tllnf'h,,~ 
puCdown 0 IS termmated when both chopsticks are released. . 

{emaphore make_semaphore(void) 

i nt "'sema; 

sema == calloc(2 sizeof(int)); 
pipe(sema); , 

} 
return sema; 

void wait(semaphore s) 
{ 

i nt junk; 

/* permanent storage *1 

if (r~ad(s.~0] J &junk, 1) <== 0) { 
pnntf( ERROR: waitO failed, check semaphore creation.\n")', exit(l); 

} 
} 

. f? 

void signal (semaphore s) 
{ 

12.6 ... Dynamic Allocation of Matrices 

if (write(s[lJ, "x", 1) <== 0) { 

571 

printf("ERROR: writeO failed, check semaphore creation.\n"); 
exit(l); 

} 
} 

The semaphore is constructed by a call to pi pe (sema). The semaphore function 
wai t 0 is blocked until an item of input can be read into junk. The semaphore function 

gna 1 0 produces an item of output. 
This example is a standard one for operating system resource allocation in a multi

processing environment. A detailed discussion of algorithms for these problems can be 
found in The Logical Design of Operating Systems by Lubomir Bic and Alan Shaw (Engle
wood Cliffs, N.J: Prentice-Hall, 1988). 

12.6 Dynarrlic Allocation of Matrices 

Engineers and scientists use matrices extensively. In this section, we explain how a 
matrix can be created dynamically as an array of pointers so that it can be passed to 
functions that are designed to work on matrices of different sizes. 

Why Arrays of Arrays Are Inadequate 

In Section 6.12, "Multidimensional Arrays," on page 277, we discussed the simplest way 
of implementing matrices. Let us briefly review how this is done, and explain why this 
is unacceptable for lots of applications. If we want a 3 x 3 matrix, for example, we can 
declare 

double a[3][3]; 

This allocates space for a as an array of arrays. If we want to work with a locally, there 
is no problem. However, lots of operations on matrices, such as finding determinants or 
computing eigen values, are best done by calling a function, For the purpose of discus
sion, suppose we want to find the determinant of a. After the matrix a has been filled, 
we want to be able to write something like 

det == determinant(a); 



572 Chapter 12 '" Advanced Applications 

The function definition for dete rmi nant () will look like 

double determinant(doub1e a[J[3]) 
{ 

Because the compiler needs the 3 to build the correct storage mapping function, 
determinant function can be used only on 3 x 3 matrices. If we want to compute 
determinant of a 4 x 4 matrix, we need to write a new function definition. This is 
ceptable. We want to be able to write a determinant function that can be used 
square matrices of any size. 

Building Matrices with Arrays of Pointers 

By starting with the type pointer to pointer to double, we can build a matrix of what
ever size we want, and we can pass it to functions that are designed to work on 
ces of any size. Let us start vvith the code we need to create the space for a matrix: 

int 
double 

i, j, n; 
~""a, det, tr; 

a = ca110c(n, sizeof(doub1e *)); 
for (i = 0; i < n; ++i) 

/* get n from somewhere */ 

a[iJ = calloc(n, sizeof(double)); 

The size of the matrix does not have to be known a priori. We can get n from the user or 
read it from a file or compute it. It does not have to be coded as a constant in the pro
gram. Once we know the desired size, we use the standard library function ca 11 oc () to 
create the space for the matrix dynamically. The function prototype is given in stdlib.h 
as 

void ""calloc(size_t nitems, size_t size); 

Typically, the type definition for si ze_t is by 

typedef unsigned 

This type definition can be found in stddef.h and sometimes in stdlib.l1, too. If si ze_t is 
not defined directly in stdlib.h, then stddef.l1 will be included there. A function call of 
the form 

12.6 '" Dynamic Allocation of Matrices 573 

calloc(n, sizeof( type)) 

allocates space in memory for an array of n elements of the specified type. The base 
address of the array is returned. Thus, the statement 

a calloc(n, sizeof(double *)); 

allocates space for a, which we can now think of as an array of pointers to double of 
size n. In the for loop, each element of a is assigned the base address of space allo
cated in memory for an array of dou b 1 es of size n. We can think of a in memory as 

An n x n matrix in memory 

o 

2 

012 n-l 

o 1 2 n-l 
n-l 

o 1 2 n-l 

Now that space has been created for the matrix, we want to fill it. Let us assign to the 
elements of a integer values that are randomly distributed in the range from -9 to +9. 

for (i 0; i < n; ++i) 
for (j = 0; j < n; ++j) 

a[iJ[j] = rand() % 19 - 9; /* from -9 to +9 */ 

Note that even though our matrix a is stored in memory as an array of pointers, the 
usual matrix expression a [i J [j] is used to access the element in the ith row, jth col
umn (counting from zero). Because a is of type doub1 e ","', it follows that a [i ] is of 
type doub 1 e ~'. It can be thought of as the ith row (counting from zero) of the matrix. 
Because a [i ] is of type dou b 1 e 1" it follows that a [i ] [j] is of type dou b 1 e. It is the 
jth element (counting from zero) in the ith row. 



574 Chapter 12 'f Advanced Applications 

Now that we have assigned values to the elements of the matrix, we can pass the 
matrix as an argument to various functions. Suppose we want to print it, compute 
determinant, and compute its trace. In the calling environment we can write 

print_matrix(a, n); 
det determinant(a, n); 
tr = trace(a, n); 

The function definition for pri nLmatrixO is given by 

void print_matrix(double **a, int n) 
{ 

i nt i, j; 

for (i = 0; i < n; ++i) { 
for (j = 0; j < n; ++j) 

printf("%7.1f", a[iJ[jJ); 
putchar('\n') ; 

} 
putchar('\n'); 

} 

The function definition for dete rmi nant 0 begins as 

double determinant(double **a, int n) 
{ 

Because the determinant function is complicated, we postpone further discussion until 
the exercises. The trace, however, is easy. By definition, the trace of a matrix is the sum 
of its diagonal elements: 

double trace(double **a, 
{ 

int n) 

} 

int 
double 

i ; 
sum = 0.0; 

for (i 0; i < n; ++i) 
sum += a[i][i]; 

return sum; 

12.6 'f Dynamic Allocation of Matrices 575 

Adjusting the Subscript Range 

In mathematics, the subscripts for vectors and matrices usually start at 1, not O. We can 
arrange for our C code to do this, too. The following function can be used to create 
space for an n"vector: 

double *get_vector_space(int n) 
{ 

i nt i; 
double *v; 

v = calloc(n, sizeof(double)); 
return (v - 1); /* offset the pointer */ 

} 

Because the pointer value that is returned has been offset to the left, subscripts in the 
calling environment will run from 1 to n rather than from 0 to n 1. 

An H-vector indexed from 1, not 0 

v 

\ 
Shaded area indicates 

space not owned by the 
programmer 

o 1 2 n 

Note that in the picture, we have shaded an element to indicate that the programmer 
does not own element O. Now we can write code like the following: 

i nt 
double 

v = get_vector_spaceCn); 
for (i = 1; i <= n; ++i) 

v[i] = randC) % 19 - 9; 

/1< get n from somewhere 1(/ 

/* from -9 to +9 */ 

Instead of offsetting a pointer, we always have the option of allocating more space 
and then not using it all. 



576 Chapter 1 2.., Advanced Applications 

v = calloc(n + 1, sizeof(double)); 
for (i = 1: i <= n; ++i) 

v [i] = ... 

/* allocate extra space */ 

The technique of offsetting the pointer is better in the sense that no space is 
Let us use the technique to write a function that creates space for an m x n matrix With 
subscripts that start at 1 rather than O. 

double ~""get_matrix_space(int m, int n) 
{ 

int i; 
double ~"~a; 

a = calloc(m, sizeof(double *)); 
--a; 
for (i 1; i <= m; ++i) { 

/* offset the pointer */ 

a[i] = calloc(n, sizeof(double)); 
--a[i]; /* offset the pointer */ 

} 
return a; 

} 

We can think of the matrix a in memory as 

a 

An m x n matrix indexed (rom 1, not 0 

\ 
o 
1 

2 

m 

o 1 2 

n 

n 

Note that once again we have used shaded areas to indicate space not owned by the 
programmer. 

12.6 .., Dynamic Allocation of Matrices 577 

If a programmer wants space previously allocated by call oc 0 to be made available 
to the system again, then the function freeO must be used. Let us suppose that in 
mai n 0 we write 

i nt 
double 

i, j, n; 
**a; 

for ( ; ; ) { 

} 

a = get_matrix_space(n, n); 
for (i 1; i <= m; ++i) 

for (j = 1; j <= n; ++j) 
a[iJ [j] 

release_matrix_space(a, m); 

/"< do it foreve r -1,/ 
/* get n from somewhere */ 

/* assign values */ 
/* do something */ 

Here is the function definition for release_matrix_spaceO. We have to be careful to 
undo the pointer offsets that occurred in get_matrix_spaceO. 

void release_matrix_space(double ~"'<a, int m) 
{ 

i nt i; 

for (i = 1; i <= m; ++i) 
free(a[i] + 1); 

free(a + 1); 
} 

Allocating All the Memory at Once 

In certain applications, especially if the matrices are large, it may be important to allo
cate all the matrix space at once. At the same time, we want our matrices to be indexed 
from 1, not O. Here is code that we can use to allocate space for our matrices: 

In file matrix.h 

#include <stdio.h> 
#include <stdlib.h> 

typedef 
typedef 
typedef 

doub 1 e ,'n', 
double * 
double 

matrix; 
row; 
elem; 



578 Chapter 12 T Advanced Applications 

matrix get_matrix_space(int m, int n); 
void r~lease_matrix_space(matrix a); 
void flll_matrix(matrix a, int m, int n); 
void prn_matrix(const char *s, matrix a, int m, int n); 

N~te that we can get different kinds of matrices just by changing the typedef 
pnately. 

In file space.c 

#include "matrix.h" 

matrix get_matrix_space(int m { , i nt n) 

} 

int i . , 
el em "i( p; 
matrix 'a; 

p - malloc(m * n * sizeof(elem)); 
a - malloc(m * sizeof(row)); 
--a; 
for (; 1; i <- m; ++i) 

a[iJ - p + ((i - 1) * n) - 1; 
return a; 

void release_matrix_space(matrix a) 
{ 

elem * p; 

/* get space all at once 

/* offset the pointer 

p - (elem *) a[l] + 1; 
free(p); 

/* base address of the array */ 

free(a + 1); 
} 

Suppose that in some other function we write 

int 
matrix 

m, n; 
a; 

/* get m and n from somewhere */ 

12.7 T Returning the Status 

Here is how we can think of a in memory: 

o 

2 

m 

Space for an m x n matrix allocated 
all at once and indexed from 1, not 0 

, -

o 1 2 n 

I These two shaded areas are identified. 

579 

Caution: If we use algorithms that swap rows and we want to deallocate our matrix 
space, then we have to be careful not to lose the base address of the array in memory. 
We may want to redesign our abstract data type (ADT) matrix. 

12.7 Returning the Status 

Throughout this text, at the end of every function definition for mai nO we have writ
ten the line 

return 0; 

In this section, we want to explain how the value returned from ma in 0 can be used by 
the operating system. From the viewpoint of the operating system, the value returned 
by a process is called its status. Processes include both programs and shell scripts. The 
operating system does not necessarily have to use the status that gets returned from a 
process. 



580 Chapter 12,. Advanced Applications 

In most operating systems, you communicate with the machine by clicking the 
or typing commands on the keyboard. When you give commands such as 

ce pgm.e date echo Beautiful! 

you are communicating via the shell. The shell (which is itself a program) 
what you write and tries to execute your commands. There are three shells -~'"'~".V',.u. 
found on UNIX systems: the Bourne shell sh, the C shell csh, and the Korn shell ksh. 

To show how the value returned from mainO (the program status) can be used, 
are going to write a small program and then write a shell script that invokes our 
gram. Here is our program: 

In file try _me.c 

#include <stdio.h> 

#define MARKER H» If 

int main(int argc, char **argv) 
{ 

} 

int val; 

printf("\nfl); 
printf(MARKER" Input an integer: "); 
scanf("%d", &val); 
printf(MARKER "Value being returned: %d\n\n", val); 
return val; 

Note that main 0 can return any integer value, not just zero. Note also that we 
using a marker to clearly indicate the lines that are written to the screen. 

Next, we compile this program, putting the executable file in a directory that is in our 
path. 

gee -0 $base/bin/try_me try_me.e 

Now we are ready to write our shell script. 

#!/usr/bin/csh 

## 
## Experiment with the status. 
## 

echo ---
echo At the top: status = $status 
try_me 
echo ---
echo After try_me: status $status 
try_me 
set val $status 
echo 
echo After try_me again: val = $val 
echo If" 
echo ---

12.7 T Returning the Status 

echo To exit from the while loop, input 0. 
while ($val) 

try_me 
set val = $status 
echo In the loop: val $val 

end 

• • 
Dissection of the goJry Shell Script 

• #!/usr/bin/csh 

581 

A comment starts with a # and continues to the end of the line. This line is special, how
ever, because it begins with #! in column 1 at the top of .the file. Lines such as this are 
read by the operating system. This line tells the operatmg system to use the C shell, 
which is /usr/bin/csh, to execute this file. 

• ## Experiment'with the status. 

Comments begin with a # and continue to the end of the line. 

• echo 
echo At the top: status = $status 

The echo command takes the remainder of the line and writes it to the screen. The 
symbol $, however, is special. The value of a shell variable is obtained by writing 

$ (shelL variable_name) 

The shell variable status is a built-in variable. 



582 Chapter 12... Advanced Applications 

III try_me 
echo ---
echo After trY-IDe: status = $status 

At this point, we invoke our program try_me. After we have done this, we want to exam
ine the program status. (As we will see, our attempt fails.) 

III try_me 
set val = $status 
echo ---
echo After try_me again: val = $val 

After we invoke try_me again, we use the set command to create a shell variable named 
val that has, as its value, the current value of $status. (As we shall see, val has the 
value returned by mai nO in the program try_me.) We use the echo command to display 
$va 1 on the screen. 

III echo To exit from the while loop, input 0. 
whi 1 e ($va 1) 

try_me 
set val $status 
echo In the loop: val = $val 

end 

Finally, we enter a loop so that we can experiment and see the results printed on the 
screen. 

• 
Our shell script go_try is not very informative by itself. When we execute it, however, a 
lot of new ideas start to fall into place. To make the file executable, we give the com
mand 

Finally, we give the command 

and enter some numbers when prompted. Here is what appears on the screen: 

• 

At the top: status = 0 

» Input an integer: 3 
» Value being returned: 3 

After try_me: status = 0 

» Input an integer: 7 
» Value being returned: 7 

After try_me again: val = 7 

Dissection of the Output From go_try 

III 
At the top: status = 0 

12.7 ... Returning the Status 583 

The lines that begin with» were written by the try_me program. The nonblank lines 
were written by echo commands in the shell script go_try. Every process resets the 
value of status upon exiting, and by convention 0 is used to signify normal termina
tion of a process. An echo command is itself a process. The very first one we did was 

echo ---

When this process terminated, it set the value of status to O. This is reflected in the 
output line 

At the top: status = 0 

III» Input an integer: 3 
» Value being returned: 3 

These are lines generated by the try_me program. When prompted, we typed a 3 at the 
keyboard. The second line reports this. 



584 Chapter 12 V Advanced Applications 

• 
After try_me: status = 0 

At first, this report surprised us, but then we remembered that status is ephemeral. 
The echo command that generated --- reset the status after try_me. Hence, the value 
that gets reported is 0, not 3. 

.» Input an integer: 7 
» Value being returned: 7 

After try_me again: val = 7 

Af:er try_me is invoked again, we enter 7 when prompted. Immediately after try_me 
eXIts, we use the shell variable val to capture the current value of $status. In the shell 
script, the relevant lines are 

try_me 
set val = $status 
echo 
echo After try_me again: val = $val 

The whi 1 e loop in the shell script go_try allows the user to experiment. We observe 
that when we enter an integer n, the value that gets printed is n mod 256. In particular 
-1 yields 255. Thus, the program status is a nonnegative number between ° and 255: 
When ma in 0 returns a value to the shell, the shell can use it for its own purposes if 
this is desirable. ' 

. Alt~ough we used the UNIX C shell in our discussion in this section, the story is sim
Ilar wIth respect to the other UNIX shells and with respect to MS-DOS. 

V Summary 585 

Summary 

1 A concurrent process is code that executes simultaneously with the code that 
invoked it. In UNIX, forkO can be used to create a child process that is a copy of 
the parent process, except that the child has its own unique process identification 
number. If a call to fa rk 0 is successful, .it returns ° to the child and the child's 
process identification number to the parent; if unsuccessful, it returns -1. 

2 In both MS-DOS and UNIX, a member of the exec ... 0 family can be used to over
lay one process with another. There is no return to the parent. Another family, 
spawn ... 0, is available in MS-DOS. With this family, it is possible to return to the 
parent. This use, in a certain sense, is comparable to the combined use of forkO 
and exec ... 0 in UNIX. 

3 In UNIX, the system call pi pe (pd) creates a mechanism for interprocess communi
cations called a pipe. After a pipe is open, calls to fo rk 0 are used to create pro
cesses that communicate via the pipe. The functions read () and wri te 0 are used. 

4 The function si gna lOis available in the standard library. It can be used to associ
ate a signal with a signal handler. The signal handler can be a function the program
mer vvrites to replace the default system action. When the signal is raised, program 
control passes to the signal handler. The set of signals that are handled by the oper
ating system is defined as macros in signal.h. This set is system-dependent, but 
some of the signals are common to both MS-DOS and UNIX. 

5 The dining philosophers problem is a standard model for synchronizing concurrent 
processes that share resources. The problem is to write a program with concurrent 
processes representing the philosophers, where each philosopher gets to eat (share 
resources) fairly often. 

6 A semaphore is a special variable allowing wait and signal operations. The variable 
is a special location for storing unspecified values. The wait operation expects one 
item and removes it. The signal operation adds one item. The wait operation blocks 
a process until it can accomplish its removal operation. The signal operation can 
start up a blocked process. 

7 By starting with the type pointer to pointer to daubl e, we can build a matrix of 
whatever size we want, and we can pass it to functions that are designed to work on 
matrices of any size. This is an important idea for engineers and scientists. 



586 Chapter 12 Y Advanced Applications 

Exercises 

1 Modify the simple forking program given in Section 12.1, "Creating a Concurrent 
Process with forkO," on page 556, so that it has three copies of the line 

value = forkO; 

T~e output of the program is nondeterministic. Explain what this means. 
Hmt: Execute your program repeatedly. 

2 If fo r k 0 fails, no child process is created and -1 is returned. Write a program that 
contains the following code: . 

#define N 3 

for (i = 1; i <= N; ++i) { 
pid = forkO; 
if (pi d == 0) 

} 

printf("%2d: Hello from child\n", i); 
else if (pid > 0) 

printf("%2d: Hello from parent\n", i); 
else 

printf("%2d: ERROR: Fork did not occur\n", i) ; 

How large must N be on your system to get an error message printed? 

3 In Section 12.2, "Overlaying a Process: the exec ... 0 Family," on page 560, we pre
~ented a program that illustrates how one process gets overlaid with another. Mod
ify that program. Begin by creating another executable file, say pgm3, which prints 
the current date. Provide that as another choice for overlaying the parent process in 
the program you are modifying. 

4 Does the fortune command work on your system? If so, find out where the execut
able code is. Then take one of your working programs and insert code similar to 

if (forkO == 0) 
execl("/usr/games/fortune", "fortune", 0); 

What is the effect of doing this? 

5 Write a program that uses n concurrent processes to multiply two n x n matrices. 

Y Exercises 587 

6 Compile two programs into executables named progl and prog2. Write a program 
that executes both concurrently by forking twice and using execl 0 to overlay the 
two executables. 

7 When a pipe is filled to capacity on your system, how many characters does it hold? 
Write a program to find out. Hint: Write characters into the pipe until it blocks. 

8 Change the dining philosophers program so that upon receiving an interrupt it 
prints out how many times each philosopher has eaten. Also, experiment to see 
what happens if the pi ck_upO function is changed so that philosopher number 3 
picks up the right chopstick first and everyone else picks up the left chopstick first. 

9 How signals are handled is system-dependent. Try the following program on differ
ent systems to see what happens: 

#include <stdio.h> 
#include <signal.h> 
#include <math.h> 7* HUGE_VAL defined here */ 

int main(void) 
{ 

double x = HUGE_VAL, Y = HUGE_VAL; 

signal (SIGFPE, SIG_IGN); 
pri ntf("Ignore si gnal: x '~y %e\n", x ,~ y); 
signal (SIGFPE, SIG_DFL); 
printf(tlDefault signal: x 1: y == %e\n" , x ~, y); 
return 0; 

} 

10 Starting with a variable of type double *1" we showed how a matrix can be built 
dynamically and then passed to functions. Do we really have to do it all dynami
cally? Consider the code 

int 
double 
double 

i ; 
*a[3], det; 
trace(doubl e "ld: 

for (i 0; i < 3; ++i) 

i nt); 

a[iJ = calloc(3, sizeof(double)); 

tr trace(a, 3); 

/* function prototype */ 

/* fill matrix a [][J */ 

The array a is being passed as an argument, but from the function prototype we see 
that an argument of type double ,~," is needed. Will your compiler complain? 
Explain. 



588 Chapter 12 'f Advanced Applications 

11 In the 1970s, before C was available to us, we had occasion to use PLl1, a 
that is commonly found on IBM mainframes. The PLl1 manuals always stre 
that the compiler could create vectors and matrices that started at any 
index. For example, a declaration of the form 

i nt automobiles[1989 : 1999]; 1'" 

would create an array of size 11, 'with its index starting at 1989. This array 
used to store the number of automobiles sold, or projected to be sold, in the 
1989 to 1999. Perhaps one reason this concept was stressed was that FORTRAN 
other languages were not able to create such arrays. In C, of course, such an 
can be created. Explain how this is done. 

12 Filling matrices vvith Integers that are randomly distributed in the range from-N 
+ N is convenient for testing purposes. If you are checking machine 
by hand, then a reasonable value for Nis 2 or 3. 'Write a function that fills ma 

void filLmatrix(double ~d'a, int m, int n, int N) 
{ 

13 Let A = (aij) be an n x matrix. The determinant of A can be computed using 
ian elimination. This algorithm requires that for k = 1 to n - 1 we do the 
Start with akk and examine all the elements in its coluum that are below akk, ' 
ing akk itself. Among those elements find the one that is the largest in abs 
value. This element is called the pivot. If the pivot is in the ith row, and i is 
equal to k, then interchange the ith and kth rows. (Keep track of the number 
interchanges that are performed.) After this has been done, akk will be the pivot. 
this value is zero, then the value of the determinant is zero and the algorithm is 
ished. Otherwise, for I = k + 1 to n add a multiple of the kth row to the ith 
where the multiple is given by (-1 I akk ) x aik. The final step is to take the pro 
of the diagonal elements of the matrix. If the number of row interchanges in the 
algorithm is even, then this product is the determinant. Othen-vise, the negative 
this product is the determinant. In this exercise you are to write a program that 
computes the determinant of n x n matrices. In order to have subscripts that start 
at 1 rather than 0, use the function get_matrix_spaeeO. Hint: Use hand simula
tion of the algorithm on a small matrix first so that you understand the details of 
the algorithm. 

for (k = 1; k <= n; ++k) { 
find the pivot element 
if the pivot is zero, return zero . 

} 

if the pivot is in the ith row, ~nd 1 ! . k, 
then interchange the 1 th row WIth the kt~ row 
and increment the interchange counter l_ent 

pivot = a[kJ [k]; . . 
for (; = k + 1; 1 <= n; ++1) { . 

} 

multiplier = -a[;J[kJ * (1.0 I P1vot); 
for (j = k; j <= n; ++j) 

a[i][jJ += multiplier * a[k][j]; 

if (i_ent % 2 == 0) 
det 1.0; 

else 
det = -1.0; 

for (i = 1; i <= n; ++i) 
det 'i,= aLi] [i]; 

return det; 

"if Exercises 

14 One way to get a three-dimensional array is to make a declaration such as 

double a[9] [2] [7] ; 

589 

Suppose we want to pass this array to a function, and we want th~ functi?~ ~o wo~k 
on three-dimensional arrays of various sizes. Because the functlOn defmltlon WIll 

require the 2 and the 7 to build the correct storage mappi~g function, implement
ing a as an array of arrays will not work. Instead, we can wnte 

i nt 
double 

i, j, nl, n2, n3; 
'1o'<~I(a ; 

1* get sizes from somewhere */ 
a = ea110c(nl, sizeof(int **)); 
for (i = 0; i < nl: ++i) { 

a[i] = calloe(n2, sizeof(double *)); 
for (j = 0; j < n2; ++j) 

a[;][j] ca11oe(n3, sizeof(double)); 
} 

Draw a picture of how a can be thought of in memory. Write a progra~ that i~ple
ments this scheme. Your program should get the sizes from the user mteract1Ve~y, 
allocate space for the three-dimensional array, and fill th~ array with randomly dIS
tributed integers from a small range. Note that each a [1] can be thought o~ as a 
matrix. Print the array on the screen by first printing a [0], then a [lJ, and so forth. 



590 Chapter 12... Advanced Applications 

Finally, print the sum of all the elements of the array. Use a function to r()1rY\""" .. " 

this sum. 

15 Consider the following program: 

#include <stdio.h> 

#define N 3 

double trace(double *a[]); 

int main(void) 
{ 

} 

double a[N][N] == {l, 2, 3, 4, 5, 6, 7, 8, 9}; 

printf("The trace of a is %.3f\n", trace(a)); 
return 0; 

double trace(double **a) 
{ 

} 

int 
double 

i, j; 
sum = 0.0;; 

for (i 0; i < N; ++i) I'~ N is hardwired in the body i<1 
for (j = 0; j < N; ++j) 

sum +== a[i] [j]; 
return sum; 

The compiler complains about the call trace (a). If we change this to 

trace((double [N][N]) a) 

will the compiler be happy? Will the code work? Explain. 

16 Remote procedure call (RPC) is used in distributed systems to execute code on 
other machines on a network. First, the program running on the local machine, 
called a client, sends a request to the second machine, called a server. The server 
calls a routine to perform the requested service. Finally, the results of the request 
are returned to the client. The following code is based on Sun Microsystems RPC 
and was written by Darrell Long: 

1* IISUN MICROSYSTEMS RPC code. 
II compile with cc pgc.c -lrpcsvc 
*1 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <rpcsvc/rstat.h> 

Ii' 
IIPoll the host. 
,,< I 

void do_poll(char "'host) { 
int stat; 
struct statstime result_stats; 

... Exercises 

stat == callrpc(host, RSTATPROG, RSTATVERS_TIME, 
RSTATPROC_STATS, 

} 

xdr_void, 0, xdr_statstime, &result_stats); 
if (stat === RPC_SUCCESS) 

fprintf(stdout, "DATA %s %ld %ld\n", host, 
result_stats.boottime.tv_sec, 
result_stats.curtime.tv_sec); 

int main(void) 
{ 

I*p olled machine *1 

} 

do_poll (" machine. school. edu"); 
return 0; 

Run this code across your local network. Look in the file 

jusrjinc!udejrpcsvcjrstat.h 

to figure out what these statistics mean. 

591 



Chapter 13 

Moving from C to c++ 

This chapter gives an overview of the c++ programming language. It also provides an 
introduction to C++'s use as an object-oriented programmiug language. In the chapter, 
a series of programs is presented, and the elements of each program are carefully 
explained. The programs increase in complexity, and the examples in the later sections 
illustrate some of the concepts of object-oriented programming. 

The examples in this chapter give simple, immediate, hands-on experience with key 
features of the c++ language. The chapter introduces the reader to stream I/O, operator 
and function overloading, reference parameters, classes. constructors. destructors, 
templates. and inheritance. Mastery of the individual topics requires a thorough read
ing of a companion book such as either Pohl, c++ {or C Programmers, 2d ed (Redwood 
City, CA: Benjamin/Cummings, 1993) or Pohl, Object-Oriented Programming Using C++, 
2d ed (Reading, MA: Addison-Wesley, 1997). 

Object-oriented programming is implemented by the cl ass construct. The cl ass 
construct in C++ is an extension of struct in C. The later examples in this chapter 
illustrate how C++ implements OOP (object-oriented programming) concepts. such as 
data hiding, ADTs, inheritance, and type hierarchies. 



594 Chapter 13". Moving from C to C++ 

13.1 Output 

pro~ams must communicate to be useful. Our first example is a program that 
on t e screen the phrase "C++ is an improved c." The complete program is 

In file improved.cpp 

IIII A fi~st C++ program illustrating output. 
Tltle: Improved 

II Author: Richmond Q. Programmer 

#include <iostream.h> 

int mainO 
{ 

} 
cout « "C++ is an improved C. \n"; 

The program prints on the screen 

C++ is an improved C. 

• • 
Dissection of the improved Program 

• II A first C++ program illustrating output. 

~he double slash I I is a new comment symbol. The comment runs to the end of the 
Ime. The old C bracketing comment symbols 1''< ''<I are still available for multill'ne 
comments. 

• #include <iostream.h> 

The iostream.h header introduces 1/0 facilities for C++. 

• int mainO 

In C++ the emptyparenth I· " , esesawaysmeanmaln(vold) nevermain( ) C++ t I' 
not to use the redundant voi d for declaring the empty a~gument list .. '" s y e IS 

13.2 ". Input 595 

• cout« "C++ is an improved C. \n"; 

This statement prints to the screen. The identifier cout is the name of the standard 
output stream. The operator « passes the string II C++ is an imp roved C. \n" to 
standard out. Used in this way the output operator « is referred to as the put to or 
insertion operator. 

We can rewrite our first program as follows: 

II A first C++ program illustrating output. 

#include <iostream.h> 

mainO 
{ 

cout « "C++ is an improved c." « endl; 
} 

• • 

Although it is different from the first version, it produces the same output. This version 
drops the explicit declaration of ma; n 0 as returning an i nt and uses the fact that this 
return type is implicit. Here we use the output operator « put to twice. Each time the 
« is used with CQut, printing continues from the position where it previously left off. 
In this case, the identifier endl forces a new line followed by a flush. The endl is called 
a manipulator. 

13.2 Input 

We will write a program to convert to kilometers the distance in miles from the Earth to 
the moon. In miles this distance is, on average, 238,857 miles. This number is an inte
ger. To convert miles to kilometers, we multiply by the conversion factor 1.609, a real 
number. 

Our conversion program will use variables capable of storing integer values and real 
values. In C++, all variables must be declared before their use, but unlike in C, they need 
not be at the head of a block. Declarations may be mixed in with executable statements. 
Their scope is from the point of the declaration to the end of the block within which 
they are declared. Identifiers should be chosen to reflect their use in the program. In 
this way, they serve as documentation, making the program more readable. 



596 Chapter 13 V Moving from C to C++ 

These programs assume a 4-byte i nt, but on some machines these variables 
be declared 1 on9. You can check the constant INT _MAX in limits.h. 

In file moon.cpp 

II The distance to the moon converted to kilometers. 
II Title: moon 

#include <iostream.h> 

int mainO 
{ 

} 

const int moon = 238857; 

cout « "The moon's distance from Earth is " « moon; 
cout « " miles." « endl; 
int moon_kilo = moon * 1.609; 
cout « "In kil omete rs thi sis " « moon_ki 10; 
cout « " km." « endl; 

The output of the program is 

• 
The moon's distance from Earth is 238857 miles. 
In kilometers this is 384320 km. 

Dissection of the moon Program 

• const int moon = 238857; 

The keyword canst is new in C++. It replaces some uses of the preprocessor command 
defi ne to create named literals. Using this type modifier informs the compiler that the 
initialized value of moon cannot be changed. Thus, it makes moon a symbolic constant. 

III cout« "The moon's distance from Earth is II « moon; 

The stream I/O in C++ can discriminate among a variety of simple values without need
ing additional formatting information. Here the value of moon is printed as an integer. 

13.2 T Input 597 

• int moon_kilo = moon * 1.609; 

Declarations can occur after executable statements. This allows declarations of vari
ables to be nearer to their use. 

• 
Let us write a program that will convert a series of values from miles to kilometers. 

The program will be interactive. The user will type in a value in miles, and the program 
will convert this value to kilometers and print it out. 

In file mi_km.cpp 

II Miles are converted to kilometers. 
II Title: mi_km 

#include ostream.h> 

const double m_to_k = 1.609; 

inline int convert(int mi) { return (mi * m_to_k); } 

int mainO 
{ 

} 

i nt miles; 

do { d" '1 .". cout «"Input 1 stance 1 n ml es. , 
cin » miles; 
cout « "\nOi stance is n « convert(mil es) « n km. II 

« endl j 

} while (miles> 0); 

This program uses the input stream variable ci n, which is normall? stan~ard input. 
The input operator» is called the get from or extraction operator, ~hich aSSIgns values 
from the input stream to a variable. This program illustrates both mput and output. 



598 Chapter 13 T Moving from C to C++ 

• 
Dissection of the mLkm Program 

c++ reduces C's traditional reliance on the preprocessor. For example, instead of hav
ing to use defi ne, special constants, such as the conversion factor 1.609, are simply 
assigned to variables specified as constants. 

a inline int convert(int mi) { return (mi * m_to_k); } 

The new keyword i nl i ne specifies that a function is to be compiled, if possible as 
inline code. This avoids function call overhead and is better practice than C's use of 
defi ne macros. As a rule, in 1 i ne should be done sparingly and only on short func
tions. Also note how the parameter mi is declared within the function parentheses. C++ 
uses function prototypes to define and declare functions. This will be explained in the 
next section. 

a do { 
cout « "Input distance in miles: "; 
cin » miles; 
cout « H\nDistance is " « convert(miles) « " km." 

« endl; 
} while (miles> 0): 

The program repeatedly prompts the user for a distance in miles. The program is termi
nated by a zero or negative value. The value placed in the standard input stream is 
automatically converted to an integer value assigned to mi 1 es. 

• • 

13.3 T Functions 599 

-
13.3 Functions 

The syntax of functions in C++ inspired the new function prototype syntax found in 
standard C compilers. Basically, the types of parameters are listed inside the header 
parentheses. By explicitly listing the type and number of arguments, strong type check
ing and assignment-compatible conversions are possible in C++. 

C++ allows functions to have arguments directly called by reference. Call-by-refer-
ence parameters are declared using the syntax 

type& identifier 

Also, C++ function parameters can have default values. These are given in the function 
declaration inside the parameter list by 

expression 

added after the parameter. 
The following example illustrates these points: 

In file add3.cpp 

II Use of a default value 

#include <iostream.h> 

inline void add3(int& s, int a, int b, int c 
{ 

s = a + b + c; 
} 

0) 

inline double average(int s) { return s I 3.0; } 



600 Chapter 13" Moving from C to C++ 

• 

int mainO 
{ 

} 

int score_I, score_2, score_3, sum; 

e<;>ut « "\nEnter 3 scores: "; 
Cln » score_I » score_2 » score_3; 
add3(sum~ score_I, score_2, score_3); 
cout« \nSum = " « sum; 
cout « It\nAverage = " «average(sum) « end1' 
add3(sum:. 2 * score_I, score_2); I I use of default value 0 
cout« \nWeighted Sum "« sum « II If, 

cout « "\nWeighted Average = It « aver~g~(sum) « ".\n"; 

Dissection of the add3 Program 

.. ~n1ine void add3(int& s, int a, int b, int c = 0) 

s a + b + c; 
} 

The variable s is call-by-reference. An actual argument passed in must be an 
because that will be the actual address used when the procedure is called. 

II add3(sum, score_I, score_2, score_3); 

The variable su.m is passed-by-reference. Therefore, it is directly manipulated and can 
be used to obtam a result from the function's computation. 

.. add3(sum, 2 * score_l, score_2); II use of default value 0 

Here only three actual arguments are used in calling add 30. The fourth argument 
defaults to value zero. 

13.4 " Classes and Abstract Data Types 601 

Classes and Abstract Data Types 

What is novel about c++ is its aggregate type c1 ass. A c1 ass is an extension of the idea 
of struct in traditional C. A c1 ass provides the means for implementing a user
defined data type and associated functions and operators. Therefore, a c1 ass can be 
used to implement an ADT. Let us write a c1 ass called stri ng that will implement a 
restricted form of string. 

In file my _string.cpp 

II An elementary implementation of type string. 

#inc1ude <string.h> 
#include <iostream.h> 

canst int max_len = 255; 

class string { 
public: II universal access 

void assign(const char* st) 
{ strcpy(s, st); len = str1en(st); } 

int 1ength() { return len; } 
void printO { cout« s« "\nLength: II «len« "\n"; } 

private: II restricted access to member functions 
char s[max_len]; II implementation by character array 
i nt 1 en; 

} ; 

Two important additions to the structure concept of traditional C are found in this 
example: first. it has members that are functions, such as assi gn, and second, it has 
both public and private members. The keyword pub 1 i c indicates the visibility of the 
members that follow it. Without this keyword. the members are private to the class. Pri
vate members are available for use only by other member functions of the class. Public 
members are available to any function within the scope of the class declaration. Privacy 
allows part of the implementation of a class type to be "hidden." This restriction pre
vents unanticipated modifications to the data structure. Restricted access. or data hid
ing, is a feature of object-oriented programming. 

The declaration of member functions allows the ADT to have particular functions act 
on its private representation. For example, the member function 1 ength returns the 
length of the string defined to be the number of characters up to but excluding the first 



602 Chapter 13 'f' Moving from C to c++ 

zero value character. The member function p ri nt 0 outputs both the string and 
length. The member function assi gn 0 stores a character string into the hidden 
able s and computes and stores its length in the hidden variable 1 en. 

We can now use this data type str; ng as if it were a basic type of the language. 
obeys the standard block structure scope rules of C. Other code that uses this type is 
client. The client can use only the public members to act on variables of type stri ng. 

II Test of the class string. 

int mainO 
{ 

} 

string one, two; 
char three [40] {liMy name is Charles Babbage."}; 

one.assign("My name ;s Alan Turing."); 
two.ass;gn(three); 
cout « three; 
cout « "\nLength: II « strlen(three) « endl; 
II Print shorter of one and two. 
if (one.length() <= two.length()) 

one.printO j 
else 

two.pr;ntO j 

The variables one and two are of type stri ng. The variable th ree is of type pointer 
to char and is not compatible with stri ng. The member functions are called using 
dot operator or "structure member operator." As is seen from their definitions, 
member functions act on the hidden private member fields of the named variables. 
cannot write inside mai n the expression one. 1 en expecting to access this member. The 
output of this example program is 

My name is Charles Babbage. 
Length: 27 
My name ;s Alan Turing. 
Length: 23 

13.5 'f' Overloading 603 

13.5 Overloading 

The term overloading refers to the practice of giving several meanings to an operator or 
a function. The meaning selected depends on the types of the arguments used by the 
operator or function. Let us overload the function pri nt in the previous example. This 
will be a second definition of the pri nt function. 

class string { 
public: II universal access 

} 

void printO { cout « s « n\nLength: II « len « "\n"; } 
void print(int n) 
{ 

} 

for(int i = 0; i < n; ++i) 
cout « S « endl; 

This version of pri nt takes a single argument of type i nt. It will print the string n 
times. 

three.print(2); 
three.print(-l); 

II print string three twice 
II string three is not printed 

It is also possible to overload most of the C operators. For example, let us overload + 
to mean concatenate two strings. To do this we need two new keywords: fri end and 
operator. The keyword operator precedes the operator token and replaces what 
would otherwise be a function name in a function declaration. The keyword fri end 
gives a function access to the private members of a class variable. A fri end function is 
not a member of the class but has the privileges of a member function in the class in 
which it is declared. 



604 Chapter 13" Moving from C to C++ 

In file ovLstring.cpp 

II Overloading the operator + 

#include <string.h> 
#include <iostream.h> 

const int max_len = 255; 

class string { 
public: 

~oid assign(const char* st) { strcpy(s, st); len = strlen(st)' 
lnt length() { return len' } , 
vo~d printp { cout « s <~ "\nLength: " « len « endl; } 

.frlend strlng operator+(const string& a const string& b)' 
pnvate: " 

char s[max_len]; 
int len; 

} ; 

string operator+(const string& a, const string& b) 
{ 

string temp; 

temp,assign(a.s); 
temp. len = a.len + b.len; 
if (temp. len < max_len) 

strcat(temp.s, b.s); 
else 

II overload + 

} 

cerr « "Max length exceeded in concatenation.\n"; 
return temp; 

void print(const char* c) 
{ II file scope print definition 

} 
cout « c « "\nLength: " « strlen(c) « "\n"; 

• 

int mainO 
{ 

13.5 " Overloading 

string 
char 

one, two, both; 

} 

three[40] = {"My name is Charles Babbage."}; 

one. assi gn ("My name 
two.ass;gn(three); 
print(three); 
II Print shorter of 
if (one.length() <= 

one.printO; 
else 

two.printO; 
both one + two; 
both. pri ntO; 

is Alan Tu ri ng. ") ; 

II file scope print called 
one and two. 
two.lengthO) 

II member function print called 

II plus overloaded to be concatenate 

Dissection of the operator+ Function 

• string operator+(const string& a, const string& b) 

605 

Plus is overloaded. The two arguments it will take are both strings. The arguments are 
call-by-reference. Use of canst indicates that the arguments cannot be modified. 

• string temp; 

The function needs to return a value of type stri ng. This local variable will be used to 
store and return the concatenated string value. 

temp.assign(a.s); 
temp. len = a.len + b.len; 
if (temp. len < max_len) 

strcat(temp.s, b.s); 

The string a. 5 is copied into temp. 5 by calling the st rcpy () library function. The 
length of the resulting concatenated string is tested to see that it does not exceed the 
maximum length for strings. If the length is acceptable, the standard library function 
st rca to is called \.vith the hidden string members temp. 5 and b. s. The references to 
temp. s, a. s, and b. s are allowed because this function is a fri end of class st ri ng. 



606 Chapter 13... Moving from C to C++ 

• cerr« liMa 1 
x ength exceeded in concatenation.\n"; 

The standard error stream ce r' d . 
tion takes place. Only the first s~r~~:~ll ~: ~~~~~~rror message, and no 

• return temp; 

The operator was given a return t e f . 
priate concatenated string. yp 0 stn ng, and temp has been assigned the 

• 
13.6 Constructors and Destructors 

A constructor is a member funcr h . . .... 
OOP terms, such a variable is anI~~:V ose Job IS to lmtlal~z~ a variable of its class. In 
allocation Constru t . ')ect. In many cases, thIS mvolves dynamic s 

. c ors are mvoked any t' b' . 
ated. A destructor is a member f rIme. an.o Ject of Its associated class is cre-
of its class. The destructor is c~~~~o.n w~o~~ JObhIS to deallocate, or finalize, a variable 
SCope. Imp ICIt y W en an automatic object goes out of 

Let us change our stri n9 exam Ie b d' . 
variable. We will replace the . p Y yna~Ically allocating storage for each str; ng 

. prIVate array vanable by a p . t Th 
wIll use a constructor to allocate an . om er. e remodeled class 
the new operator. appropnate amount of storage dynamically using 

II An implementation f d o ynamically allocated strings. 
class string { 
public: 

st~ing(iryt n) { s = new char[n + 1]' len 
vOld asslgn(const char* st) , 
. {lstrcpy(s, st)j len = strlen(st). } 
ln~ e~gth() { return len; } , 
vo: d pn ntq { cout « s « "\nLength: " 

pri~~~:7d strlng operator+(const string& a, 

char t( s; 
int len; 

} ; 

n;} II constructor 

« len « "\n"; } 
const str;ng& b); 

13.6 ... Constructors and Destructors 607 

A constructor is a member function whose name is the same as the class name. The 
1,n~r'iA7fn'rl new is an addition to the C language. It is a unary operator that takes as an 
argument a data type that can include an array size. It allocates the appropriate amount 
of memory from free store to store this type, and returns the pointer value that 
addresses this memory. In the preceding example, n + 1 bytes would be allocated from 
free store. Thus, the declaration 

string a(40) , b(100); 

would allocate 41 bytes for the variable a, pointed at by a. s , and 101 bytes for the vari
able b, pointed at by b. s. We add 1 byte for the end-of-string value O. Storage obtained 
by new is persistent and is not automatically returned on block exit. When storage 
return is desired, a destructor function must be included in the class. A destructor is 
written as an ordinary member function whose name is the same as the class name pre
ceded by the tilde symbol ~ . Typically, a destructor uses the unary operator de 1 ete or 
de 1 ete [], another addition to the language, to automatically deallocate storage associ
ated with a pointer expression. The delete[] is used anytime new type[size] was 
used for allocation. 

II Add as a member function to class string. 
~string() { delete [Js;} II destructor 

It is usual to overload the constructor, writing a variety of such functions to accom
modate more than one style of initialization. Consider initializing a string with a 
pointer to char value. Such a constructor is 

string(const char* p) 
{ 

} 

len = strlen(p); 
s = new char[len + 1]; 
strcpy(s, p); 

A typical declaration invoking this version of the constructor is 

char;' 
stri ng 

str "1 came on foot."; 
a("l came by bus."), b(str); 

It would also be desirable to have a constructor of no arguments: 

string() { len = 255; s = new char[255]; } 



608 Chapter 13 'f Moving from C to C++ 

This would be invoked by declarations without parenthesized arguments and would, 
default, allocate 255 bytes of memory. Now all three constructors would be invoked 
the following declaration: 

string a, b(10), c("I came by horse."); 

The overloaded constructor is selected by the form of each declaration. The variable 
has no parameters and so is allocated 255 bytes. The variable b has an integer p 
ter and so is allocated 11 bytes. The variable c has a pointer parameter to the 
string "I came by horse." and so is allocated 17 bytes, with this literal string c 
into its private s member. 

13.7 Object-oriented Programming and Inheritance 

A novel concept in OOP is the inheritance mechanism. This is the mechanism of deriv
ing a new class from an existing one called the base class. The derived class adds to or 
alters the inherited base class members. This is used to share code and interface and to 
create a hierarchy of related types. 

Hierarchy is a method for coping with complexity. It imposes classifications on 
objects. For example, the periodic table of elements has elements that are gases. These 
have properties that are shared by all elements in that classification. Inert gases are an 
important special class of gases. The hierarchy here is as follows: An inert gas, such as 
argon, is a gas, which, in turn, is an element. This hierarchy provides a convenient way 
to understand the behavior of inert gases. We know they are composed of protons and 
electrons, as this is shared description with all elements. We know they are in a gaseous 
state at room temperature, as this behavior is shared with all gases. We know they do 
not combine in ordinary chemical reactions with other elements, as this is shared 
behavior with all inert gases. 

Consider designing a data base for a college. The registrar must track different types 
of students. The base class we need to develop captures a description of "student." Two 
main categories of student are graduate and undergraduate. 

Here is the OOP design methodology: 

13.7 'f Object-oriented Programming and Inheritance 

OOP Design Methodology 

1 Decide on an appropriate set of types. 

2 Design in their relatedness. 

3 Use inheritance to share code. 

An example of deriving a class is as follows: 

enum support { ta, ra, fellowship, other }; 
enum year { fresh, soph, junior, senior, grad }; 

class student { 
public: 

student(char* nm, int id, double g, year x); 
voi d pri ntO ; 

private: 
int student_id; 
double gpa; 
year y; 
char name[30]; 

} ; 

class grad_student: public student { 
public: 

grad_student 
(char* nm, int id, double g, year x, support t, 
char* d, char* th); 

void printO; 
private: 

support 
char 
char 

} ; 

s; 
dept[10]; 
thesis[80]; 

609 

In this example, grad_student is the derived class, and student is the base class. The 
use of the ke)"vord pub 1 i c following the colon in the derived class header means that 
the public members of student are to be inherited as public .member~ of 
grad_student. Private members of the base class cannot be accessed m.the denved 
class. Public inheritance also means that the derived class grad_student IS a subtype 

of student. 
An inheritance structure provides a design for the overall system. For example, a 

data base that contained all the people at a college could be derived from the base class 
person. The student-grad_student relation could be extended to extension students, 
as a further significant category of objects. Similarly, person could be the base class for 
a variety of employee categories. 



610 Chapter 13 V Moving from C to C++ 

13.8 Polymorphism 

A polymorphic function has many forms. An example in Standard C is the division 
ator. If the arguments to the division operator are integral, then integer division is 
However, if one or both arguments are floating-point, then floating-point division 
used. 

In C++, a function name or operator is overloadable. A function is called based on 
signature, defined as the list of argument types in its parameter list. 

a I b 
cout « a 

II divide behavior determined by native coercions 
II overloading « the shift operator for output 

In the division expression, the result depends on the arguments being aU'~'HU''''-LULY 
coerced to the widest type. So if both arguments are integer, the result is an 
division. If one or both arguments are floating-point, the result is floating-paint. In 
output statement, the shift operator « is invoking a function that is able to output 
object of type a. 

Polymorphism localizes responsibility for behavior. The client code fr 
requires no revision when additional functionality is added to the system through 
provided code improvements. 

In C, the technique for implementing a package of routines to provide an ADT 
would rely on a comprehensive structural description of any shape. 

struct shape { 

} ; 

enum{CIRCLE, ..... } e_val; 
double center, radius; 

would have all the members necessary for any shape currently drawable in our systeIIl'; 
plus an enumerator value so that it can be identified. The area routine would then be. 
written as 

double area(shape* s) 
{ 

} 

switch(s -> e_val) { 
case CIRCLE: return (PI * s -> radius * s -> radius); 
case RECTANGLE: return (s -> he; ght '1< S -> wi dth); 

13.8 V Polymorphism 61 1 

Question: What is involved in revising this C code to include a new shape? Answer: An 
additional case in the code body and additional members in the structure. Unfortu
nately, these would have ripple effects throughout our entire code body. Each routine 
so structured has to have an additional case, even when that case is just adding a label 
to a preexisting case. Thus, what is conceptually a local improvement requires global 
changes. 

oOP coding techniques in C++ for the same problem use a shape hierarchy. The hier
archy is the obvious one where circle and rectangle are derived from shape. The revi
sion process is one in which code improvements are provided in a new derived class, so 
additional description is localized. The programmer overrides the meaning of any 
changed routines-in this case, the new area calculation. Client code that does not use 
the new type is unaffected. Client code that is improved by the new type is typically 
minimally changed. 

C++ code following this design uses shape as an abstract base class. This is a class 
containing one or more pure virtual functions. A pure virtual function does not have a 
definition. The definition is placed in a derived class. 

II shape is an abstract base class 

class shape { 
public: 

virtual double area() = 0; 
} ; 

class rectangle: public shape { 
public: 

II pure virtual function 

rectangle(double h, double w): height(h), width(w) {} 
double area() { return (height * width);} II overridden 

private: 
double height, width; 

} ; 

class circle: public shape { 
public: 

circle(double r): radius(r) {} 
double area() { return ( 3.14159 * radius * radius); } 

private: 
double radius; 

} ; 

Client code for computing an arbitrary area is polymorphic. The appropriate areaO 
function is selected at run-time. 



612 Chapter 13 T Moving from C to C++ 

shape'" ptr _shape; 

cout « 11 area = II « ptr _shape-> areaO; 

Now imagine improving our hierarchy of types by developing a square class. 

class square: public rectangle { 
public: 

square(double h): rectangle(h,h) {} 
double area() { return rectangle::area(); } 

} ; 

The client code remains unchanged. This would not have been the case with the non· 
OOP code. 

1 3.9 Templates 

c++ uses the keyword templ ate to provide parametric polymorphism. Parametric poly
morphism allows the same code to be used with respect to different types, where the 
type is a parameter of the code body. The code is written generically to act on cl ass T. 
The template is used to generate different actual classes when class T is substituted 
for with an actual type. 

An especially important use for this technique is in writing generic container classes. 
A container class is used to contain data of a particular type. Stacks, vectors, trees, and 
lists are all examples of standard container classes. We shall develop a stack container 
class as a parameterized type. 

In file stackcpp 

II template stack implementation 

template <class TYPE> 
class stack { 
public: . 

stack(int size 1000) :max_len(slze) 
{ s = new TYPE[size]; top = EMPTY; } 

-stack() { delete []s; } 
void reset() { top = EMPTY; } 
void push(TYPE c) {s[++top] Cj} 

TYPE pope) { return s[top--]; } 
TYPE top_of() { return s[top]; } 
bool empty() { return top EMPTY;} 
bool full() { return top max_len 

private: 
enum {EMPTY -I}; 

} ; 

TYPE'" 
; nt 
int 

s; 
max_len; 
top; 

The syntax of the class declaration is prefaced by 

templ ate <cl ass identifier> 

1; } 

13.9 T Templates 613 

This identifier is a template argument that essentially stands for an arbitrary type. 
Throughout the class definition, the template argument can be used as a type name. 
This argument is instantiated in the actual declarations. An example of a stack declara-
tion using this is 

stack<char> stlcch; 
stack<char*> stk_str(200); 
stack<complex> stk_cmplx(100); 

II 1000 element char stack 
II 200 element char* stack 
II 100 element complex stack 

This mechanism saves us rewriting class declarations where the only variation would be 
type declarations. 



614 Chapter 13 T Moving from C to C++ 

When processing such a type, the code must always use the angle brackets as part 
the declaration. Here are two functions using the stack template: 

II Reversing a series of char* represented strings 

~Oid reverse(char* str[], int n) 

} 

stack<char*> stk(n); 
for (int i = 0; i < n; 

stk.push(str[i]); 
for (i 0; i < n; ++i) 

str[i] = stk.pop(); 

II this stack holds char* 
++i) 

In function reverseO, a stack<char'~> is used to insert n strings and then pops 
in reverse order. 

II Initializing a stack of complex numbers from an array 
void init(complex c[J, stack<complex>& stk, n) 
{ 

} 

for (int i = 0; i < n; ++i) 
stk.push(c[iJ) ; 

In function i ni to, a stack<comp 1 ex> variable is passed by reference, and n 
numbers are pushed onto this stacle. Notice that we used boo 1 in this example. It 
basic type in C++ whose values are t rue and false. 

13.10 C++ Exceptiol1S 

c++ introduces an exception-handling mechanism that is sensitive to context. The 
text for raiSing an exception will be a try block. Handlers declared using the 1":",,.71'01'( 

catch are found at the end of a try block. 
An exception is raised by using the throw expression. The exception will be LUULu.n." 

by invoking an appropriate handler selected from a list of handlers found lllmemarel} 
after the handler's try block. A simple example of all this is 

13.11 T Benefits of Object-oriented Programming 

II stack constructor with exceptions 

stack::stack(int n) 
{ 

if (n < 1) 
throw (n): II want a positive value 

p = new char[n]; II create a stack of characters 
if (p == 0) II if new returns 0 when it fails 

throw ("FREE STORE EXHAUSTED"); 
} 

void gO 
{ 

try { 
stack a(n), ben); 

} 
catch (int n) { } II an incorrect size 
catch (char* error) { ... } II free store exhaustion 

} 

615 

The first throwO has an integer argument and matches the catch(; nt n) signa
ture. This handler is expected to perform an appropriate action where an incorrect 
array size has been passed as an argument to the constructor. For example, an error 
message and abort are normaL The second throwO has a pointer to char ar~ument 
and matches the catch (char>" error) signature. 

Modern ANSI C++ compilers throw the standard exception bad_all oc if new fails. 
Older systems returned the null pointer value 0, when new failed. 

13.11 Benefits of Object-oriented Programming 

The central element of OOP is the encapsulation of an appropriate set of data types and 
their operations. The class construct, with its member functions and data members, 
provides an appropriate coding tool. Class variables are the objects to be manipulated. 

Classes also provide data hiding. Access privileges can be managed and limited to 
whatever group of functions needs access to implementation details. This promotes 
modularity and robustness. 

Another important concept in OOP is the promotion of code reuse through the inher
itance mechanism. This is the mechanism of deriving a new class from an existing one 



616 Chapter 13 v Moving from C to C++ 

called the base class. The base class can be added to or altered to create the 
class. In this way a hierarchy of related data types can be created that share code. 

Many useful data structures are variants of one another, and it is frequently 
to produce the same code for each. A derived class inherits the description of the 
class. It can then be altered by adding additional members, overloading existing 
bel' functions, and modifying access privileges. Without this reuse mechanism 
minor variation would require code replication. ' 

The OOP programming task is frequently more difficult than normal procedural 
gra~ng as found in C. There is at least one extra design step before getting to 
codmg of algorithms involving the hierarchy of types that is useful for the 
hand. Frequently, one is solving the problem more generally than is strictly U'C'C.C""dl' 

The belief is that OOP "vill pay dividends in several ways. The solution wil1 be 
encapsulated and thus, more robust and easier to maintain and change. Also, the 
tion will be more reusable. For example, where the code needs a stack, that stack is 
ily borrowed from existing code. In an ordinary procedural language, such a da 
structure is frequently "wired into" the algorithm and cannot be exported. 

All these benefits are especially important for large coding projects that require 
dination among many programmers. Here, the ability to have header files specify 
eral interfaces for different classes allows each programmer to work on indiVidual 
segments with a high degree of independence and integrity. 

OOP is many things to many people. Attempts at defining it are reminiscent of 
story of the blind sages attempting to describe an elephant. We will offer one mOre 
equation: 

OOP type-extensibility + polymorphism 

V Summary 617 

1 The double slash / / is a new comment symbol. The comment runs to the end of the 
line. The old C bracketing comment symbols /~, i, / are still available for multiline 
comments. 

2 The iostream.h header introduces I/O facilities for c++. The identifier cout is the 
name of the standard output stream. The operator « passes its argument to stan
dard out. Used in this way, the «is referred to as the put to operator. The identifier 
ci n is the name of the standard input stream. The operator » is the input opera
tor, called get from, that assigns values from the input stream to a variable. 

3 c++ reduces C's traditional reliance on the preprocessor. Instead of using defi ne, 
special constants are assigned to variables specified as canst. The new keyword 
i nl i ne specifies that a function is to be compiled inline to avoid function call over
head. As a rule, this should be done sparingly and only on short functions. 

4 The syntax of functions in C++ inspired the new function prototype syntax found in 
Standard C compilers. Basically, the types of parameters are listed inside the header 
parentheses-for example, void add3(int&, int, int, int). Call-by-reference 
is available as well as default parameter values. By explicitly listing the type and 
number of arguments, strong type checking and assignment-compatible conver
sions are possible in C++. 

5 What is novel about C++ is the aggregate type cl ass. A cl ass is an extension of the 
idea of struct in traditional C. Its use is a way of implementing a data type and 
associated functions and operators. Therefore, a class is an implementation of an 
abstract data type (ADT). are two important additions to the structure con
cept: first, it includes members that are functions, and second, it employs access 
keywords public, private, and protected. These keywords indicate the visibility 
of the members that follow. Public members are available to any function within the 
scope of the class declaration. Private members are available for use only by other 
member functions of the class. Protected members are available for use only by 
other member functions of the class and by derived classes. Privacy allows part of 
the implementation of a class type to be "hidden." 

6 The term overloading refers to the practice of giving several meanings to an opera
tor or a function. The meaning selected will depend on the types of the arguments 
used by the operator or function. 



618 Chapter 13 l' Moving from C to C++ 

7 A constructor is a member function whose job is to initialize a variable of its 
In many cases, this involves dynamic storage allocation. Constructors are 
any time an object of its associated class is created. A destructor is a member 
tion whose job is to finalize a variable of its class. The destructor is invoked 
itly when an automatic object goes out of scope. 

8 The central element of object-oriented programming (OOP) is the encapsulation· 
an appropriate set of data types and their operations. These user-defined types 
ADTs. The class construct, with its member functions and data members 
an appropriate coding tooL Class variables are the objects to be manipula~ed. 

9 ~not~er important concept in OOP is the promotion of code reuse through 
znhentance mechanism. This is the mechanism of deriving a new class from 
existing one, called the base class. The base class can be added to or altered to 
ate the derived class. In this way, a hierarchy of related data types can be 
that share code. This typing hierarchy can be used dynamically by vi rtua 1 
Hons. Virtual member functions in a base class are overloaded in a derived 
These functions allow for dynamic or run-time typing. A pointer to the base 
can also point at objects of the derived classes. When such a pointer is used 
point at the overloaded virtual function, it dynamically selects which version of 
member function to call. 

lOA polymorphic function has many forms. A vi rtua 1 function allows run-time selec~ 
tion from a group of functions overridden within a type hierarchy. An example 
the text is the area calculation within the shape hierarchy. Client code for comput
ing an arbitrary area is polymorphic. The appropriate areaO function is selected at 
run-time. 

11 C++ uses the keyword template to provide parametric polymorphism. Parametric 
polymorphism allows the same code to be used with respect to different types, 
where the type is a parameter of the code body. The code is written generically to 
act on cl ass T. The template is used to generate different actual classes when 
class T is substituted for with an actual type. 

12 C++ introduces an exception-handling mechanism that is sensitive to context. The 
context for raising an exception will be a try block. Handlers declared using the 
keyword catch are found at the end of a try block. An exception is raised by using 
the th row expression. The exception will be handled by invoking an appropriate 
handler selected from a list of handlers found immediately after the handler's try 
block 

l' Exercises 619 

Using stream I/O, v\irite on the screen the words 

she sells sea shells by the seashore 

(a) all on one line, (b) on three lines, (c) inside a box. 

2 Write a program that will convert distances measured in yards to distances mea
sured in meters. The relationship is 1 meter equals 1.0936 yards. Write the program 
to use ci n to read in distances. The program should be a loop that does this calcu
lation until it receives a zero or negative number for input. 

3 The following program reads in three integers and prints their sum. Observe that 
the expression ! c; n is used to test whether input into a, b, and c succeeded. To exit 
the fo r loop, the user can type bye or exi t, or anything else that cannot be con
verted to an integer. Experiment with the program so that you understand its 

effects. 

#include <;ostream.h> 

;nt mainO 
{ 

} 

int a, b, c, sum; 

cout « " ___ \n" 
"Integers a, b, and c will be summed.\n" 
"\n1f; 

for ( ; ; ) { 
cout « "Input a, b, and c: "; 
cin » a » b » c; 
if (!Ci n) 

break; 
sum = a + b + c; 
cout « "\n" 

n a + b + c " « sum « n\n" 
"\n"; 

} 
cout « "\nBye!\n\n"; 



620 Chapter 1 3" Moving from C to C++ 

4 Some C++ systems provide a "big integer" type. In GNU for example, this 
is called Integer. We will "vrite a program that uses this type to compute 

#include <assert.h> 
#include <iostream.h> 
#include <Integer.h> II valid for GNU g++\ 

int mainO 
{ 

} 

i nt 
int 
Integer 

i ; 
n; 
product 1; 

cout « "The factorial of n will be computed.\n" 
lI\nll 
"Input n: "; 

cin » n; 
assert(cin && n >~ 0); 
for (i = 2; i <= n; ++i) 

product ,~= i; 
cout « "\n" 

"factorial(" « n « ") 
"\nJl ; 

" « product « "\n" 

Observe that the program looks similar to a factorial program written in C. 
ever, when we execute this program, we learn, for example, that 

factorial(37) ~ 13763753091226345046315979581580902400000000 

Using a type such as i nt or double we cannot generate such large integers, 
with a big integer type we can. If GNU C++ is available to you, try this program. 
erwise, find out if your C++ system has a big integer type, and if so, write a 
program similar to this one. If your program computes 100 factorial correctly, 
should end with 24 zeros. Does it? 

5 Take a working program, omit each line in turn, and run it through your compiler. 
Record the error messages each such deletion causes. For example, use the code 
given in exercise 3. 

6 Write a program that asks interactively for your name and age and responds with 

Hello name, next year you will be nexLage. 

where nexLage is age + 1. 

" Exercises 621 

7 Write a program that prints out a table of squares, square roots, and cubes. Use 
either tabbing or strings of blanks to get a neatly aligned table. 

i 

1 
2 

i i' i 

1 
4 

square root 

1.00000 
1.41421 

8 The C swapping function is 

void swap(int *i, int *j) 
{ 

int temp; 

temp = '~i; 
*i "'j; 
i'j temp; 

} 

Rewrite this using reference parameters and test it. 

void swap(int& i, int& j); 

1 
8 

9 In traditional C, but not in ANSI C or C++, the following code causes an error: 

#include <math.h> 
#include <stdio.h> 

int mainO 
{ 

printf("%f is the square root of 2.\n", sqrt(2)); 
return 0; 

} 

Explain the reason for this and why function prototypes in C++ avoid this problem. 
Rewri te using iostream. h. 

10 Add to the class st ri ng in Section 13.4, "Classes and Abstract Data Types," on page 
601, a member function reverse. This function reverses the underlying representa
tion of the character sequence stored in the private member s. 

11 Add to the class stri ng in Section 13.4, "Classes and Abstract Data Types," on page 
601,amemberfunctionvoid print(int pos, int k).Thisfunctionoverloads 
pri ntO and is meant to print the k characters of the string starting at position 
pos. 



622 Chapter 13 T Moving from C to C++ 

12 Overload the operator 'If in class stri ng.lts member declaration will be 

string string: :operator*(int n); 

The expression s 'I, k will be a string that is k copies of the string s. Check that 
does not overrun storage. 

13 Write a cl ass person that would contain basic information such as name, 
date, and address. Derive cl ass student from person. 

14 Write a cl ass tri angl e that inherits from shape. It needs to have its own area 
member function. 

15 The function reve rse 0 can be written generically as follows: 

II generic reversal 

template <class T> 
void reverseCT v[], int n) 
{ 

stack<T> stkCn); 
for (int i = 0; i < n; ++i) 

stk. push (v [i]) ; 

} 

for (i = 0; i < n; ++i) 
v[i] = stk.pop(); 

Try this on your system, using it to reverse an array of characters and to reverse an 
array of char"'. 

16 (S. Clamage.) The next three programs behave differently: 

II Function declarations at file scope 

int f(int); 
double f(double); II overloads feint) 

double add_f() 
{ 

return (f(l) + f(1.0)); 
} 

II feint) + f(double) 

Now we place one function declaration internally. 

II Function declaration at local scope 

int f(int); 

double add_f() 
{ 

T Exercises 

double f(double); 
return (fCl) + f(1.0)); 

II hides f(int) 
II f(double) + f(double) 

} 

Now we place the other function declaration internally. 

double f(double); 

double add_f() 
{ 

i nt f(i nt); 
return (f(l) + f(1.0)); 

} 

II What is called here? 

Write some test programs that clearly show the different behaviors. 

623 



Chapter 14 

Moving from C to Java 

This chapter gives an overview of the Java programming language. It also provides an 
introduction to Java's use as an object-oriented programming language. It is organized 
in the manner of the c++ chapter with a series of programs presented, and the ele
ments of each program explained. The programs increase in complexity, and the exam
ples in the later sections illustrate some of the concepts of object-oriented 
programming. It can be read independently of the C++ chapter. 

The examples in this chapter give simple, immediate, hands-on experience with key 
features of the Java language. The chapter introduces the reader to Java I/O, classes, 
inheritance, graphics, threads, and exceptions. Mastery of the individual topics requires 
a thorough reading of a companion book such as Arnold and Gosling, The Java Pro
gramming Language (Reading, MA: Addison-Wesley, 1996). 

Object-oriented programming is implemented by the c1 ass construct. The c1 ass 
construct in Java is an extension of struct in C. The later examples in this chapter 
illustrate how Java implements OOP (object-oriented programming) concepts, such as 
data hiding, ADTs, inheritance, and type hierarchies. Java has been designed to be used 
on the World Wide Web. It has special libraries designed for graphics and communica
tion across the Net. It is designed to run in a machine- and system-independent man
ner. This means the Java program will execute with the same results on a PC running 
Windows 95 or a workstation running SUN Solads. It does this by defining its semantics 
completely in terms of a virtual machine. The job for a system that wants to run Java is 
to port the virtual machine. This is a trade-off between portability and efficiency. There 
inevitably is additional overhead in a machine running a simulator of a different archi
tecture. Some of this inefficiency can be overcome by the use of just-in-time compilers 
or the use of native code written in C that is used where efficiency is crucial. On many 
platforms, it is also possible to employ a direct-to-native code compiler for maximum 
run-time efficiency. 



626 Chapter 14 v Moving from C to Java 

14.1 Output 

Programs must communicate to be useful. Our first example is a program that prints 
on the screen the phrase "Java is an improved c." The complete program is 

In file Improved.java 

II A first Java program illustrating output. 
II Title: Improved 
II Author: Richmond Q. Programmer 

class Improved { 

} 

public static void main (String[] args) 
{ 

} 
System.out.println("Java is an improved C."); 

The program prints on the screen 

Java is an improved C. 

This program is compiled using the command javac improved.java; resulting in a 
code file named Improved.class. This can be run using the command java Improved . 

• 
Dissection of the improved Program 

• II A first Java program illustrating output. 

The double slash I I is a new comment symbol. The comment runs to the end of the 
line. The old C bracketing comment symbols I'~ it I are still available for multiline 
comments. Java also provides F'" "1'1 bracketing comment symbols for a doc comment. 
A program javadoc uses doc comments and generates an HTML file. 

14.2 v Variables and Types 627 

• class Improved { 

Java programs are classes. A cl ass has syntactic form that is derived from the C 
struct, which is not in Java. In Java, class identifier names, such as Improved, are by 
convention capitalized. Data and code are placed within classes. 

• public static void main (String[] args ) 

When a class is executed as a program, it starts by calling the member function ma in O. 
In this case, mai n 0 is a member of Improved. In Java, command line arguments are 
passed in an array of Stri ng's. In C, we need an argc variable to tell the program the 
number of command line arguments. In Java, this array length is found by using 
args. 1 ength. 

• System.out.println("Java is an improved C."); 

This statement prints to the screen. The System. out object uses the member function 
pr; ntl nO to print. The function prints the string and adds a new line, which moves 
the screen cursor to the next line. Unlike p r; ntf 0 in C, p ri nt 1 nO does not use for
mat controls. 

• • 
In Java, all functions are contained in classes. In this case, the function ma; nO is a 
member of class Imp roved. A member function is called a method. 

14.2 Variables and Types 

We will write a program to convert to kilometers the distance in miles from the Earth to 
the moon. In miles this distance is, on average, 238,857 miles. This number is an inte
ger. To convert miles to kilometers, we multiply by the conversion factor 1.609, a real 
number. 

Our conversion program will use variables capable of storing integer values and real 
values. The variables in the following program will be declared in mai nO. Java cannot 
have variables declared as extern (in other words, as global or file scope variables), 

The primitive types in a Java program can be boolean, char, byte, short, i nt, long, 
float, and double. These types are always identically defined regardless of the 
machine or system they run on. For example, the i nt type is always a signed 32-bit inte-



628 Chapter 14 V Moving from C to Java 

ger, unlike in C, where this can vary from system to system. The boolean type is not an 
arithmetic type and cannot be used in mixed arithmetical expressions. The char type 
use 16-bit Unicode values. The byte, short, i nt, and long are all signed integer types, 
whose length in bits is 8, 16, 32, and 64 respectively. Unlike in C, unsigned types are 
not provided. The floating types comply with IEEE754 standards and are float, a 32-bit 
size, and doubl e, a 64-bit size. The non-primitive types are class types and array types, 
and variables of these types take references as their value. 

In file Moon.java 

II The distance to the moon converted to kilometers. 
II Title: moon 

public class Moon { 
public static void main(String[] s) { 

int moon = 238857; 

} 

int moon_kilo; 

System.out.println("Earth to moon = II + moon + II mi ."); 
moon_kilo = (int)(moon * 1.609); 
System.out.println("Kilometers = II + moon_kilo +"km."); 

The output of the program is 

Earth to moon = 238857 mi. 
Kilometers = 384320 km. 

• • 
Dissection of the Moon Program 

• int moon = 238857; 

Variables of type int are signed 32-bit integers. They can be initialized as in C. 

• System.out.println("Earth to moon = II + moon + II mi."); 

The p ri nt 1 nO method can discriminate among a variety of simple values without 
needing additional formatting information. Here, the value of moon will be printed as an 
integer. The symbol + represents string concatenation. Using "plus" printlnO can 
print a list of arguments. What is happening is that each argument is converted from its 

14.3 V Classes and Abstract Data Types 629 

specific type to an output string that is concatenated together and printed along with a 
newline. 

• moon_kilo = (int)(moon * 1.609); 

The mixed expression moon ,~ 1.609 is a dou b 1 e. It must be explicitly converted to 
i nt. 

• • 
Note that narrowing conversions that are implicit in C are not done in Java. 

14.3 Classes and Abstract Data Types 

What is novel about Java is its aggregate type cl ass. A cl ass is an extension of the 
idea of struct in traditional C. A cl ass provides the means for implementing a user
defined data type and associated functions. Therefore, a cl ass can be used to imple
ment an ADT. Let us write a cl ass called Person that will be used to store information 
about people. 

In file Person.java 

II An elementary implementation of type Person. 

cl ass Pe rson { 

} ; 

private String name; 
private int age; 
private char gender; Ilmale == 'M' , female 

public void assignName(String nm) { name = nm; } 
public void assignAge(int a) { age = a; } 
public void assignGender(char b) { gender = b; } 
public String toString( 

} 

return (name + II age is II + age + 
II sex is II + gender ); 

, F' 



630 Chapter 14 l' Moving from C to Java 

Two important additions to the structure concept of C are found in this ~"'~"',J:.'i\::;' 
first, it has members caned class methods that are functions, such as Assi gnAge 0, and 
second, it has both public and private members. The keyword pub 1 i c indicates the Vis
ibility of the members that follow it. Without this keyword, the members are private to 
the class. Private members are available for use only by other member functions of the 
class. Public members are available anywhere the class is available. Privacy allows 
of the implementation of a class type to be "hidden." This restriction prevents unantick 
pated modifications to the data structure. Restricted access, or data hiding, is a feature 
of object-oriented programming. 

The declaration of methods inside a class allows the ADT to have actions or behav
iors that can act on its private representation. For example, the member function 
toSt ri ng 0 has access to private members and gives Pe rson a string representation 
used in output. This method is common to many class types. 

We can now use this data type Person as if it were a basic type of the language. Other 
code that uses this type is a client. The client can use only the public members to act on 
variables of type Pe rson. 

//PersonTest.java uses Person. 

public class PersonTest { 

} 

public static void main CString[] args ) 
{ 

} 

System.out.printlnClfPerson test:"); 
Person pl = new PersonC); //create a Person object 
pl.assignAge(20); 
p1.assignNameC lfAlan Turing"); 
pl.assignGenderCfalse); 
System.out.printlnCpl.toString()); 

The output of this example program is 

Person test: 
Alan Turing age is 20 sex is M 

Notice the use of new PersonO to create an actual instance of Person. The new opera
tor goes off to the heap, much as ma 11 oc 0 does in C and obtains memory for creating 
an actual instance of object Person. The value of pl is a reference to this object. In 
effect, this is the address of the object. 

14.4 T Overloading 631 

• 

14.4 Overloading 

The term overloading refers to the practice of giving several meanings to a method. The 
meaning selected depends on the types of the arguments passed to the method called 
the method's signature. Let us overload the function assi gnGenderO in the previous 
example. This will be a second definition of the assi gnGender 0 method. 

cl ass Pe rson { 

public void assignGender(char b) {gender b;} 
public void assignGender(String b) 
{ gender = ((b == "M")? 'M': 'F'); } 

} 

This version of assi gnGenderO takes a single argument of type Stri ng. It will con
vert and store this properly as a gender character value. Now a user can use either a 
char or a Stri ng value in assigning gender. 

14.5 Construction and Destruction of Class Types 

A constructor is a function whose job is to initialize an object of its class. Constructors 
are invoked after the instance variables of a newly created class object have been 
assigned default initial values and any explicit initializers are called. Constructors are 
frequently overloaded. 

A constructor is a member function whose name is the same as the class name. The 
constructor is not a method and does not have a return type. Let us change our Person 
example to have constructors to initialize the name instance variable. 

//constructor to be placed in Person 

public PersonO {name = "Unknown";} 
public Person(String nm) { name =nm;} 
public Person(String nm, int a, char b) 

{ name =nm; age =a; gender = b;} 



632 Chapter 14.., Moving from C to Java 

These would be invoked when new gets used to associate a created instance with 
appropriate type reference variable. For example, 

pl = new Person(); 
p1 = new Person("Laura Pohl"); 
pl = new Person(lfLaura Pohl" 9, 'F'); 

Ilcreates "unknown 0 
Ilcreates Laura Pohl 
Ilcreates Laura Pohl 

The overloaded constructor is selected by the set of arguments that matches the 
structors parameter list. 

Destruction is done automatically by the system using automatic garbage colle 
When the object can no longer be referenced, for example, when the existing l'.,t'., ... ~._ 

is given a new object, the now inaccessible object is called garbage. Periodically, the 
tern sweeps through memory and retrieves these "dead" objects. The programmer 
not be concerned with such apparent memory leaks. 

14.6 Object~oriented Programming and Inheritance 

In Java, inheritance is the mechanism of extending a new class from an existing 
called the superclass, The extended class adds to or alters the inherited superdass 
methods. This is used to share interface and to create a hierarchy of related types, 

Consider designing a data base for a college. The registrar must track different types 
of students. The superclass we start with will be Personl. This class will be identical to 
Person, except that the private instance variables will be changed to have access pro
tected. This access allows their use in the subclass, but otherwise acts like pri vate. 

Here is an example of deriving a class: 

14.7 .., Polymorphism and Overriding Methods 

II Note Person1 is Person with private instance variables 
II made protected 

class Student extends Person1 { 
private String college; 
private byte year; III = fr, 2 so, 3 jr, 4 sr 

} ; 

private double gpa; 110.0 to 4.0 
public void assignCollege(String nm) {college nm;} 
public void assignYear(byte a) { year = a; } 
public void assignGpa(double g) { gpa = g; } 
public String toString() 

{ return (super.toStringO + II College is " + college); } 
public Student() 

{super.assignName("Unknown"); college "Unknown";} 
public Student(String nm) 

{ super(nm); college "Unknown";} 
public Student(String nm, int a, char b) 

{ name =nm; age =a; gender = b; } 

633 

In this example, Student is the subclass, and Person1 is the superclass. Notice the use 
of the keyword super. It provides a means of accessing the instance variables or meth
ods found in the superclass. 

The inheritance structure provides a design for the overall system. The superclass 
Person1leads to a design where the subclass Student is derived from it. Other sub
classes such as G radStudent or Emp 1 oyee could be added to this inheritance hierarchy. 

14.7 Polymorphism and Overriding Methods 

In Java, polymorphism comes from both method overloading and method overriding. 
Overloading has already been discussed. Overriding occurs when a method is redefined 
in the subclass. The toStri ngO method is in Personl and is redefined in Student 
extended from Personl. 



634 Chapter 14.. Moving from C to Java 

//Overriding the printName() method 
class Person! { 

protected String name; 
protected int age; 
protected char gender' 
public toString() { , 

//male == 'M' , female 

return(name + II age is .. + age + 
II sex is II + (gender == I~F' ? 

} 

} ; 

class Student extends Personl { 
pr~vate String college; 
prlvate byte year; 

IfFIf: "Mil) ); 

private double gpa; //0.0 to 4.0 
public toString() 

, F' 

{ return(super.toStringO + II College is II + college); } 

} ; 

The overridden method toStri ng () has the same name and signature in both the 
superclass Personl and the subclass Student. Which one gets selected depends at 
runtime on what is being referenced. For example, in the code 

//StudentTest.java use Personl 

public class StudentTest { 

} 

public static void main (String[] args ) 
{ 

} 

Personl ql; 
ql = new Student(); 
q1.assignName( IfCharles Babbage lf

). 

System.out.println(ql.toString()); 
ql = new Personl(); 
q1.assignName("Charles Babbage"); 
System.out.println(ql.toString()); 

T~e variable ql can refer to either Person! object or the subtype Student object. At 
runtIme the correct toStri ngO will be selected. The assi gnNameO method is known 
at compile time since it is the superclass Personl method. 

14.8 ." Applets 635 

14.8 Applets 

Java is known for providing applets on Web pages. A browser is used to display and 
execute the applet. Typically, the applet provides a graphical user interface to the code. 
The next piece of code will be an applet for computing the greatest common divisor for 
two numbers. 

//GCD applet implementations 

import java.applet.*; //gets the applet superclass 
import java.awt.'~; //abstract windowing toolkit 
import java.io."; 

//derived from the class Applet 

public class wgcd extends Applet { 
i nt x, y, z, r; 
TextField a = new TextField(l0); 
TextField b = new TextField(l0); 
TextField c = new TextField(10); 
Label 11 = new Label("Yaluel: "); 
Label 12 = new Label("Yalue2: "); 
Button gcd = new Button(" GCD: If); 

//input box 
//input box 
//output box 

//draws the screen layout such as the TextFields 

public void initO { 
setLayout(new FlowLayout()); 
c.setEditable(false); 
add(ll); add(a); 
add(12); add(b); 
add(gcd); add(c); 

} 

//computes the greatest common divisor 

public int gcd(int m, int n) { 
while (n !=0) { 

r m % n; 
m n; 
n = r; 

} 
return m; 

} 



636 Chapter 14 'f Moving from C to Java 

//looks for screen events to interact with 

}; 

public boolean action(Event e, Object 0) { 

} 

if (" CCD: ".equals(o)) { //press button 
x = Integer.parselnt(a.getText()); 

} 

y = Integer.parselnt(b.getText()); 
z = gcd(x,y); 

//place answer in output TextField 
c.setText(Integer.toString(z)); 

return true; 

The code uses the graphics library awt and the applet class to draw an interactive inter
face that can be executed either by a special program called the appletviewer or by a 
Java-aware browser such as Microsoft Explorer or Netscape Navigator. Unlike ordinary 
Java programs, this program does not use a mai nO method to initiate the computation. 
Instead, the; ni to method draws the screen. Further computation is event-driven and 
processed by the acti on 0 method. The user terminates the applet by clicking on the 
Quit command in the applet pull-down menu. 

14.9 Java Exceptions 

Java has an exception-handling mechanism that is integral to the language and is 
heavily used for error detection at runtime. It is similar to the one found in C++. An 
exception is thrown by a method when it detects an error condition. The exception will 
be handled by invoking an appropriate handler selected from a list of handlers called 
catches. These explicit catches occur at the end of an enclOSing try block. An uncaught 
exception is handled by a default Java handler that issues a message and terminates the 
program. An exception is itself an object, which must be derived from the superclass 
Throwable. As a simple example of all this, we will add an exception NoSuchNameEx
cepti on to our Person example class. 

class NoSuchNameException extends Exception { 
public String str() { return name; } 
public String name; 
NoSuchNameException(String p) {name p;} 

} ; 

14.9 'f Java Exceptions 637 

The purpose of this exception is to report an incorrect or improperly formed name. 
In many cases, exceptions act as assertions would in the C language. They determine 
whether an illegal action has occurred and report it. We now modify the Person code to 
take advantage of the exception. 

//Person2.class: Person with exceptions added 

class Person2 { 

} ; 

private String name; 
public Person2(String p)throws NoSuchNameException { 

if (p == '"') 
throw new NoSuchNameException(p); 

name = p; } 
public String toString(){ return name;} 
public static void main(String[] args) 

throws NoSuchNameException 
{ 

try{ 
Person2 p new Person2(";ra pohl"); 
System.out.println("PERSONS"); 
System.out.println(p.toString()); 
p = new Person2('It'); 

} 
catch(NoSuchNameException t) 

{ System.out.println(" exception with name" + t.strO); } 
fi nally 

{ System. out. pri ntl nC'f; nally clause"); } 

The th rowO has a NoSuchNameExcepti on argument and matches the catch 0 sig
nature. This handler is expected to perform an appropriate action where an incorrect 
name has been passed as an argument to the Person2 constructor. As in this example, 
an error message and abort are normal. The fi na 11 y clause is shown here. It is code 
that is done regardless of how the try block terminates. 



638 Chapter 14 T Moving from C to Java 

14.10 Benefits of Java and OOP 

Java shares with c++ the use of classes and inheritance to build software in an object
oriented manner. Also, both use data hiding and have methods that are bundled within 
the class. 

Unlike C++, Java does not allow for conventional programming. Everything is encap
sulated in some class. This forces the programmer to thinl< and design everything as an 
object. The downside is that conventional C code is not as readily adapted to Java as it 
is to C++. Java avoids most of the memory pointer errors that are common to C and 
C++. Address arithmetic and manipulation are done by the compiler and system-not 
the programmer. Therefore, the Java programmer writes safer code. Also, memory rec
lamation is automatically done by the Java garbage collector. 

Another important concept in OOP is the promotion of code reuse through the inher
itance mechanism. In Java, this is the mechanism of extending a new class called a sub
class from an existing one called the superclass. Methods in the extended class override 
the superclass methods. The method selection occurs at runtime and is a highly flexible 
polymorphic style of coding. 

Java, in a strict sense, is completely portable across all platforms that support it. Java 
is compiled to byte code that is run on the Java virtual machine. This is typically an 
interpreter-code that understands the Java byte code instructions. Such code is much 
slower than native code on most systems. The trade-off here is between universally 
consistent behavior versus loss of efficiency. 

Java has extensively developed libraries for performing Web-based programming. It 
has the ability to "''fite graphical user interfaces that are used interactively. It also has a 
thread package and secure web communication features that let the coder \\'fite distrib
uted applications. 

Java is far Simpler than C++ in the core language and its features. In some ways, this 
is deceptive in that much of the complexity is in its lIbraries. Java is far safer because of 
very strict typing, avoidance of pointer arithmetic, and well-integrated exception han
dling. It is system-independent in its behavior, so one size fits all. This combination of 
OOP, Simplicity, universality, and Web-sensitive libraries makes it the language of the 
moment. 

T Summary 639 

Summary 

1 The double slash / / is a new comment symbol. The comment runs to the end of 
the line. The old C bracketing comment symbols /* '~/ are still available for 
multiline comments. Java also provides /** * / bracketing comment symbols for 
a doc comment. A program javadoc uses doc comments and generates an HTML 
file. 

2 Java programs are classes. A class has syntactic form that is derived from the C 
struct, which is not in Java. Data and code are placed within classes. When a 
class is executed as a program, it starts by calling the member function rna; nO. 

3 term overloading refers to the practice of giving several meanings to a 
method. The meaning selected depends on the types of the arguments passed to 
the method called the method's signature. 

4 A constructor is a function whose job is to initialize an object of its class. Con
structors are invoked after the instance variables of a newly created class object 
have been assigned default initial values and any explicit initializers are called. 
Constructors are frequently overloaded. Destruction is done automatically by the 
system using automatic garbage collection. 

5 Inheritance is the mechanism of extending a new class from an existing one 
called the superclass. The extended class adds to or alters the inherited super
class methods. This is used to share interface and to create a hierarchy of related 
types. 

6 In Java, polymorphism comes from method overloading and method overriding. 
Overriding occurs when a method is redefined in the subclass. The selection of 
the appropriate overridden method definition is decided at runtime depending 
on the object's type. 

7 Java is known for providing applets on Web pages. A browser is used to display 
and execute the applet. Typically, the applet provides a graphical user interface 
to the code. In applets, an act; on 0 method picks up an event, such as a mouse 
click, and decides on a next action. 

8 An exception is thrown by a method when it detects an error condition. The 
exception will be handled by invoking an appropriate handler selected from a list 
of handlers called catches. These explicit catches occur at the end of an enclos
ing try block. An uncaught exception is handled by a default Java handler that 
issues a message and terminates the program. 



640 Chapter 14 T Moving from C to Java 

9 Unlike C++, Java does not allow for conventional programming. Everything is 
encapsulated in some class. This forces the programmer to think and design 
everything as an object. The downside is that C code is not as readily adapted to 
Java as it is to C++. The upside is that the Java programmer writes safer code. 

Exercises 

1 Using Java I/O, output (a) all on one line, (b) on three lines, (c) inside a box: 

she sells sea shells by the seashore 

2 Write a program that will convert distances measured in yards to distances mea
sured in meters. The relationship is 1 meter equals 1.0936 yards. If you can, write 
the program to read in distances; otherwise, do it by simple aSSignment to an 
instance variable inside the method mai nO. 

3 Write an applet that asks interactively for your name and age and responds with 

He 110 name, next yea r you wi 11 be nexLage. 

where nexLage is age + 1. 

4 Write a program that prints out a table of squares, square roots, and cubes. Use 
either tabbing or strings of blanks to get a neatly aligned table. 

i i ~, i square root 
--------------------------
1 1 1.00000 

5 Write a class that can perform complex arithmetic. Unlike C++, in Java you cannot 
overload operators. Write method Camp 1 ex . p 1 us (Camp 1 ex) and method Com
pl ex. mi nus(Compl ex), such that they return an appropriate Campl ex result. 

6 Write a cl ass GradStudent 0 that extends Student. Add to Student additional 
information that includes the graduate student's thesis topic and routines for 
assigning to this part of the class and printing out this information. 

7 Add exceptions to the cl ass GradStudent so that improperly initializing Grad
Student objects will result in a run-time exception. 

Appendix A 

The Standard Library 

The standard library provides functions that are available for use by the programmer. 
Associated with the library are standard header files provided by the system. These 
header files contain prototypes of functions in the standard library, macro definitions, 
and other programming elements. If a programmer wants to use a particular function 
from the library, the corresponding header file should be included. Here is a complete 
list of the header files: 

<assert.h> 

<ctype.h> 

<errna.h> 

<float.h> 

C header files 

<limits.h> 

<locale.h> 

<math.h> 

<setjmp.h> 

<signal.h> 

<stdarg.h> 

<stddef.h> 

<stdio.h> 

<stdlib.h> 

<string.h> 

These files may be included in any order. Also, they may be included more than once, 
and the effect will be the same as if they were included only once. In this appendix, we 
organize our discussion by header file. 

A.l Diag nostics: <assert. h> 

This header file defines the assert () macro. If the macro NDEBUG is defined at the 
point where <assert. h> is included, then all assertions are effectively discarded. 



642 Appendix A.., The Standard Library 

• void assert(int expr); 

If exp r is zero (false), then diagnostics are printed and the program is aborted. The 
diagnostics include the expression, the file name, and the line number in the file. 

A.2 Character Handling: <ctype. h> 

This header defines several macros that are used to test a character argument. In addi
tion, there are function prototypes for two functions used to map a character argu-
ment. 

Testing a Character 

• int i sa 1 num(i nt c) ; 1* ;5 alphanumeric i'l 
int i sal pha(i nt c) ; 1* is a 1 phabeti c '''I 
int iscntrl (int c) ; Ii' is control i'l 
int isdigit(int c) j 1* is digit: 0-9 ill 
int isgraph(int c) j I'" is graphic 1'1 
i nt i s lowe r (i nt c) ; I'" is lowercase "'1 
int i spri nt(i nt c) ; Ii' is pri ntab 1 e "'1 
int ;spunct(int c) ; Ii' is punctuation -kl 
int isspace(int c); Ii' is white space ill 
int ;supper(int c); I'" is uppercase *1 
int isxdigit(int c); I'" is hex digit 0-9, a-f, A-F i'l 

These character tests are typically implemented as macros; see ctype.h in your installa
tion for details. If the argument c satisfies the test, then a nonzero value (true) is 
returned; o therv-.1se , zero (false) is returned. These macros should also be available as 
functions. 

The printing characters are implementation-defined, but each occupies one printing 
position on the screen. A graphic character is any printing character, except for a space. 
Thus, a graphic character puts a visible mark on a single printing position on the 
screen. A punctuation character is any printing character other than a space or a char
acter c for which i sa 1 num(c) is true. The standard white space characters are space, 
form feed (' \ f'), newline (' \n'), carriage return (' \r'), horizontal tab (' \ t '), and ver
tical tab (' \ v'). The control characters are the audible bell (' \a '), backspace (' \b'), 
any character c for which iss pace (c) is true other than space, and control-c, control
h, and so on. 

A.3 .., Errors: <errno. h> 643 

Mapping a Character 

The two functions tolowerO and toupperO are used to map a character argument. 
Caution: Early versions of many ANSI C compilers did not implement these functions 
correctly . 

• int tolower(int c); 

If c is an uppercase letter, the corresponding lowercase letter is returned; otherwise, c 
is returned . 

• int toupper(int c); 

If c is a lowercase letter, the corresponding uppercase letter is returned; otherwise, cis 
returned. 

The next three macros often occur on ASCII machines. The first two are related to, 
but not the same as, tolowerO and toupperO. 

#define 
#define 
#define 

_tolower(c) 
_toupper(c) 
toascii(c) 

((c) + 'a' - 'A') 
((c) + 'A' - 'a') 
((c) & 0x7f) 

The hexadecimal constant 0x7f is a mask for the low-order 7 bits. 

A.3 Errors: <errno. h> 

The identifier errno is defined here, along with several macros that are used to report 
error conditions. 

extern int errno; 

Typically, there are lots of macros in ermo.h. Which macros occur is system-depen
dent, but all names must begin with E. Various library functions use these macros for 
error reporting. 

Two macros are common to all systems. These are used by the mathematical func
tions in the library: 

#define 
#define 

EDOM 
ERANGE 

33 
34 

1* domain error *1 
1* range error *1 



644 Appendix A T The Standard Library 

Values other than 33 and 34 could be used here, but these values are typical. 
The domain of a mathematical function is the set of argument values for which it 

defined. For example, the domain of the square root function is the set of all HVJU . .LH::~d' 
tive numbers. A domain error occurs when a mathematical function is called with 
argument not in its domain. When this happens, the system assigns the value EDOM 
errno. The programmer can use perrorO and strerrarO to print a message 
ated with the value stored in errna. 

A range error occurs when the value to be returned by the function is defined mathe
matically but cannot be represented in a daubl e. When this happens, the system 
assigns the value ERANGE to errna. 

A.4 Floating Limits: <float. h> 

Macros that define various floating characteristics and limits are defined here. There 
are many of them. Some examples are 

#define DBL_MAX 1. 7976931348623157e+308 
#define FLT_MAX 3.40282347e+38F 
#define LDBLMAX 1. 7976931348623157e+308 

#define DBL_MIN 2.2250738585072014e-308 
#define FLT_MIN 1. 17549435e-38F 
#define LDBLMIN 2.2250738585072014e-308 

#define DBLEPSILON 2.2204460492503131e-16 
#define FLT_EPSILON 1.19209290e-07F 
#define LDBLEPSILON 2.2204460492503131e-16 

The constants are system-dependent. We are assuming that a 1 ang double is imple
mented as a daub 1 e. Not all systems do this. Some provide more precision and range; 
see {loat.h on your system. 

A.5 T Integral Limits: <limits.h> 645 

A.S Integral Limits: <limits.h> 

Macros that define various integral characteristics and limits are defined here. There 
are many of them. Some examples are 

#define CHAILBIT 8 />'r number af bits in a byte ,,,/ 
#define CHAILMAX 127 
#define CHAR_MIN (-128) 
#define SHRT_MAX 32767 
#define SHRT_MIN (-32768) 
#define I NT_MAX 2147483647 
#define INT_MIN (-2147483648) 

The constants are system-dependent. 

A.6 Localization: <1 oca 1 e. h> 

This header contains programming constructs that can be used to set or access proper
ties suitable for the current locale. The following structure type is defined: 

struct lconv { 
char *decimal_point; 
char *thousands_sep; 
char ~'currency_symbol; 

} ; 

The members allow for local variations, such as using a comma instead of a period for a 
decimal point. At least six symbolic constants are defined. 

#defi ne LC_ALL 
#define LC_COLLATE 
#define LC_CTYPE 
#define LC_MONETARY 
#define LC_NUMERIC 
#define LC_TIME 

1 /* all categories */ 
2 /*strcoll() and strxfrm */ 
3 j*character handling functions */ 
4 /'" monetary info in 1 oca 1 econv 0 'I, / 

5 /*decimal point in lib fcts */ 
6 j*strftime()*/ 



646 Appendix A.., The Standard Library 

~~~ :~ues ofbthe s~~olic constants are system-dependent. Other macros beginning 

1 1
-()cfan. e. sp. eCIfled. These macros can be used as the first argument to the set-

oca e unctIOn.

• char *setlocaleCint category, const char *locale);

~~::~~s;.~~g~~ent is typically 0r:e of the above symbolic constants. The second argu
d . ' " or some other strIng. The function returns a pointer to a string of static
wiu::tl~n, ~uPPlie~ by t~e system, that describes the new locale, if it is available; other-

,te ULL pomter IS returned. At program startup, the system behaves as if

setlocaleCLC.-ALL, "C");

~:~~een executed. This specifies a minimal environment for C translation. The state-

setlocaleCLC_ALL, nil);

specifies the native environme thO h'
LC.-AL. n , w IC IS system-dependent. Using a macro other than
of th i afflecdts °linr:ly p~rt of the locale. For example, LCMONETARY affects only that part

e oca e ea g with monetary information.

• struct lconv *localeconvCvoid);

~o~~!~ter to a st.ru:ture pro~ded by the system is returned. It is of static duration and
set 10 ns ,uu(m) enc IhnformatlOn about the current locale. Further calls to the function

ca e can c ange the values stored in the structure.

A.7 Mathematics: <math. h>

This header file contains t f
I,.' pro otypes or the mathematical functions in the library It

a so contams one macro definition: .

#define HUGLVAL 1. 7976931348623157e+308

The value of the macro is system-dependent.

d ihe :o:~in Of. a mathematical function is the set of argument values for which it is
e me. omam error occurs when a mathematical function is called with an argu-

A.7 .., Mathematics: <math. h> 647

ment not in its domain. When this happens, the function returns a system-dependent
value, and the system assigns the value EDaM to errno.

A range error occurs when the value to be returned by the function is defined mathe
matically but cannot be represented in a double. If the value is too large in magnitude
(overflow), then either HUGE_VAL or -HUGE_VAL is returned. If the value is too small in
magnitude (underflow), zero is returned. On overflow, the value of the macro ERANGE is
stored in errno. What happens on underflow is system-dependent. Some systems store
ERANGE in errno; others do not.

• double cos(double x);
double sin(double x);
double tanCdouble x);

These are the cosine, sine, and tangent functions, respectively.

• double acosCdouble x);
double asinCdouble x);
double atanCdouble x);
double atan2(double y, double x);

/* arccosine of x */
/* arcsine of x */
/* arctangent of x */
/* arctangent of y/x */

These are inverse trigonometric functions. The angle theta returned by each of them is
in radians. The range of the acos 0 function is [0, nJ. The range of the asi nO and
at an 0 functions is [-1C/2, n/2]. The range of the atan20 function is [-1C, n]. Its princi
pal use is to assist in changing rectangular coordinates into polar coordinates. For the
functions acos 0 and asi nO, a domain error occurs if the argument is not in the
range [-1,1]. For the function atan20, a domain error occurs if both arguments are
zero and y /x cannot be represented.

• double coshCdouble x);
double sinhCdouble x);
double tanhCdouble x);

These are the hyperbolic cosine, hyperbolic sine, and hyperbolic tangent functions,
respectively.

• double exp(double x);
double 10gCdouble x);
double 10g10Cdouble x);

The exp 0 function returns eX. The log 0 function returns the natural logarithm
(base e) of x. The 10g100 function returns the base 10 logarithm of x. For both log
functions, a domain error occurs if x is negative. A range error occurs if x is zero and
the logarithm of zero cannot be represented. (Some systems can represent infinity.)

648 Appendix A T The Standard Library

• double ceil (double x);
double floor(double x);

The ceiling function returns the smallest integer not less than x. The floor function
returns the largest integer not greater than x.

• double fabs(double x); 1* floating absolute value *1

Returns the absolute value of x. Caution: The related function absO is designed for
integer values, not floating values. Do not confuse abs 0 with fabs O.

• double fmod(double x, double y); 1* floating modulus *1

Returns the value x (mod y). More explicitly, if y is nonzero, the value x - i * Y is
returned, where i is an integer such that the result is zero, or has the same sign as x
and magnitude less than the magnitude of y. If y is zero, what is returned is system
dependent, but zero is typical. In this case a domain error occurs on some systems.

• double pow(double x, double y); I'k power functi on *1

Returns x raised to the y power. A domain error occurs if x is negative and y is not an
integer.

• double sqrt(double x); 1* square root *1

Returns the square root of x, provided x is nonnegative. A domain error occurs if x is
negative.

III double frexp(double value, int *exp_ptr); I~' free exponent ~'I

This is a primitive used by other functions in the library. It splits value into mantissa
and exponent. The statement

x = frexp(value, &exp);

causes the relationship

value::: X i(2exp

to hold, where the magnitude of x is in the interval [1/2, 1J or x is zero.

• double ldexp(double x, int exp); 1* load exponent *1
The value x'', 2exp is returned.

A.8 T Nonlocal Jumps: <setjmp. h> 649

• double modf(double value, double *i_ptr);

Breaks value into integer and fractional parts. The function call modf (va 1 ue, &i)
returns the value f, and indirectly the value i, so that

value = i + f

A.S Nonlocal Jumps: <setjmp. h>

This header provides one type definition and two prototypes. These declarations allow
the programmer to make nonlocal jumps. A nonlocal jump is like a goto, but with the
flow of control leaving the function in which it occurs. The type definition is system
dependent. The following is an example:

typedef long jmp_buf[16];

An array of type jmp_buf is used to hold system information that will be used to
restore the calling environment .

• int setjmp(jmp_buf env);

Saves the current calling environment in the array env for later use by 1 ongj mp 0 and
returns zero. Although on many systems this is implemented as a function, in ANSI C it
is supposed to be implemented as a macro.

• void longjmp(jmp_buf env, int value);

The function call 1 ongjmp (env, value) restores the environment saved by the most
recent invocation of setjmp(env). If setjmp(env) was not invoked, or if the function
in which it was invoked is no longer active, the behavior is undefined. A successful call
causes program control to jump to the place following the previous call to set
jmp(env). If val ue is nonzero, the effect is as if setjmp(env) were called again with
val ue being returned. If val ue is zero, the effect is as if setjmp(env) were called
again with one being returned.

650 Appendix A v The Standard Library

A.9 Signal Handling: <signal. h>

This header contains constructs used by the programmer to handle exceptional condi
tions, or signals. The following macros are defined in this header:

#define SIGINT 2 /'~ i nterrupt ,~/
#define SIGILL 4 /,~ illegal instruction */
#define SIGFPE 8 /~, floating-point exception ~, /
#define SIGSEGV 11 /'" segment violation */
#define SIGTERM 15 /* asynchronous termination ~,/

#define SIGABRT 22 /~, abort ,~/

The constants are system-dependent, but these are commonly used. Other signals are
usually supported; see the file signal. h on your system.

The macros in the following set may be used as the second argument of the function
signalO:

#define
#define
#define

SIG_DFL
SIG_ERR
SIG_IGN

((void (*)(int)) 0)
((void (*)(int)) -1)
((void ("')(int)) 1)

r default "'/
/", error '* /
r' ignore ,', /

A system may supply other such macros. The names must begin with SIG_ followed by
a capital letter . .

• void (*signal(int sig, void ('*func)(int)))(int);

The function call si gna 1 (si g, func) associates the signal si 9 with the signal handler
func O. If the call is successful, the pointer value func of the previous call with first
argument si 9 is returned, or NULL is returned if there was no previous call. If the call is
unsuccessful, the pointer value SIG_ERR is returned.

The function call signal (sig, func) instructs the system to invoke func(s;g)
when the signal si 9 is raised. If the second argument to si gna lOis SIG_DFL, default
action occurs; if it is SIG_IGN, the signal is ignored. When program control returns
from func 0, it returns to the place where si 9 was raised.

• int raise(int sig);

Causes the signal si g to be raised. If the call is successful, zero is returned; otherwise,
a nonzero value is returned. This function can be for testing purposes.

A.10 V Variable Arguments: <stdarg. h> 651

A.l0 Variable Arguments: <stdarg. h>

This header file provides the programmer with a portable means of writing functions
such as p ri ntf 0 that have a variable number of arguments. The header file contains
one typedef and three macros. How these are implemented is system-dependent, but

here is one way it can be done:

typedef char * v~listj

#define va_start(ap, v)
((void) (ap =

va_arg(ap, type)
v~end(ap)

\
(va_list) &v + sizeof(v)))

(*((type *)(ap))++)
((void) (ap = 0)) #define

#define

In the macro va_startO, the variable v is the last argument that is declared in the
header to your variable argument function definition. This variable cannot be of storage
class regi ster, and it cannot be an array type or a type such as char that is ~idened
by automatic conversions. The macro va_start 0 initializes the argument pomter ap.
The macro va_argO accesses the next argument in the list. The macro va_endO per
forms any cleanup that may be required before function exit. The following program

illustrates the use of these constructS:

#include <stdio.h>
#include <stdarg.h>

int va_sum(int ent, ...);

int main(void)
{

}

int a = 1, b = 2, c = 3j

printf("First call: sum = %d\n", va_sum(2, a, b));
printf("Second call: sum = %d\n", va_sum (3 , a, b, c))j
return 0;

652 Appendix A T The Standard Library

int va_sum(int cnt, ...)
{

}

int i, sum = 0;
va_list ap;

v~start(ap, cnt);
for (i = 0; i < cnt; ++i)

sum += va_arg(ap, ;nt);
va_end(ap);
return sum;

1* sum the arguments *1

I~' startup 1'1

1* get next argument *1
I~(cleanup 1'1

A.ll Common Definitions: <stddef. h>

Tills header file contains some type definitions and macros that are commonly used in
other places. How they are implemented is system-dependent, but here is one way of
doing it:

typedef
typedef
typedef

char
int
unsigned

wchar_t;
ptrdifLt;
size_t;

#define NULL ((void *) 0)
#define offsetof(s_type, m) \

((si ze_t) &(((s_type ,.,) 0) -> m))

Here, we defined the wide character type wchar _t as a plain char. A system can define
it to be any integral type. It must be able to hold the largest extended character set of
all the locales that are supported. The type pt rdi fL t is the type obtained when two
pointers are subtracted. The type size_t is the type obtained with use of the sizeof
operator. A macro call of the form offsetof(s_type, m) computes the offset in bytes
of the member m from the beginning of the structure s_type. The following program
illustrates its use:

A.12 T Input/Output: <stdi o. h> 653

#include <stdio.h>
#include <stddef.h>

typedef struct {
double a, b, c;

} data;

int main(void)
{

printf("%d %d\n!l,
offsetof(data, a), offsetof(data, b));

return 0;
}

On most systems, tills program causes 0 and 8 to be printed.

A.12 Input/Output: <stdio. h>

This header file contains macros, type definitions, and prototypes of functions used by
the programmer to access files. Here are some example macros and type definitions:

#define
#define
#define
#define
#define
#define
#define

typedef
typedef
typedef

BUFSIZ
EOF
FILENAME_MAX
FOPEN_MAX
L_tmpnam
NULL
TMP_MAX

1024
(-1)
255
20
16
o
65535

long
unsigned
char 1'(

pos_t;
size_t;
va_list;

I*buf size for all 1/0*1
I*returned on EOF*/
I*max filename chars *1
/*max open files*1
I*size tmp filename*1
I*null pointer value *1
I*max unique filenames*/

I*used with fsetpos() *1
I*type from sizeof op*/
I*used with vfprintf()*1

The structure type FILE has members that describe the current state of a file. The
name and number of its members are system-dependent. Here is an example:

654 Appendix A T The Standard Library

typedef struct {
int
unsigned char
unsigned char
int
short
char

} FILE;

cnt;
1'b_ptr;
*base;
bufsize;
flag;
fd;

/* size of unused part of bUf */
/* next buffer loc to access */
/* start of buffer */
/* buffer size */
/* info stored bitwise */
/* file descriptor */

extern FILE ob[];

An object of type FILE should be capable of recording all the information needed to
control a,str,eam, including a file position indicator, a pointer to its associated buffer,
a~ e:-ro: zndzcator that records whether a read/write error has occurred, and an end-of
(lIe zndicator ~hat records whether the end-of-file mark has been reached. How this is
~~lement~d IS system-dependent. For example, the error indicator and the end-of-file
mdIcator rmght be encoded bitwise in the structure member fl ago

Typically, the type fpos_t is given by:

typedef long fpos_t;

An object of this type is supposed to be capable of recording all the information
needed to uniquely specify every position in a file.
, Macros are used to define stdi n, stdout, and stde r r. Although we think of them as

files, they are actually pointers.

#define
#define
#define

stdin
stdout
stderr

(&_iob[0])
(&_iob[l])
(&_iob[2])

Unlike other files, stdi n, stdout, and stderr do not have to be opened explicitly by
the programmer.

A few macros are intended for use with functions:

#define _IOFBF 0 /1(setvbuf(): full buffering */
#define _IOLBF 0x80 /1' setvbuf(): line buffering */
#define _IONBF 0x04 /* setvbuf(): no buffering */
#define SEEK_SET 0 /,~ fseek(): file beginning */
#define SEEK_CUR 1 /1(fseek(): current file pos */
#define SEEK_END 2 /,~ fseekO: EOF * /

, When ~ file is opened, the operating system associates it with a stream and keeps
mformatIOn about the stream in an object of type FILE. A pointer to FILE can be
thought of as being associated with the file or the stream or both.

A.12 T Input/Output: <stdi o. h> 655

Opening, Closing, and Conditioning a File

• FILE *fopen(const char *filename, const char *mode);

Performs the necessary housekeeping to open a buffered file. A successful call creates a
stream and returns a pointer to FILE that is associated with the stream. If fi 1 ename
cannot be accessed, NULL is returned. The basic file modes are" r", "W", and "a", corre
sponding to read, write, and append, respectively. The file position indicator is set at
the beginning of the file if the file mode is "r" or "w", and it is set at the end of the file
if the file mode is "a ". If the file mode is "w" or "a" and the file does not exist, it is cre
ated. An update mode (both reading and writing) is indicated with a +. A binary file is
indicated with a b. For example, the mode II r+" is used to open a text file for both
reading and writing. The mode" rb It is used to open a binary file for reading. The mode
"rb+" or "r+b" is used to open a binary file for reading and writing. Similar conven
tions apply to Itw" and Ita." (See Section 11.9, "File Access Permissions," on page 517,)
In update mode, input may not be directly followed by output unless the end-of-file
mark has been reached or an intervening call to one of the file positioning functions
fseekO, fsetpos 0, or rewi ndO has occurred. In a similar fashion, output may not
be directly followed by input unless an intervening call to ffl ush 0 or to one of the file
positioning functions fsee k 0, fsetpos 0, or rewi nd 0 has occurred.

• int fclose(FILE *fp);

Performs the necessary housekeeping to empty buffers and break all connections to the
file associated with fp. If the file is successfully closed, zero is returned. If an error
occurs or the file was already closed, EOF is returned. Open files are a limited resource.
At most, FOPEN_MAX files can be open simultaneously. System efficiency is improved by
keeping only needed files open.

• int fflush(FILE *fp);

Any buffered data is delivered. If the call is successful, zero is returned; otherwise, EOF
is returned.

• FILE "(freopen(const char *filename,
const char *mode, FILE *fp);

Closes the file associated with fp, opens fi 1 ename as specified by mode, and associates
fp with the new file. If the function call is successful, fp is returned; otherwise, NULL is
returned. This function is useful for changing the file associated with stdi n, stdout, or
stderr.

656 Appendix A v The Standard Library

• void setbuf(FILE *fp, char *buf);

If fp is not NULL, the function call setbuf(fp, buf) is equivalent to

setvbuf(fp, buf, _IOFBF, BUFSIZ)

except that nothing is returned. If fp is NULL, the mode is _IONBF.

• i nt setvbuf(FILE "'fp, char "'buf, i nt mode, si ze_t n);

Determines how the file associated with fp is to be buffered. The function must be
invoked after the file has been opened but before it is accessed. The modes _IOFBF,
_IOLBF, and _IONBF cause the file to be fully buffered, line buffered, and unbuffered,
respectively. If buf is not NULL, the array of size n pointed to by bUf is used as a buffer.
If buf is NULL, the system provides the buffer. A successful call returns zero. Caution: If
an array of storage class automatic is used as a buffer, the file should be closed before
the function is exited.

• FILE *tmpfile(void);

Opens a temporary file with mode "wb+" and returns a pointer associated with the file.
If the request cannot be honored, NULL is returned. The system removes the file after it
is closed, or on program exit.

• char *tmpnam(char *s);

Creates a unique temporary name that is typically used as a file name. If s is not NULL,
the name is stored in s, which must be of size Ltmpnam or larger. If s is NULL, the sys
tem provides an array of static duration to store the name. Further calls to tmpnam 0
can overwrite this space. In all cases, the base address of the array in which the name is
stored is returned. Repeated calls to tmpnamO will generate at least TMP _MAX unique
names.

Accessing the File Position Indicator

Functions in this section are used by the programmer to access a file randomly. The tra
ditional functions for this purpose are fseekO, fte 110, and rewi ndO. ANSI C has
added fgetpos 0 and fsetpos O. An implementation can design these functions to
access files that are too large to be handled by the traditional functions. However, early
versions of many ANSI C compilers have not taken advantage of this opportunity.

A.12 v Input/Output: <stdi o. h> 657

• int fseek(FILE *fp, long offset, int place);

Sets the file position indicator for the next input or output operation. The position is
offset bytes from pl ace. The value of pl ace can be SEEK_SET, SEEK_CUR, or
SEELEND, which correspond to the beginning of the file, the current position in the
file, or the end of the file, respectively. If the function call is successful, the end-of-file
indicator is cleared and zero is returned.

• long ftel1(FILE *fp);

Returns the current value of the file position indicator for the file associated with fp.
On a binary file, this value is a count of the number of bytes from the beginning of the
file. For text files on some systems, this value is a "magic cookie." In any case, by saving
the value returned, fseekO can be used to reset the file position indicator. An unsuc
cessful call returns -1 and stores a system-dependent value in e r rno.

• void rewind(FILE *fp);

Sets the file position indicator to the beginning of the file and clears the end-of-file and
error indicators. The function call rewi nd (fp) is equivalent to

(void) fseek(fp, 0L, SEEK_SET)

except that fseekO clears only the end-of-file indicator .

• int fgetpos(FILE *fp, fpos_t *pos);

Gets the current value of the file position indicator for the file associated with fp and
stores it in the object pointed to by pas. The stored value can be used later by fset
posO to reset the file position indicator. A successful call returns zero; otherwise, a
system-dependent value is stored in errno, and a nonzero value is returned.

• int fsetpos(FILE *fp, const fpos_t *pos);

Sets the file pOSition indicator to the value pointed to by pos. A successful call clears
the end-of-file indicator and returns zero; otherwise, a system-dependent value is writ
ten to e r rna, and a nonzero value is returned.

658 Appendix A.., The Standard Library

Error Handling

• void clearerr(FILE *fp);

Clears the error and end-of-file indicators for the file associated with fp.

• int feof(FILE *fp);

Returns a nonzero value if the end-of-file indicator has been set for the file associated
with fp.

• int ferror(FILE *fp);

Returns a nonzero value if the error indicator has been set for the file associated with
fp.

• void perror(const char *5);

Prints an error message associated with errno on stderr. First, the string s is printed,
followed by a colon and a space. Then the associated error message is printed, followed
by a newline. (The function call strerror(errno) prints only the associated error mes
sage.)

Character Input/Output

• int getc(FILE *fp);

Equivalent to fgetc 0, except that it is implemented as a macro. Since fp may be eval
uated more than once in the macro definition, a call with an argument that has side
effects, such as fgetc ('"(p++), may not work correctly.

• int getchar(void);

The call getcharO is equivalent to getc(stdi n).

• char *gets(char *s);

Reads characters from stdi n and stores them in the array pointed to by s until a new
line is read or the end-of-file is reached, whichever occurs first. At this point, any new
line is discarded and a null character is written. (In contrast, fgets 0 preserves the
newline.) If any characters are written, s is returned; otherwise, NULL is returned.

A.12 .., Input/Output: <stdi o. h> 659

• int fgetc(FILE *fp);

Gets the next character from the file associated with fp and returns the value of the
character read. If the end-of-file is encountered, the end-of-file indicator is set, and EOF
is returned. If an error occurs, the error indicator is set, and EOF is returned.

• char *fgets(char *line, int n, FILE *fp);

Reads at most n - 1 characters from the file associated with fp into the array pointed
to by 1 i ne. As soon as a newline is read into the array or an end-of-file is encountered,
no additional characters are read from the file. A null character is "''Titten into the array
to end the process. If an end-of-file is encountered right at the start, the contents of
1 i ne are undisturbed, and NULL is returned; otherwise, 1 i ne is returned.

• int fputc(int c, FILE *fp);

Converts the argument c to an unsi gned char and writes it in the file associated with
fp. If the call fputc(c) is successful, it returns

(int) (unsigned char) c

Otherwise, it sets the error indicator and returns EOF.

• int fputs(const char *s, FILE *fp);

Copies the null-terminated string s into the file associated with fp, except for the ter
minating null character itself. (The related function puts 0 appends a newline.) A suc
cessful call returns a nonnegative value; otherwise, EOF is returned.

• int putc(int c, FILE *fp);

The putc() function is equivalent to fputc(), except that it is implemented as a
macro. Since fp may be evaluated more than once in the macro definition, a call with an
argument that has side-effects, such as putc('~p++), may not work correctly.

• int putchar(int e);

The call putchar(e) is equivalent to putc(c, stdout).

660 Appendix A T The Standard Library

• int puts(const char *s);

Copies the null-terminated string s to the standard output file, except the terminating
null character itself. Then a newline is written. (The related function fputs 0 does not
append a newline.) A successful call returns a nonnegative value; otherwise, EOF is
returned.

• int ungetc(int c, FILE *fp);

Pushes the value (unsi gned char) c back onto the stream associated with fp, pro
vided the value of c is not EOF. At least one character can be pushed back. (Most sys
tems allow more.) Pushed back characters will be read from the stream in the reverse
order in which they were pushed back. Once they have been read, they are forgotten;
they are not placed permanently in the file. Caution: An intervening call to one of the
file positioning functions fseek 0, fsetpos 0, or rewi nd 0 causes any pushed-back
characters to be lost. Also, until the pushed-back characters have been read, fte 110
may be unreliable.

Formatted Input/Output

• int fprintf(FILE *fp, canst char *cntr1_string, ...);

Writes formatted text into the file associated with fp and returns the number of charac
ters written. If an error occurs, the error indicator is set, and ,a negative value is
returned. Conversion specifications, or formats, can occur in cntrl_stri ng. They
begin with a % and end with a conversion character. The formats determine how the
other arguments are printed. (See Section 11.1, "The Output Function printfO," on
page 493.)

• i nt pri ntf(const char *cntrLstri ng, ...);

A function call of the form pri ntf(cntr1_stri I1g, other_arguments) is equivalent to

fprintf(stdout, cntrLstring, other_arguments)

• int sprintf(char *s, canst char *cntrl_string, ...);

This is the string version of p ri ntf O. Instead of writing to stdout, it writes to the
string pointed to by s.

A.1 2 Tin put/Output: <stdi o. h>

• int vfprintf(FILE *fp, canst char *cntrl_string,
va_list ap);

int vprintf(const char *cntrl_string, va_list ap);
int vsprintf(char s*, canst char *cntrl_string,

va_list ap);

661

These functions correspond to fprintfO, printfO, and sprintfO, respectively.
Instead of a variable length argument list, they have a pointer to an array of arguments
as defined in stdarg.h.

• int fscanf(FILE *fp, canst char *cntrl_string, ...);

Reads text from the file stream associated with fp and processes it according to the
directives in the control string. There are three kinds of directives: ordinary characters,
white space, and conversion specifications. Ordinary characters are matched, and white
space is matched with optional white space. A conversion specification begins with a %
and ends with a conversion character; it causes characters to be read from the input
stream, a corresponding value to be computed, and the value to be placed in memory at
an address specified by one of the other arguments. If the function is invoked and the
input stream is empty, EOP is returned; otherwise, the number of successful conver
sions is returned. (See Section 11.2, "The Input Function scanfO," on page 499.)

• i nt scanf(const char '~cntrl_stri ng, ...);

A function call of the form scanf(cntrl_stri ng, other_arguments) is equivalent to

fscanf(stdi n, cntrLstri ng, other_arguments)

• int sscanf(const char *s, canst char *cntrl_string, ...);

This is the string version of scanf O. Instead of reading from stdi n, it reads from the
string pointed to bys. Reading from a string is unlike reading from a file; if we use
sscanfO to read from s again, then the input starts at the beginning of the string, not
where we left off before.

662 Appendix A T The Standard Library

Direct Input/Output

The functions fread 0 and fwri te () are used to read and write binary files, respec
tively. No conversions are performed. In certain applications, the use of these functions
can save considerable time.

• size_t fread(void *a_ptr, size_t el_size, size_t n,
FILE ~'fp);

Reads at most n >{, e Lsi ze bytes (characters) from the file associated with fp into the
array pointed to by a_ptr. The number of array elements successfully written is
returned. If an end-of-file is encountered, the end-of-file indicator is set and a short
count is returned. If e l_s i ze or n is zero, the input stream is not read, and zero is
returned.

• size_t fwrite(const void *a_ptr, size_t e1_size,
size_t n, FILE *fp):

Reads n ~, el_si ze bytes (characters) from the array pointed to by a_ptr and writes
them to the file associated with fp. The number of array elements successfully 'written
is returned. If an error occurs, a short count is returned. If e 1 ze or n is zero, the
array is not accessed, and zero is returned.

Removing or Renaming a File

• int remove(const char *filename);

Removes the file with the name fi 1 ename from the file system. If the call is successful,
zero is returned; otherwise, -1 is returned. (This is the un 1 ink () function in traditional
C.)

• int rename(const char *from, const char *to);

Changes the name of a file. The old name is in the string pointed to by from. The new
name is in the string pointed to by to. If a file with the new name already exists, what
happens is system-dependent; typically, in UNIX the file is ovenwitten. On most sys
tems, the old and new names can be either files or directories. If one of the arguments
is a directory name, the other one must be too. Zero is returned if the call is successful;
otherwise, -1 is returned, and a system-dependent value is written to errno.

A.13 T General Utilities: <stdl i b. h> 663

A.l 3 General Utilities: <stdl ; b. h>

This header file contains prototypes of functions for general use, along with related
macros and type definitions. Here are some examples of the macros and type defini
tions:

#include <stddef.h>

#define
#define
#define
#define

EXIT_SUCCESS
EXIT_FAILURE
NULL
RAND....MAX

typedef struct {

o . I'~
1 I'"
o I''r
32767

for use with exitO 1'1
for use with ex;t() *1
null pointer value *1
1* 2A15 - 1 *1

int quot;
int rem;

I''r quoti ent *1
I''r remainder i'l

} div_t;

typedef struct {
long quat;
long rem:

} ldiv_t:

I'" quoti ent >{, I
I'" remainder >{'I

Dynamic Allocation of Memory

Allocates contiguous space in memory for an array of n elements, with each element
requiring eLsize bytes. The space is initialized with all bits set to zero. A successful
call returns the base address of the allocated space; otherwise, NULL is returned.

• void *malloc(size_t size);

Allocates a block of space in memory consisting of si ze bytes. The space is not initial
ized. A successful call returns the base address of the allocated space; otherwise, NULL
is returned.

• void 1'realloc(void *ptr, size_t size);

Changes the size of the block pointed to by ptr to si ze bytes. The contents of the
space will be unchanged up to the lesser of the old and new sizes. Any new space is not

664 Appendix A 'Y The Standard Library

initialized. The function attempts to keep the base address of the block the same; if this
is not possible, it allocates a new block of memory, copying the relevant portion of the
old block and deallocating it. If ptr is NULL, the effect is the same as calling mall oc O.
If ptr is not NULL, it must be the base address of space previously allocated by a call to
ca 11 oc 0, mall oc 0, or rea 11 oc 0 that has not yet been deallocated by a call to
freeO or rea11 ocO. A successful call returns the base address of the resized (or
new) space; otherwise, NULL is returned.

• void free(void *ptr);

Causes the space in memory pointed to by ptr to be deallocated. If ptr is NULL, the
function has no effect. If ptr is not NULL, it must be the base address of space previ
ously allocated by a call to call oc 0, mall oc 0, or rea 11 oc 0 that has not yet been
deallocated by a call to freeO or rea110cO; otherwise, the call is in error. The effect
of the error is system-dependent.

Searching and Sorting

• void '''bsearch(const void '(key_ptr, const void >"a_ptr,
size_t n_e1s, size_t e1_size,
int compare(const void *, const void *));

Searches the sorted array pointed to by a_ptr for an element that matches the object
pointed to by key_ptr. If a match is found, the address of the element is returned; oth
erwise, NULL is returned. The number of elements in the array is n_e 1 s, and each ele
ment is stored in memory in e l_si ze bytes. The elements of the array must be in
ascending sorted order "vith respect to the comparison function compa re (). The com
parison function takes two arguments, each one being an address of an element of the
array. The comparison function returns an i nt that is less than, equal to, or greater
than zero, depending on whether the element pointed to by its first argument is consid
ered to be less than, equal to, or greater than the element pointed to by its second argu
ment. (The function bsearchO uses a binary search algorithm.)

• void qsort(void *a_ptr, size_t n_els, size_t e1_size,
int compare(const void *, canst void *));

Sorts the array pointed to by a_pt r in ascending order with respect to the comparison
function compa re O. The number of elements in the array is n_e 1 s, and each element is
stored in memory in e1_si ze bytes. The comparison function takes two arguments,
each one being an address of an element of the array. The comparison function returns
an i nt that is less than, equal to, or greater than zero, depending on whether the ele
ment pointed to by its first argument is considered to be less than, equal to, or greater

A.13 'Y General Utilities: <stdl i b. h> 665

than the element pointed to by its second argument. (By tradition, the function
qsortO implements a "quicker-sort" algorithm.)

Pseudo Random-Number Generator

• int rand(void);

Each call generates an integer and returns it. Repeated calls generate what appears to
be a randomly distributed sequence of integers in the interval [0, RAND_MAX].

• void srand(unsigned seed);

Seeds the random-number generator, causing the sequence generated by repeated calls
to randO to start in a different place each time. On program startup, the random-num
ber generator acts as if s rand (1) had been called. The statement

srand(time(NULL));

can be used to seed the random-number generator with a different value each time the
program is invoked.

Communicating with the Environment

• char *getenv(const char "name);

Searches a list of environment variables provided by the operating system. If name is
one of the variables in the list, the base address of its corresponding string value is
returned; otherwise, NULL is returned. (See Section 11.12, "Environment Variables," on
page 521.)

• int system(const char *s);

Passes the string s as a command to be executed by the command interpreter (the shell)
provided by the operating system. If s is not NULL and a connection to the operating
system exits, the function returns the exit status returned by the command. If s is
NULL, the function returns a nonzero value if the command interpreter is available via
this mechanism; otherwise, it returns zero.

666 Appendix A T The Standard Library

Integer Arithmetic

• int abs(int i);
long labs(long i);

Both functions return the absolute value of i.

• div_t div(int numer, int denom);
ldiv_t ldiv(long numer, long denom);

Both functions divide numer by denom and return a structure that has the quotient and
remainder as members. The following is an example:

d = div(17, 5);
printf("quotient = %d, remainder %d\n", d.quot, d.rem);

When executed, this code prints the line

quotient = 3, remainder = 2

String Conversion

Members of the two families ato ... 0 and strto ... 0 are used to convert a string to a
value. The conversion is conceptual; it interprets the characters in the string, but the
string itself does not change. The string can begin with optional white space. The con
version stops with the first inappropriate character. For example, both of the function
calls

strtod("123x456", NULL) and strtod("\n 123 456", NULL)

return the doubl e value 123.0. The 5trto ... 0 family provides more control over the
conversion process and provides for error checking.

• double atof(const char *5); /* ascii to floating number */

Converts the string 5 to a daub 1 e and returns it. Except for error behavior, the function
call

atof(5) is equivalent to 5trtod(s, NULL)

If no conversion takes place, the function returns zero.

A.13 '" General Utilities: <stdl i b. h> 667

• int atoi(const char *5); /* ascii to integer */

Converts the string s to an i nt and returns it. Except for error behavior, the function
call

atoi(s) is equivalent to (int) strtol(s, NULL, 10)

If no conversion takes place, the function returns zero .

• long atol(const char *s); /* ascii to long */

Converts the string 5 to along and returns it. Except for error behavior, the function
call

atol(s) is equivalent to strtol(5, NULL, 10)

If no conversion takes place, the function returns zero.

• double strtod(const char *s, char **end_ptr);

Converts the string s to a doub 1 e and returns it. If no conversion takes place, zero is
returned. If end_ptr is not NULL and conversion takes place, the address of the charac
ter that stops the conversion process is stored in the object pointed to by end_ptr. If
end_ptr is not NULL and no conversion takes place, the value s is stored in the object
pointed to by end_ptr. On overflow, either HUGE_VAL or -HUGE_VAL is returned, and
ERANGE is stored in errno. On underflow, zero is returned, and ERANGE is stored in
errno.

• long strtol(const char *5, char **end_ptr, int base);

Converts the string 5 to along and returns it. If base has a value from 2 to 36, the dig
its and letters in s are interpreted in that base. In base 36, the letters a through z and A
through Z are interpreted as 10 through 35, respectively. With a smaller base, only
those digits and letters with corresponding values less than the base are interpreted. If
end_ptr is not NULL and conversion takes place, the address of the character that stops
the conversion process is stored in the object pointed to by end_ptr. For example,

char
long

~'P ;
value;

value = strtol{"12345", &p, 3);
printf("value =: %ld, end string \"%s\"\n", value, p);

668 Appendix A T The Standard Library

When executed, this code prints the line

value = 5, end string = "345"

Since the base is 3, character 3 in the string "12345" stops the conversion process.
Only the first two characters in the string are converted. In base 3, the characters 12 get
converted to decimal value 5. In a similar fashion, the code

value = strtol("abcde", &p, 12);
printf("value %ld, end string = \"%s\"\n", value, p);

prints the line

value = 131, end string = "cde"

Since the base is 12, the character c in the string 11 abcde II stops the conversion process.
Only the first two characters in the string are converted. In base 12, the characters ab
get converted to decimal value 131.

If base is zero, s is interpreted as either a hexadecimal, octal, or decimal integer,
depending on the leading nonwhite characters in s. With an optional sign and 0x or 0X,
the string is interpreted as a hexadecimal integer (base 16). With an optional sign and 0,
but not 0x or 0X, the string is interpreted as an octal integer (base 8). Otherwise, it is
interpreted as a decimal integer.

If no conversion takes place, zero is returned. If end_ptr is not NULL and no conver
sion takes place, the value s is stored in the object pointed to by end_ptr. On overflow,
either LONG_MAX or -LONG_MAX is returned, and ERANGE is stored in errno.

• unsigned long strtoul(const char *s,
char **end_ptr, int base);

The strtoul 0 function is similar to strtol 0, but returns an unsigned long. On
overflow, either ULONG_MAX or -ULONG_MAX is returned.

Multibyte Character Functions

Multibyte characters are used to represent members of an extended character set. How
the members of an extended character set are defined is locale-dependent.

• int mblen(const char *s, size_t n);

If s is NULL, the function returns a nonzero or zero value, depending on whether multi
byte characters do or do not have a state-dependent encoding. If s is not NULL, the

A.l3 T General Utilities: <stdlib.h> 669

function examines at most n characters in s and returns the number of bytes that com
prise the next multibyte character. If s points to the null character, zero is returned. If s
does not point to a multibyte character, the value -1 is returned.

• int mbtowc(wchar_t ~'P, const char '~s, size_t n);

Acts the same as mblenO, but with the following additional capability: If p is not NULL,
the function converts the next multibyte character in s to its corresponding wide char-
acter type and stores it in object pointed to by p.

• int wctomb(char *s, wchar_t we);

If s is NULL, the function returns a nonzero or zero value, depending on whether multi
byte characters do or do not have a state-dependent encoding. If s is not NULL and we is
a wide character corresponding to a multibyte character, the function stores the multi
byte character in s and returns the number of bytes required to represent it. If s is not
NULL and we does not correspond to a multibyte character, the value -1 is returned.

Multibyte String Functions

• size_t mbstowcs(wchar_t *wcs, canst char *mbs, size_t n);

Reads the multibyte string pointed to by mbs and writes the corresponding wide charac
ter string into wcs. At most, n wide characters are written, followed by a wide null char
acter. If the conversion is successful, the number of wide characters written is returned,
not counting the final ,vide null character; othen-vise, -1 is returned .

• int wcstombs(char ""mbs, const wchar_t ""wcs, size_t n);

Reads the wide character string pointed to by wcs and writes the corresponding multi
byte string into mbs. The conversion process stops after n wide characters have been
written or a null character is written, whichever comes first. If the conversion is suc
cessful, the number of characters wTitten is returned, not counting the null character (if
any); otherwise, -1 is returned.

670 Appendix A T The Standard Library

Leaving the Program

• void abort(void);

Causes abnormal program termination, unless a signal handler catches SIGABRT and
does not return. It depends on the implementation whether any open files are properly
closed and any temporary files are removed.

• int atexit(void (*func)(void));

Registers the function pointed to by func for execution upon normal program exit. A
successful call returns zero; otherwise, a nonzero value is returned. At least 32 such
functions can be registered. Execution of registered functions occurs in the reverse
order of registration. Only global variables are available to these functions.

• void exit(int status);

Causes normal program termination. The functions registered by atexi to are invoked
in the reverse order in which they were registered, buffered streams are flushed, files
are closed, and temporary files that were created by tmpfi 1 eO are removed. The value
status, along with control, is returned to the host environment. If the value of status
is zero or EXIT_SUCCESS, the host environment assumes that the program executed
successfully; if the value is EXIT_FAILURE, it assumes that the program did not execute
successfully. The host environment may recognize other values for status.

A.14 Memory and String Handling: <stri ng. h>

This header file contains prototypes of functions in two families. The memory func
tions memo .. 0 are used to manipulate blocks of memory of a specified size. These
blocks can be thought of as arrays of bytes (characters). They are like strings, except
that they are not null-terminated. The functions str ... 0 are used to manipulate null
terminated strings. Typically, the following line is at the top of the header file:

#include <stddef.h> /* for NULL and size_t */

A.14 T Memory and String Handling: <stri ng. h> 671

Memory-Handling Functions

• void *memchr(const void *p, int c, size_t n);

Starting in memory at the address p, a search is made for the first unsigned character
(byte) that matches the value (unsi gned char) c. At most, n bytes are searched. If suc
cessful, a pointer to the character is returned; otherwise, NULL is returned.

• int memcmp(const void *p, const void *q, size_t n);

Compares two blocks in memory of size n. The bytes are treated as unsigned charac
ters. The function returns a value that is less than, equal to, or greater than zero,
depending on whether the block pointed to by p is lexicographically less than, equal to,
or greater than the block pointed to by q.

• void *memcpy(void *to, void *from, size_t n);

Copies the block of n bytes pointed to by from to the block pointed to by to. The value
to is returned. If the blocks overlap, the behavior is undefined.

• void *memmove(void *to, void *from, size_t n);

Copies the block of n bytes pointed to by from to the block pointed to by to. The value
to is returned. If the blocks overlap, each byte in the block pointed to by from is
accessed before a new value is written in that byte. Thus, a correct copy is made, even
when the blocks overlap.

• void *memset(void *p, int c, size_t n);

Sets each byte in the block of size n pointed to by p to value (unsi gned char) c. The
value p is returned.

String-Handling Functions

• char *strcat(char *sl, const char *s2);

Concatenates the strings sl and s2. That is, a copy of s2 is appended to the end of sl.
The programmer must ensure that sl points to enough space to hold the result. The
string s 1 is returned.

672 Appendix A? The Standard Library

• char *strchr(const char *5, int c);

Searches for the first character in 5 that matches the value (char) elf the character is
found, its address is returned; otherwise, NULUs returned. The call strchr(s, '\0')
returns a pointer to the terminating null character in s.

• int strcmp(const char *51, canst char *52);

Compares the two strings 51 and 52 lexicographically. The elements of the strings are
treated as unsigned characters. The function returns a value that is less than, equal to,
or greater than zero, depending on whether 51 is lexicographically less than, equal to,
or greater than 52.

• int 5trcoll(con5t char *51, canst char *52);

Compares the two strings 51 and 52 using a comparison rule that depends on the cur
rent locale. The function returns a value that is less than, equal to, or greater than zero,
depending on whether 51 is considered less than, equal to, or greater than 52.

• char *strcpy(char *sl, canst char *52);

Copies the string s2 into the string sl, including the terminating null character. What
ever exists in sl is overwritten. The programmer must ensure that 51 points to enough
space to hold the result. The value 51 is returned.

• size_t strcspn(const char ~'sl, canst char 1(52);

Computes the length of the maximal initial substring in s1 conSisting entirely of char
acters not in s2. For example, the function call

strcspn("April is the cruel e5t month", "abc")

returns the value 13, because "Apri 1 is the "is the maximal initial substring of the
first argument having no characters in common with" abc If. (The character c in the
name strcspn stands for "complement," and the letters spn stand for "span.")

• char *strerror(int error_number);

Returns a pointer to an error string provided by the system. The contents of the string
must not be changed by the program. lf an error causes the system to write a value in
errno, the programmer can invoke 5trerror(errno) to print the associated error
message. (The related function pe r ro r () can also be used to print the error message.)

A.14 ? Memory and String Handling: <st r; ng. h> 673

• size_t strlen(const char *s);

Returns the length of the string s. The length is the number of characters in the string,
not counting the terminating null character.

• char ~'strncat(char ~'s1, canst char ~'s2, size_t n);

At most, n characters in s2, not counting the null character, are appended to s1. Then a
null character is written in s1. The programmer must ensure that 51 points to enough
space to hold the result. The string s1 is returned.

• i nt strncmp(const char *s1, const char "'s2, si ze_t n);

Compares at most n characters lexicographically in each of the two strings s1 and s2.
The comparison stops with the nth character or a terminating null character, whichever
comes first. The elements of the strings are treated as unsigned characters. The func
tion returns a value that is less than, equal to, or greater than zero, depending on
whether the compared portion of sl is lexicographically less than, equal to, or greater
than the compared portion of s 2.

• char *strncpy(char *51, const char *52, size_t n);

Precisely n characters are written into s1, overwriting whatever is there. The characters
are taken from s2 until n of them have been copied or a null character has been copied,
whichever comes first. Any remaining characters in s1 are aSSigned the value' \0'. If
the length of s2 is n or larger, sl will not be null-terminated. The programmer must
ensure that s1 points to enough space to hold the result. The value 51 is returned.

• char *strpbrk(const char *s1, const char *52);

Searches for the first character in s1 that matches anyone of the characters in s2. If the
search is successful, the address of the character found in s1 is returned; otherwise,
NULL is returned. For example, the function call

strpbrk("April is the cruelest month", "abc")

returns the address of c in cruel est. (The letters pbrk in the name strpbrk stand for
"pointer to break.")

• char *strrchr(const char *s, int c);

Searches from the right for the first character in s that matches the value (char) elf'
the character is found, its address is returned; otherwise, NULL is returned. The call
strchr(s, '\0') returns a pointer to the terminating null character in s.

674 Appendix A,. The Standard Library

II1II si ze_t strspnCconst char *51, const char ~'s2);

Computes the length of the maximal initial substring in 51 consisting entirely of char
acters in 52. For example, the function call

strspnCnApril is the cruelest month", "A is for apple")

returns the value 9, because all the characters in the first argument preceding the t in
the occur in the second argument, but the letter t does not. (The letters spn in the
name strspn stand for "span.")

II1II char *strstrCconst char *51, const char *s2);

Searches in 51 for the first occurrence of the substring 52. If the search is successful, a
pointer to the base address of the substring in sl is returned; otherwise, NULL is
returned.

II1II char *strtokCchar *51, canst char *s2);

Searches for tokens in 51, using the characters in s2 as token separators. If 51 contains
one or more tokens, the first token in sl is found, the character immediately follOwing
the token is overwritten with a null character, the remainder of s1 is stored elsewhere
by the system, and the address of the first character in the token is returned. Subse
quent calls with 51 equal to NULL return the base address of a string supplied by the
system that contains the next token. If no additional tokens are available, NULL is
returned. The initial call strtokCs1, s2) returns NULL if s1 contains no tokens. The
following is an example:

char
char
char

sl[]
52 []
*p;

" this is,an
If • H.

example
" .

printfC"\I%s\"", strtokCs1, 52));
while CCp = strtokCNULL, s2)) != NULL)

pri ntf(" \"%5\"", p);
putcharC'\n');

When executed, this code prints the line

"this" "is" "an" "example"

n. ,

A.l 5 ,. Date and Time: <ti me. h> 675

II1II size_t strxfrmCchar *51, const char *52, size_t n);

Transforms the string 52 and places the result in 51, overwriting whatever is there. At
most, n characters, including a terminating null character, are written in 51. The length
of 51 is returned. The transformation is such that when two transformed strings are
used as arguments to st rcmp 0, the value returned is less than, equal to, or greater
than zero, depending on whether st reo 110 applied to the untransformed strings
returns a value less than, equal to, or greater than zero. (The letters xfrm in the name
strxfrm stand for "transform.")

A.15 Date and Time: <time. h>

This header file contains prototypes of functions that deal with date, time, and the
internal clock. Here are examples of some macros and type definitions:

#include <stddef.h> I'" for NULL and size_t i'l

#define

typedef
typedef

long
long

clock_t;
time_t;

60 1* machine-dependent *1

Objects of type struct tm are used to store the date and time.

struct
i nt
i nt
i nt
i nt
int
int
i nt
i nt
i nt

} ;

tm {
tm_sec;
tm_min;
tm_hour;
tm_mday;
tm_mon;
tm_year;
tm_wday;
tm_yday;
tm_isdst;

1* seconds after the minute: [0, 60J *1
r mi nutes after the hour: [0, 59] ,', I
1* hours since midnight: [0, 23] *1
1* day of the month: [1, 31] *1
1* months since January: [0, 11] *1
1* years since 1900 *1
1* days since Sunday: [O, 6] *1
I'~ days si nce 1 January: [0, 365] ,', I
1* Daylight Savings Time flag *1

Note that the range of values for tm_sec has to accommodate a "leap second," which
occurs only sporadically. The flag tm_ i sdst is positive if Daylight Savings Time is in
effect, zero if it is not, and negative if the information is not available.

676 Appendix A... The Standard Library

Accessing the Clock

On most systems, the clockO function provides access to the underlying machine
clock. The rate at which the clock runs is machine-dependent.

• clock_t clock(void);

Returns an approximation to the number of CPU "clock ticks" used by the program up
to the point of invocation. To convert it to seconds, the value returned can be divided
by CLOCKS_PER_SEC. If the CPU clock is not available, the value -1 is returned. (See Sec
tion 11.16, "How to Time C Code," on page 528.)

Accessing the Time

In ANSI C, time comes in two principal versions: a "calendar time" expressed as an inte
ger, which on most systems represents the number of seconds that have elapsed since
1 January 1970, and a "broken-down time" expressed as a structure of type struct tm.
The calendar time is encoded with respect to Universal Time Coordinated (UTC). The
programmer can use library functions to convert one version of time to the other. Also,
functions are available to print the time as a string.

II time_t time(time_t 1<tp);

Returns the current calendar time, expressed as the number of seconds that have
elapsed since 1 January 1970 (UTC). Other units and other starting dates are pOSSible,
but these are the ones typically used. If tp is not NULL, the value also is stored in the
object pointed to by tp. Consider the following code:

now time(NULL);
printf("\n%s%ld\n%s%s%s%s\n",

H 11 now = now,
II ctime(&now) = ", ctime(&now) ,
"asctime(localtime(&now)) = ",asctime(localtime(&now)));

When executed on our system, this code printed these lines:

now == 685136007
ctime(&now) Tue Sep 17 12:33:27 1991

asctime(localtime(&now)) Tue Sep 17 12:33:27 1991

A.l 5 ... Date and Time: <ti me. h> 677

II char *asctime(const struct tm *tp);

Converts the broken-down time pointed to by tp to a string provided by the system.
The function returns the base address of the string. Later calls to ascti me 0 and
cti me 0 overwrite the string .

II1II char t'ctime(const time_t '''t_ptr);

Converts the calendar time pointed to by t_pt r to a string provided by the system. The
function returns the base address of the string. Later calls to ascti me 0 and cti me 0
overwrite the string. The two function calls

ctime(&now) and asctime(localtime(&now))

are equivalent.

II double difftime(time_t to, time_t tl);

Computes the difference t1 - to and, if necessary, converts this value to the number
of seconds that have elapsed between the calendar times to and tl. The value is
returned as a double.

II struct tm *gmtime(const time_t *t_ptr);

Converts the calendar time pointed to by t_ptr to a broken-down time and stores it in
an object of type struct tm that is provided by the system. The address of the struc
ture is returned. The function computes the broken-down time with respect to Univer
sal Time Coordinated (UTC). This used to be called Greenwich Mean Time (GMT); hence,
the name of the function. Later calls to gmti me 0 and 1 oca 1 ti me 0 overwrite the
structure.

II struct tm *localtime(const time_t *t_ptr);

Converts the calendar time pOinted to by t_ptr to a broken-down local time and stores
it in an object of type struct tm that is provided by the system. The address of the
structure is returned. Later calls to gmti me 0 and 1 oca lti me 0 overwrite the struc
ture.

• time_t mktime(struct tm *tp);

Converts the broken-down local time in the structure pointed to by tp to the corre
sponding calendar time. If the call is successful, the calendar time is returned; other
wise, -1 is returned. For the purpose of the computation, the tm_wday and tm_yday
members of the structure are disregarded. Before the computation, other members can

678 Appendix A v The Standard Library

have values outside their usual range. After the computation, the members of the struc
ture may be overwritten with an equivalent set of values in which each member lies
within its normal range. The values for tm_wday and tm_yday are computed from those
for the other members. For example, the following code can be used to find the date
1,000 days from now:

struct tm
time_t

"'tp;
now, later;

now time(NULL);
tp = localtime(&now);
tp -> tm_mday += 1000;
later = mktime(tp);
printf("\n1000 days from now: %s\n", ctime(&later));

• size_t strftime(char "'5, size_t n,
const char *cntrl_str, const struct tm *tp);

Writes characters into the string painted to by 5 under the direction of the control
string pointed to by cntrl_str. At most, n characters are written, including the null
character. If more than n characters are required, the function returns zero and the
contents of 5 are indeterminate; otherwise, the length of 5 is returned. The control
string consists of ordinary characters and conversion specifications, or formats, that
determine how values from the broken-down time in the structure pointed to by tp are
to be written. Each conversion speCification consists of a % followed by a conversion
character.

A.1S v Date and Time: <time. h>

Using strftime()

Conversion
specification What is printed Example

%a abbreviated weekday name Fri

%A full weekday name Friday

%b abbreviated month name Sep

%B full month name September

%c date and time Sep 01 02:17:23

%d day of the month 01

%H hour of the 24-hour day 02

%h hour of the 12-hour day 02

%j day of the year 243

%m month of the year 9

%M minutes after the hour 17

%p AM or PM AM

%5 seconds after the hour 23

%U week of the year (Sun-Sat) 34

%w day of the week (0-6) 5

%x date Sep 01 1993

%X time 02:17:23

%y year of the century 93

%Y year 1993

%Z time zone PDT

%% percent character %

Consider the following code:

char s[100J;
time_t now;

now time(NULL);
strftime(s, 100, "%H:%M:%S on %A, %d %B %Y",

localtime(&now));
printf("%s\n\n", 5);

1993

679

680 Appendix A" The Standard Library

When we executed a program containing these lines, the following line was printed:

13:01:15 on Tuesday, 17 September 1991

A.16 Miscellaneous

In addition to the functions specified by ANSI the system may provide other func
tions in the library. In this section, we describe the non-ANSI C functions that are widely
available. Some functions, such as exec 1 0, are common to most systems. Other func
tions, such as forkO or spawnl 0, are generally available in one operating system but
not another. The name of the associated header file is system-dependent.

File Access

• int access(const char *path, int amode);

Checks the file with the name path for accessibility according to the bit pattern con
tained in the access mode amode. The function prototype is in unistd.h on UNIX systems
'and in io.h on MS-DOS systems. The following symbolic constants are defined in the
header file:

F _OK Check for existence.
R_OK Test for read permission.
W_OK Test for write permission.
X_OK Test for execute or search permission.

Typically, the desired access mode is constructed by an OR of these symbolic con
stants. For example, the function call

access(path, R_OK I W-OK)

could be used to check whether the file permits both read and write access to the file.
The function returns 0 if the requested access is permitted; otherwise, -1 is returned
and errno is set to indicate the error.

A.16 " Miscellaneous 681

Using File Descriptors

• int open(const char *filename, int flag, ...);

Opens the named file for reading and/or writing as specified by the information stored
bitwise in fl ago If a file is being created, a third argument of type unsi gned is needed;
it sets the file permissions for the new file. If the call is successful, a nonnegative inte
ger called the file descriptor is returned; otherwise, errno is set and -1 is returned. Val
ues that can be used for fl ag are given in the header file that contains the prototype
for open O. These values are system-dependent.

• int close(int fd);

Closes the file associated with the file descriptor fd. If the call is successful, zero is
returned; otherwise, errno is set and -1 is returned.

• int read(int fd, char *buf, int n);

Reads at most n bytes from the file associated with the file descriptor fd into the object
pointed to by buf. If the call is successful, the number of bytes written in buf is
returned; otherwise, errno is set and -1 is returned. A short count is returned if the
end-of-file is encountered.

• int write(int fd, const char *buf, int n);

Writes at most n bytes from the object pointed to by buf into the file associated with
the file descriptor fd. If the call is successful, the number of bytes V\oTitten in the file is
returned; otherwise, errno is set and -1 is returned. A short count can indicate that the
disk is full.

Creating a Concurrent Process

• int fork(void);

Copies the current process and begins executing it concurrently. The child process has
its own process identification number. When forkO is called, it returns zero to the
child and the child's process ID to the parent. If the call fails, e r rna is set, and -1 is
returned. This function is not available in MS-DOS.

682 Appendix A 'f The Standard Library

• int vfork(void);

Spavvns a new process in a virtual memory efficient way. The child process has its own
process identification number. The address space of the parent process is not fully cop
ied, which is very inefficient in a paged environment. The child borrows the parent's
memory and thread of control until a call to exec. .. 0 occurs or the child exits. The
parent process is suspended while the child is using its resources. When vforkO is
called, it returns zero to the child and the child's process ID to the parent. If the call
fails, e r rno is set, and -1 is returned. This function is not available in MS-DOS.

Overlaying a Process

In this section, we describe the two families exec. .. 0 and spawn ... 0. The first is gen
erally available on both MS-DOS and UNIX systems, the second only on MS-DOS sys
tems. On UNIX systems, fa rk 0 can be used with exec. . ,0 to achieve the effect of
spawn ... 0.

• i nt
int

i nt
int

int
int
int
i nt

execl (char >"name, char *arg0, ... , char "'argN);
execle(char *name, char *arg0, ... , char *argN,

char "'*envp);
execlp(char *name, char *arg0, ... , char *argN);
execlpe(char *name, char *arg0, ... , char *argN,

char "n"envp);
execv(char *name, char **argv);
execve(char *name, char **argv, char **envp);
execvp(char *name, char **argv);
execvpe(char *name, char **argv, char **envp);

These functions overlay the current process with the named program. There is no
return to the parent process. By default, the child process inherits the environment of
the parent. Members of the family with names that begin with execl require a list of
arguments that are taken as the command line arguments for the child process. The
last argument in the list must be the NULL pointer. Members of the family with names
that begin with execv use the array argv to supply command line arguments to the
child process. The last element of argv must have the value NULL. Members of the fam
ily with names ending in e use the array envp to supply environment variables to the
child process. The last element of envp must have the value NULL. Members of the fam
ily with p in their name use the path variable specified in the environment to determine
which directories to search for the program.

• int spawnl(int mode, char *name, char *arg0, .'"
char '''argN);

A.16 T Miscellaneous 683

This family of functions corresponds to the exec .. ,0 family, except that each member
has an initial integer argument. The values for mode are 0, 1, and 2. The value ° causes
the parent process to wait for the child process to finish before continuing. With value
1, the parent and child processes should execute concurrently, except that this has not
been implemented yet. The use of this value will cause an error. The value 2 causes the
child process to overlay the parent process,

Interprocess Communication

• int pipe(int pd[2J);

Creates an input/output mechanism called a pipe, and puts the associated file descrip
tors (pipe descriptors) in the array pd. If the call is successful, zero is returned; other
vvise, e r rno is set and -1 is returned. After a pipe has been created, the system assumes
that two or more cooperating processes created by subsequent calls to forkO will use
read 0 and wri te 0 to pass data through the pipe. One descriptor, pd [0], is read
from; the other, pd [1], is written to. The pipe capacity is system-dependent, but is at
least 4,096 bytes. If a write fills the pipe, it blocks until data is read out of it. As with
other file descriptors, closeO can be used to explicitly close pd[0] and pd[lJ. This
function is not available in MS-DOS.

Suspending Program Execution \
• void sleep(unsigned seconds);

Suspends the current process from execution for the number of seconds requested.
The time is only approximate.

Appendix B

Language Syntax

In this appendix, we give an extended BNF syntax for the ANSI version of the C lan
guage. (See Section 2.2, "S)'l1tax Rules," on page 73.) This syntax, although intended for
the human reader, is concisely written. The C language is inherently context-sensitive;
restrictions and special cases are left to the main text. The conceptual output of the
preprocessor is called a translation unit. The syntax of the C language pertains to trans
lation units. The syntax for preprocessing directives is independent of the rest of the C
language. We present it at the end of this appendix.

8.1 Program

program .. - { file h +

file ".. - declLand_fcL definitions

decls_and_f'cLdefinitions ::= { declaration h+ decls_and_fcLdefinitionsopt
I {function_definition h+decls_and_fcLdefinitionsopt

Appendix B

Language Syntax

In this appendix, we give an extended BNF syntax for the ANSI version of the C lan
guage. (See Section 2.2, "Syntax Rules," on page 73.) This syntax, altbough intended for
the human reader, is concisely written. The C language is inherently context-sensitive;
restrictions and special cases are left to the main text. The conceptual output of the
preprocessor is called a translation unit. The syntax of the C language pertains to trans
lation units. The syntax for preprocessing directives is independent of the rest of the C
language. We present it at the end of this appendix.

B.1 Program

program

file

".. - { file h+

declLand_fcLdefinitions

decls_andJcLdefinitions .. - { declaration h+ decls_and_fcLdefinitionsopt
, {function_definition h +decls_andJcLdefinitionsopt

686 Appendix B T Language Syntax

B.2 Function Definition

".. - {extern I stat; c }opt type_specifier
function_name (parameter_declaration_listopt)
compound_statement

function_name ::== identifier

B.3 Declaration

declaration ",.- declaration_specifiers iniL declarator _listopt

declaration_specifiers ::= storage_class_specifier_or_typedef declaration_specifiers
I t 'f" d I . opt

".,-

ype_speCl/ler ec aratlOn_specifiersopt
I type_qualifier declaration_specifiersopt

".. - auto I extern I reg; ster I stati c
I typedef

char I double I float I int I long I short I signed
I unsigned
! vo; d I enum_specifier I strucLor_union_specifier
I typedef_name

enum_specifier ::= enum tagopt {enumerator_list} I enum tag

tag ".. -

enumerator

identifier

".. -

",,- enumerator { , enumerator }opt

enumeration_constant { '" const_integraLexpr }opt

enumeration_constant ",,- identifier

strucLdeclaration_list

strucLdeclaration ",,-

strucLdeclarator _list

strucLdeclarator ,,.. -

",,-

B.3 T Declaration

strucLor _union tagopt {strucLdeclaration_list}
! strucLor_union tag

struct I un; on

::= {strucLdeclaration h+

type_specifier type_specifieL qualifier _'istopt
I type_qualifier type_specifier _qualifier _'istopt

.. - strucLdeclarator {, strucLdeclarator }o+

declarator I declarator opt: consLintegraLexpr

".. - canst I volatile

declarator .. -,,- pointeropt direcLdeclarator

pointer .. -

direcLdeclarator ,.-

{ type_qualifier h +

,identifier I (declarator)
I direcLdeclarator [consuntegraLexpropt]
I direcLdeclarator (parameter_type_list)
I direccdeclarator (identifier_listopt)

::= parameter~list I parameter_list, ...

".. -

parameter_declaration

abstra cL declarator

parameter_declaration { , parameteLdeclaration }o+

::= declaration_specifiers declarator
, declaration_specifiers abstracLdeclaratoropt

.. - pointer I pointeropt direcLabstracLdeclarator

687

direcLabstraccdeclarator ::= (abstracLdeclarator)
direcLabstracLdeclaratoropt [consUntegraLexpropt]
direcLabstraccdeclarator opt (parameter _type_listopt)

".. - identifier { I identifier 10+

688 Appendix B T Language Syntax

cypedef_ name ".. - identifier

in iL declarator_list iniLdeclarator { , iniLdeclarator }opt

declarator I declarator = initializer in it_declarator

initializer ".. - assignmenLexpression I {initializer_list} I {initializer_list, }

::= initializer { , initializer Jo+

8.4 Statement

statement ".. - compound_statement I expression_statement I iteration_statement
I jump_statement I labeled_statement I selection_statement

C{)mpound_statement

statemenL/ist

".. -

",,-

expression_statement

jump_statement ",,-

{ declaration_listopt statemenL/istopt }

{ declaration h+

{ statement h+

::= expressionopt ;

break ; , conti nue ; I goto identifier;
I retu rn expressionopt ;

labeled_statement ".. - identif'ier : statement

selection_statement

::=

".. -

".. -

, case consCintegraLexpr: statement
I default : statement

if (expression) statement
I if (expression) statement else statement
I switch_statement

swi tch (integraLexpression)
{ case_statement' defaul t : statement I sWitch_block h

{ case consLintegraLexpr : h+ statement

".. -

B.S T Expression

{ { declaration_list }opt case_defaulcgroup}

case_defauILgroup ".. - { case_group h+

defaulLgroup

".. -
".. -

I {case_group }o+ defaulcgroup { case_group 10+

{ case consUntegraLexpr: h+ {statement h+

default : {statementh+

8.5 Expression

expression ::= constant I string_literal I (expression) I lvalue
I assignmenLexpression I expression , expression I + expression
I expression I {unction_expression I relationaL expression
I equality_expression I logicaL expression
I expression arithmetic_op expression I bitwise_expression
I expression? expression: expression I si zeof expression
I si zeof (type_name) I (type_name) expression

lvalue ".. - & lvalue I ++ lvalue I lvalue ++ I -- lvalue I lvalue--
I identifier I '~expression I lvalue [expression] I (lvalue)
I lvalue. identifier I lvalue -> identifier

assignmenLexpression ".. - lvalue assignmenLop expression

assignmenLop

arithmeticop

".. -

relationaLexpression

I += I -= I ,~=

+I-I'~I/I%

I %= I &= I A= I I = I »= I «=

".. - expression < expression I expression > expression

689

I expression <= expression I expression >= expression

equality_expression

logicaL expression

".. -

".. -

expression == expression I expression! = expression

! expression I expression I I expression
I expression && expression

690 Appendix B T Language Syntax

bitwise_expression ".. - - expression I A expression
expression & expression I expression I expression

I expression« expression I expression» expression

function_expression ::= function_name(argumenUistopt)
I (,'< pointer) (argumenUistopt)

argumenUist expression { , expression }o+

type_specifier declaratoropt

B.6 Constant

constant character_constant I enumeration_constant I floating_constant
I integer_constant

character_constant ".. - , c' I L' c'

c any character from the source character set except ' or \ or newline
I escape_sequence

escape_sequence ".. - \' I \" I \7 I \\ I \a I \b I \f I \n I \r I \t I \v
I \ octaL digit octaLdigitopt octaLdigitopt
I \x hexadecimaL digit { hexadecimaL digit }o+

enumeratiofLconstant identifier

",,-

floating_constant

{ractionaLconstant

digiLsequence

".. - fractionaL constant exponentiaLpartopt floating_suffiXopt
digiLsequence exponentiaLpart floating_suffix opt

::= digiLsequenceopt. digiLsequence I digiLsequence

{ digit h+

digit ".. - o I 1 I 2 I 3 141 5 161 7 I 8 I 9

B.7 " String Literal 691

exponentiaLpart .. {e I E h {+ I - }opt digiLsequence

floating_suffix .. - f I F I 1 I L

integer_constant .. - decimaL constant integer _suffixopt
I octaLconstant integer_suffiXopt
I hexadecimaLconstant integer_suffiXopt

decimaL constant .. - o I nonzero_digit digiLsequence

nonzero_digit .. - 1 I 2 I 3 141 5 161 7 I 8 I 9

octaLconstant o {octaLdigit }o+

octaL digit o I 1 I 2 I 3 141 5 161 7

hexadecimaL constant .. - {0x I 0X h {hexadecimaLdigit h +

hexadecimaL digit

.. -

1

o I 1 I 2 I 3
a I b I c I d

u I U

L

B.7 String Literal

".. -

.. -

4 I 5
elf

6
A

7
B

8
C

9
DIE I F

sc .. - any character from the source character set except" or \ or newline

I escape_sequence

692 Appendix B... Language Syntax

B.8 Preprocessor

preprocessing_directive ",,- controUine newline I if_section I pp_token newline

controUine

pp_token

if_section

if_group

elif_group

",,-

"-,,-

"-,,-

"-,,-

",,-

",,-

include {< identifier> I .. identifier" }
undef identifier I # 1 i ne pp_token I # error pp_token
pragma pp_token
defi ne identifier { (identifier_list) }opt { ppJoken }o+

identifier I constant I string_literal I operator I punctuator
I pp_token ## pp_token I # identifier

if consLintegraLexpr newline preprocessing_directiveopt
I # i fdef identifier newline {preprocessing_directive }opt

I # i fndef identifier newline {preprocessing_directive }opt

eli f constanLexpression newline {preprocessing_directive lopt

else newline { preprocessing_directive }opt

endi f newline

newline ",,- the newline character

p endix c
ANSI C Compared to
Trad itional C

In this appendix, we list the major differences between ANSI C and traditional C. Where
appropriate, we have included examples, The list is not complete; only the major
changes are noted,

C.l Types

II The keyword si gned has been added to the language,

II Three types of characters are specified: plain char, signed char, and
unsi gned char, An implementation may represent a plain char as either a
si gned char or an unsi gned char,

II The keyword si gned can be used in declarations of any of the signed integral types
and in casts. Except with char, its use is always optional.

II In traditional C, the type long float is equivalent to double. Since long float
was rarely used, it has been removed from ANSI C.

II The type long double has been added to ANSI C. Constants of this type are speci
fied with the suffix L. Along double may provide more precision and range than a
doub 1 e, but it is not required to do so.

II The keyword vo; d is used to indicate that a function takes no arguments or t
returns no value.

694 Appendix C T ANSI C Compared to Traditional C

III The type voi d t, is used for generic pointers. For example, the function ·nl'{)TfYh;,...,

for ma 11 oc 0 is given by

void *malloc(size_t size);

A generic pointer can be assigned a pointer value of any type, and a variable of
pointer type can be assigned a generic painter value. Casts are not needed. In
trast, the generic painter type in traditional C is char 1,. Here, casts are necessary;

III Enumeration types are supported. An example is

enum day {sun, mon, tue, wed, thu, fri, sat};

The enumerators in this example are sun, man, ... , sat. Enumerators are constants
of type i nt. Thus, they can be used in case labels in swi tch statements.

C.2 Constants

III String constants separated by white space are concatenated. Thus,

"abc"
"def" "ghi" is equivalent to "abcdefghi"

III String constants are not modifiable. (Not all compilers enforce this.)

III The type of a numeric constant can be specified by letter suffixes. Some examples
are

123L Ii' long ,~ I
123U I'~ unsigned ,~ I
123UL Ii' unsigned long ,~ I
1.23F Ii' float 1, I
1.23L I'~ long double ,~ I

Suffixes may be lower- or uppercase. A numeric constant without a suffix is a type
big enough to contain the value.

III The digits 8 and 9 are no longer considered octal digits. They may not be used in an
octal constant.

C.3 T Declarations 695

III Hexadecimal escape sequences beginning with \x have been introduced. As with
octal escape sequences beginning with \0, they are used in character and string
constants.

C.3 Declarations

III The type qualifier const has been added. It means that variables so declared are
not modifiable. (Compilers do not always enforce this.)

.. The type qualifier vol ati 1 e has been added. It means that variables so declared
are modifiable by an agent external to the program. For example, some systems put
the declaration

extern volatile int errnOj

in the header file errno.h.

C.4 Initializations

• In ANSI C, automatic aggregates such as arrays and structures can be initialIzed. In
traditional C, they must be external or of storage class stat; c.

• Unions can be initialized. An initialization refers to the union's first member.

• Character arrays of size n can be initialized using a string constant of exactly n
characters. An example is

char today[3] = "Fri";

The end-of-string sentinel \0 in "Fri" is not copied into today.

696 Appendix C v ANSI C Compared to Traditional C

C.S Expressions

II For reasons of symmetry, a unary plus operator has been added to the language.

III In traditional C, expressions involving one of the commutative binary operators
such as + or ~, can be reordered at the convenience of the compiler, even though
they have been parenthesized in the program. For example, in the statement

x = (a + b) + c;

the variables can be summed by the compiler iu some unspecified order. In ANSI C,
this is not true. The parentheses must be honored.

II A pointer to a function can be dereferenced either explicitly or implicitly. If, for
example, f is a pointer to a function that takes three arguments, then the expres
sion

f(a, b, c) is equivalent to (~'f)(a, b, c)

III The si zeof operator yields a value of type si ZLt. The type defiuition for si ze_t
is given in stddef.h.

III A pointer of type voi d ~(cannot be dereferenced without first casting it to an
appropriate type. However, it can be used in logical expressions, where it is com
pared to another pointer.

C.6 Functions

II ANSI C provides a new function definition syntax. A parameter declaration list
occurs in the parentheses followiug the function name. An example is

int fCint a, float b)
{

In contrast, the traditional C style is

int f(a, b)
int a;
float b;
{

C.6 v Functions 697

• ANSI C provides the function prototype, which is a new style of function declara
tion. A parameter type list occurs in the parentheses following the function name.
Identifiers are optionaL For example,

int feint, float); and int feint a, float b);

are equivalent function prototypes. In contrast, the traditional C style is

int fO;

If a function takes no arguments, then voi d is used as the parameter type in the
function prototype. If afunction takes a variable number of arguments, then the
ellipsis is used as the rightmost parameter in the function prototype.

• Redeclaring a parameter identifier in the outer block of a function definition is ille
gal. The following code illustrates the error:

void feint a, int b, int c)
{

int a; /* error: a cannot be redefined here */

Although this is legal in traditional C, it is almost always a programming error.
Indeed, it can be a difficult bug to fiud.

• Structures and unions can be passed as arguments to functions, and they can be
returned from functions. The passing mechanism is call-by-value, which means that
a local copy is made.

698 Appendix C 'f' ANSI C Compared to Traditional C

C.7 Conversions

II1II An expression of type float is not automatically converted to a double.

II1II When arguments to functions are evaluated, the resulting value is converted to the
type speCified by the function prototype, provided the conversion is compatible.
Otherwise, a syntax error occurs.

II1II Arithmetic conversions are more carefully specified. (See Section 3.11, "Conver
sions and Casts," on page 131.) In ANSI C, the basic philosophy for conversions is to
preserve values, if possible. Because of this, the rules require some conversions on
a machine with 2-byte words to be different from those on a machine with 4-byte
words.

II1II The resulting type of a shift operation is not dependent on the right operand. In
ANSI C, the integral promotions are performed on each operand, and the type of
the result is that of the promoted left operand.

C.S Array Pointers

II1II Many traditional C compilers do not allow the operand of the address operator & to
be an array. In ANSI C, since this is legal, pointers to multidimensional arrays can
be used. Here is an example:

i nt a[2] [3] = {2, 3, 5, 7, 11, 13}; t

i nt Cf,p) [] [3] ; I\~ the fitst dimension
need not be specified t'l

P := &a;
printfC"%d\n", C"'p) [1] [2]) ; It' 13 is printed *1

e.9 'f Structures and Unions 699

C.9 Structures and Unions

I!III Structures and unions can be used in assignments. If 51 and s2 are two structure
variables of the same type, the expression 51 s2 is valid. Values of members in
52 are copied into corresponding members of 51.

II Structures and unions can be passed as arguments to functions, and they can be
returned from functions. All arguments to functions, including structures and
unions, are passed call-by-value.

II1II If m is a member of a structure or union and the function call f 0 returns a struc
ture or union of the same type, then the expression f 0 . m is valid.

II1II Structures and unions can be used with the comma operator and in conditional
expressions. Some examples are

int
struct s

Ca, s1)

a, b;
51, s2, 53;

a < b ? 51 : 52
1* comma expression having structure type *1
1* conditional expression struct type *1

.. If expr is a structure or union expression and m is a member, then an expression of
the form expr. m is valid. However, expr. m can be assigned a value only if expr can.
Even though expressions such as

Cs1 := s2).m Ca, sl).m Ca < b ? sl : s2).m fO .m

are valid, they cannot occur on the left side of an assignment operator.

700 Appendix C v ANSI C Compared to Traditional C

C.10 Preprocessor

1/ Preprocessing directives do not have to begin in column 1.

1/ The following predefined macros have been added:

They may not be redefined or undefined. (See Section 8.9, "The Predefined Macros,"
on page 387.)

1/ A macro may not be redefined without first undefining it. Multiple definitions are
allowed, provided they are the same.

1/ The preprocessor operators # and ## have been added. The unary operator # causes
the "stringization" of a formal parameter in a macro definition. The binary operator
merges tokens. (See Section 8.10, "The Operators # and ##," on page 387.)

1/ The preprocessor operator defi ned has been added. (See Section 8.8, "Conditional
Compilation," on page 384.)

1/ The preprocessing directives #elif, #error, and #pragma have been added. (See
Section 8.8, "Conditional Compilation," on page 384, and Section 8.12, "The Use of
#error and #pragma," on page 389.)

1/ In traditional C, toupperO and tolowerO are defined as macros in clype.h:

#define
#define

toupper(c)
tolower(c)

((c)-'a'+'A')
((c)-'A'+'a')

The macro call toupper(c) will work properly only when c has the value of a low
ercase letter. Similarly, the macro call to lowe r (c) will work properly only when c
has the value of an uppercase letter. In ANSI C, touppe r 0 and to lowe r 0 are
implemented either as functions or as macros, but their behavior is different. If c
has the value of a lowercase letter, then toupper(c) returns the value of the corre
sponding uppercase letter. If c does not have the value of a lowercase letter, then
the value c is returned. Similar remarks hold with respect to to lowe r O.

1/ In ANSI C, every macro is also available as a function. Suppose sldio.h has been
included. Then putchar(c) is a macro call, but (putchar) (c) is a function call.

ell v Header Files 701

C.ll Header Files

1/ ANSI C has added new header files. The header file stdlib.h contains function proto
types for many of the functions in the standard library.

1/ The header files (loat.h and limits.h contain macro definitions describing implemen
tation characteristics. ANSI C requires that certain minimum values and ranges be
supported for each arithmetic type.

C.12 Miscellaneous

1/ In traditional C, the operators += and =+ are synonymous, although the use of =+ is
considered old-fashioned. In ANSI C, the use of =+, =1" and so on is not allowed.

1/ An ANSI C compiler treats an assignment operator such as += as a single token. In
traditional C, since it is treated as two tokens, white space can occur between the +
and =. Thus, the expression a + ::::: 2 is legal in traditional C but illegal in ANSI C.

1/ Each of the following has a distinct name space: label identifiers, variable identifi
ers, tag names, and member names for each structure and union. All tags for enum,
struct, and uni on comprise a single name space.

1/ Two identifiers are considered distinct if they differ within the first n characters.
where n must be at least 31.

1/ The expression controlling a swi tch statement can be any integral type. Floating
types are not allowed. The constant integral expression in a case label can be any
integral type, including an enumerator.

1/ Pointers and i nts are not interchangeable. Only the integer 0 can be assigned to a
pointer without a cast.

1/ Pointer expressions may point to one element beyond an allocated array.

702 Appendix C v ANSI C Compared to Traditional C

III External declarations and linkage rules are more carefully defined.

III Many changes have been made to the standard library and its associated header
files.

Appendix D

ASCII Character Codes

American Standard Code for Information Interchange

0 2 3 4 5 6 7 8

0 nul soh stx etx eot enq ack bel bs

nl vt np cr so si die del dc2

2 dc4 nak syn etb can em sub esc fs

3 rs us sp # $ % &

4 " + / 0

5 2 3 4 5 6 7 8 9

6 < > ? @ A B C D

7 F G H I J K L M N

8 P Q R S T U V W X

9 Z \ A a b

10 d e f g h j k

11 n 0 p q r s t u v

12 x y z del

9

ht

dc3

gs

1

E

0

Y

c

m

w

704 Appendix D T ASCII Character Codes

How to Read the Table

.. Observe that the character A is in row six, column five. This means that the char
acter A has value 65.

Some Observations

.. Character codes 0 through 31 and 127 are nonprinting.

.. Character code 32 prints a single space.

.. Character codes for digits 0 through 9 are contiguous, letters A through Z are
contiguous, and letters a through z are contiguous.

.. The difference between a capital letter and the corresponding lowercase letter is
32.

The meaning of some of the abbreviations

bel audible bell ht rizontal tab

bs backspace nl newline

cr carriage return nul null

esc escape vt vertical tab

Note: On most UNIX systems, the command man ascii causes the ASCII table to be
printed on the screen in decimal, octal, and hexadecimal.

Appendix E

Operator Precedence
and Associativity

The table below shows precedence and associativity for all the C++ operators. In case of
doubt, parenthesize.

Operators Associativity

0 [] -> ++ (postfIX) -- (postfix) left to right

++ (prefIX) (prefix) ! ~ sizeof(lype) right to left
+ (unary) (unary) & (address) ,~ (indirection)

'/< / % left to right

+ left to right

« » left to right

< <= > >= left to right

-- ! left to right

& left to right

A left to right

I left to right

&& left to right

II left to right

7: right to left

+= -= 'k= /= *= »= «= &= A= I right to left

, (comma operator) left to right

Index

Symbols
! negation operator,

147-148, 55
! not equal operator, 125,

147, 152-154
preprocessor directive, 7,

13,91,365
preprocessor operator,

387-388, 700
preprocessor operator,

387-388, 700
% modulus operator,

81-82
%% format, 494
%= modulus equal operator,

88
& address operator, 19,44,

72,248,251,428
& and (bitwise) operator,

332, 334
&& and (logical) operator,

147, 154-157
&= and equal operator, 88
o function call operator, 8,

207
() parentheses, 7, 12, 34,

41,71,82-83,125,181,
198, 200, 248, 368

(...) ellipsis, 30, 202
,~ dereferencing or indirec

tion operator, 44, 248,
250,253,289

,~= times equal operator, 88
+ plus (unary) operator, 696
+ plus operator, 84
++ increment operator,

85-86
+= plus equal operator, 88
, comma operator, 82,

171-172,699
- minus operator, 84, 90
-- decrement operator,

85-86
minus equal operator, 88

-> member access operator,
411,413-414,428

. member access operator,
408,411,414

I~' ~'I comment pair, 11, 71,
75-76

II comment, 76, 98
II comment (C++), 594
II comment (Java), 626

divide equal operator, 88
; semicolon terminator, 8,

11,63,82,87,108,158
< less than operator, 147,

149-151
< redirect input, 27, 56-57
« left shift operator, 332,

335-336
« put to operator (C++),

595

«= shift left equal opera
tor, 88

<= less than or equal opera
tor, 23,147,149-150

<> angle bracket, 7
= assignment operator, 10,

12, 87-88, 108-109
== equal operator, 21,

147, 152-153
> greater than operator,

147,149-150
> redirect output, 56-57
>= greater than or equal op

erator, 147, 149-150
» get from operator (C++),

597
» right shift operator,

335-336
»= shift right equal opera

tor, 88
?: conditional expression

operator, 182-183
[] subscript operator, 37,

245-248, 262
\ backslash, 79-80, 106,

112-113
\" double quote, 8, 72,

80-81,113
\ 7 question mark, 113
\' single quote, 113
\0 end-of-string sentinaI,

41-42, 113,270-271

708 'f Index

A exclusive or (bitvvise) oper
ator, 332, 334

A= or equal (exclusive) oper
ator,88

_ underscore, 78-79
{ } braces, 7, 22, 82, 108,

157,280-282
I or (bitwise) operator, 332,

334
I vertical bar as choice sep

arator, 73-74
I '" or equal (inclusive) oper

ator,88
II or (logical) operator, 147,

154-157
~ complement operator,

332-333
o zero, 148,223

A
\a alert, 113-114
a.out, 6, 54-55, 523
abc, 43
abc structure, 428-429
abortO, 389, 670
abs(),130,648,666
abstract base class (C++),

611
abstract data type, 430
access, 429

clock,676 .
date functions, 675
file, 513, 517
file position indicator,

656
random, 513
structure, 411, 417
time functions, 675-676

acosO,647
Ada, 77
addO,283
add_vector(),562
add3, 599-600
add30,599
addition, 12
address, 208, 250

address operator &, 19,44,
72,248,251,428

ADT,430
in Java, 629
list, 447-460
matrix, 577-579
shape (C++), 610-612
stack, 430, 432-435,

460-463
stack (C++), 613-615
string (C++), 601-607
student (C++), 609

aggregate variable, 407
alert \a, 113-114
ALGOL 60,73
algoritlnn

binary search, 664
quicker sort, 665

allocation
array, 571, 577, 663
dynamic, 571
memory, 254, 259, 577,

663,671
and (bitwise) operator &,

332,334
and (logical) operator &&,

147, 154-157
and equal operator &=, 88
angle bracket <>,7
ANSI, I, 3
ANSIC

floating types, 119
vs. traditional, 693-702

applet (Java), 635
appletviewer (Java), 636
ar, 105, 526
arcommand,526
archiver, lOS, 526
argc,48,290-291
argument, 29, 201

call-by-reference, 252
function, 293-295
macro, 368-370, 377
structure, 416
to mainO, 48, 290
variable, 651

argv, 290-291

aritlnnetic
conversion, 131
expression, 131
operator, 81
pointer, 36, 254-255, 257
type, 111

array, 37,46, 245-308
allocation, 571, 577
as parameter, 256
base address, 254
character, 36, 39, 80
element size, 255
function argument, 256
in structures, 409
initialization, 246-247,

260,281,695
merge, 263
muitidimensional,

277-290,698
name, 42
of pointer, 284, 572
of structures, 409
pointer, 253, 698
ragged, 292-293
size, 246
subscript range, 575
three-dimensional, 280
two-dimensional,

277-278
ASCII Character Codes, 111,

703
asctimeO,677
as; nO, 647
asm (Borland), 77
assert(),212-213,388,

641
assert.h, 212, 267, 388, 641
ass;gn_values(),420
assignment operator =, 10,

12,87-88,108-109
assignment operators,

87-89
associativity, 83-84, 148,

150,332,415,705
atanO,647
atan20,647
atex;tO,670

atofO,666
atoi 0,667
atol 0,667
auto, 77, 205, 216-217
automatic aggregate initial-

ization, 695
automatic conversion,

132-133
averageO,599
awk utility, 540

B
backslash \, 79-80, 106,

112-113
backspace \b, 113
Backus-Naur Form, 73
backward, 514
base class (C++), 608, 616
binary operator, 82, 148
binary search algoritlnn,

664
binary tree, 475-483

creation, 478-479
traversal,477-478

binaf)Uree, 476, 480
bisection, 296-297, 299
bisection(), 298, 304
bison utility, 540
bit, 429
bit field, 427-429
bit shift operator, 335
bit_print, 338
bit_print(),338-339
bitwise logical operator, 334
bitwise operator, 331-344,

429
block, 108, 157, 198,

213-214
C++, 595
debug, 216
nested,215
parallel, 215
storage allocation, 215

BNF,73
booL vals, 170
boolean variable, 169

Borland keywords
asm, 77
cdecl,77
far, 77
huge, 77
interrupt, 77
near, 77
pascal,77

bound,246
braces, 7, 22, 82, 108, 157,

280-282
break, 77, 179, 182
bsearch 0, 664
bubble sort, 38, 257-258
bubbleO,257
bui 1 dtree 0, 483
byte, 136

c
C

ANSI, 1,3
standard, 1, 3
traditional, 1

%c format, 494
.c file extension, 6, 54-55,

209,523,527,532-533
C system, 69, 91-92
C++, 2-3, 593-616

ADT,601
benefits, 615
class, 601
constructor, 606
destructor, 606-607
exception, 614
function, 599
inheritance, 608
input, 595
output, 594
overloading, 603
polymorphism, 610
template, 612

call-by-reference, 36, 208,
252-253

call-by-reference (C++),
599-600

" Index 709

Call-by-reference is accom
plished, 253

call-by-value, 33, 35,
207-208

calloc(),259-260,482,
573,663-664

calls, 651
capitalize, 126
card structure, 407-409,

419
carriage return \r, 113
case, 77, 181-182, 347,694
cast, 38, 131, 133-134
cast conversion operator,

134
catch (C++), 615
cb utility, 539
cc command, 6,53-54,211
cdecl (Borland), 77
cei 10,648
change_case, 515
char, 77, 110-111, 114-115
CHAR_BIT,339
character, 70

array, 39, 80
bit representatioll, 114
constant, 79, 344
conversion, 19-20,494
functions, 642
input/output, 658
mapping, 643
multibyte functions, 668
nonprinting,112
printing, III
testing, 642
white space, 70

checlcbits, 429
ci rcle class (C++), 611
class (C++), 601

abstract base, 611
base, 608, 616
container, 612
initialization, 606
type, 601

class (Java), 625, 627, 629
method,630

710 T Index

classes (C++)
ci rcle, 611
grad_student, 609
rectangle,611
square,612
stack,613
string, 601,603-604,

606
student, 609

classes (Java)
Improved, 626
Moon, 628
NoSuchNameException,

636
Person, 629
Personl,634
Person2,637
PersonTest,630
Student, 633-634
StudentTest,634
wgcd,635

clearerrO,658
client (Java), 630
clock access functions, 676
clock(),104,528,530,676
closeO,681
closing a file, 655
cmp(), 373-374, 376
cnLchar,165-166
cnt_Ietters, 49-50
cntrl_c_handler(),

565-566
coercion, 132
comma operator " 82,

171-172,699
command line, 48
command option, 55
commands

ar, 105, 526
cc, 6, 53-54, 211
echo, 583
lib, 526
Is, 56
mV,54
rename, 55
tcc, 53, 55
tUb, 526

comment, 75
comment (C++)//, 594
comment (Java) //,626
comment II, 76, 98
comment pair /~, * /,11,71,

75-76
common definitions, 652
compare(),354,372
compare_fractional_

partO,381
compare_sorts, 534
comparison function, 372
Compilation Process figure,

70
compiler, 6, 53-55, 69, 91,

522
conditional, 384-385
error, 54
math library use, 130
option, 130, 370, 523
profiler, 524

complement operator -,
332-333

complex, 413-414
comp 1 ex structure, 413
compound statement, 22,

157
concurrent process, 567,

681
concurrenLsum, 561, 563
conditional compile,

384-385
conditional expression op-

erator ?:, 182-183
conditioning a file, 655
consecutive_sums, 23
const, 17, 77, 272,

307-308,596,695
constant, 79, 694

character, 79
enumeration, 79
floating-point, 13, 79,

119-120
hexadecimal, 117, 134
integer, 13, 79, 117
multibyte character, 344
negative, 80

numeric, 694
octal, 117, 134
pointer, 46, 308
string, 8, 80-81, 270,

694-695
symbolic, 14, 367, 385

constructor (C++), 606
overload,607

constructor (Java), 631
Constructs not to be point-

ed at, 251
container class (C++), 612
continue, 77, 179-180, 182
control string, 12, 18
control-c, 56, 564
control-d, 56
control-z, 114
conversion, 10, 13, 38, 133,

200,208,251,698
arithmetic, 131
automatic, 132-133
cast operators, 134
character, 19-20,494
impliCit, 132
specification, 12, 18,495,

502
cosO, 127,647
coshO,647
countO, 455
counLitO,456
create_employee_da-

taO, 344
create_tree(),479
Creating maxmin Program,

30
csh utility, 540
ctimeO,677
ctype.h, 382, 641-642

D
#define, 13-14, 16,

366-368
%d format, 494
dangling else, 162
data, 468
data hiding (C++), 601

data hiding (Java), 630
data structure, 465
date, 518
date functions, 675
date structure, 410
__ DATE __ , 387, 700
dbLout, 57
dbLspace, 507-508
dbL With_caps, 510
dbxutility,539
deadlock, 567
deal_the_cards(),423
debug, 91, 216, 370, 539
decimal, 13 7
decimal integer, 80
decimal point, 13
declaration, 11, 107-108,

110,122,128,695
external, 702

declarations
const, 17, 77, 272,

307-308, 596, 695
typedef, 77, 122, 282,

371,408,410,651
volatile, 77,307-308,

695
decrement operator --,

85-86
default, 77, 182
default initialization, 223
defi ned preprocessor oper-

ator, 700
de 1 ete (C++), 607
demotion, 133
dependency line, 532, 537
dept structure, 416
dequeueO,472
dereferencing or indirection

operator '\ 44, 248,
250, 253, 289

derived type, 245,408,424
descriptor, 681
design

OOP, 609
top-doV\'ll, 204

destructor (C++), 606-607
diagnostics, 641

diffutility, 539
difftimeO,677
digit,70
dining, 568
Dining philosophers, 567
direct input/output, 662
directory, 209
discriminant, 191
dissection

abc, 43
biLprintO,339
change_case, 515
cnt_char, 166
cnt_Ietters, 50
compare_fractional_

partO,381
concurrent_sum, 563
consecutive_sum, 23
dbLspace, 508
dbLwith_caps, 511
double_out, 124
fai 10,412
fib_signal, 566
fibonacci, 176
findJoots, 305
go_try shell script, 581
improved, 626
inLor_fioat, 425
main 0 in sorL words,

285
makefile for compare_

sorts, 534
marathon, 11
maxmin, 32
mergesortO,266
mLkm, 598
moon, 596, 628
nice_day, 40
output from go_try, 583
pacificsea, 16
play_poker(),422
pow_of_2,90
prnJand,94
recursive function

moveO,232
running_sum, 27
sea, 7

T Index 711

sort.h Header File, 378
sqrLpow, 128
stack,432
strcatO,276
strcpyO,274
string functions, 273
string_to_list(),452
sum, 71
swapO,253
try_qsort, 374
unpackO,342
wrLbkwrds, 226

divO,666
divide equal operator /=, 88
division, 12
do, 77, 172-173,367
domain error, 644, 646-648
dot_product(),283
double, 77,110-111,119,

693
double quote \", 8,72,

80-81,113
double_out, 124
double_space(),507
dynamic allocation, 571

E
%e format, 494
.exe file extenSion, 6, 55
e-format,17
EBCDIC, 111
echo, 20
echo command, 583
editor, 54
efficiency, 227
eigen value, 571
elem structure, 465, 471
#elif, 386, 700
ellipSiS (...), 30, 202
#else, 386
else, 77
empty statement, 158
empty(),432,434,462,473
end-of-file, 51, 56, 125,654
end-of-string sentinal \0,

41-42, 113,270-271

712 'f Index

#endif, 384, 386
endl (C++), 595
enqueue 0, 473
enum, 694
enumeration, 345-355

constant, 79
type, 131,694

environment functions, 665
environment variable,

521-522
EOF, 51, 56,125
equal operator ==,21,95,

147, 152-153
equality operators, 147-148
ermo.h, 641, 643, 695
#error, 389, 700
error handling, 658
error_exit(),562-563
error_exit_calloc_

failedO,289
error_exit_too_many_

wordsO,289
error_exit_word_too_

longO,290
errors

#defi ne "\lith semicolon,
369

%If vs. %f, 129
vS.=, 367

assignment vs. equality,
153

compile-time, 54
dangling else, 162
domain, 644, 646-648
functions, 643
header, 701
infinite loop, 164, 168,

174
integer precision, 225
range, 644, 647
run-time, 54-55
syntax, 54-55

escape sequence, 112, 114
escape sequence, hexadeci

mal,695
evaluateO,467
exception, 564

exception (C++), 614
exception (Java), 636
exclusive or (bitwise) opera-

tor II, 332, 334
exec ... (),558,682
execl(),558,680,682
execleO,682
execl pO, 682
execlpeO,682
executable file, 54
execution speed, 219
execvO,682
execve 0, 682
execvpO,682
execvpe 0, 682
exitO, 670
expO, 127, 647
exponential notation,

119-120
expression, 10, 13,107-109,

696
arithmetic, 131
evaluation, 13
mixed, 38, 133
pointer, 2 701
statement, 158-159

extern, 77, 205, 216-219,
231,308

external declaration, 702
external identifier, 79
external variable, 199

F
%f format, 494
\ f formfeed, 113
fO,696
fabs 0, 130, 648
factori al 0,225
fail 0, 412
false, 21,147-148
far (Borland), 77
fclose(), 505, 509,655
fet, 210, 295
feofO,658
ferrorO,658
fflushO,655

fgetcO,659
fgetpos(),656-657
fgetsO,658-659
fibO,557
fib_signal, 565-566
fibonacci, 175-176
fibonacci 0,227
field,19
field width, 495, 497
FIFO,473
figures

Array after swapping,
288

Array before swapping,
288

Array of words, 287
Compilation Process, 70
Creating a .h file, 209
Dining philosophers, 567
Finding a root by bisec-

tion,297
Kepler equation solution,

300
Linked List, 448
Pointer Use, 249
Ragged array, 293

FILE,47, 503, 515,653
file, 47, 47-53

access, 513, 517
closing, 655
conditioning, 655
descriptor, 514,681
executable, 54
header, 7, 14,91
mode, 506
opening, 655
pointer, 47
pointer to, 50
position indicator, 656
remove, 662
rename, 662
source, 5, 534
standard header, 14
temporary, 510

__ FILE __ , 387, 700
filel,218
file 2, 218

files
.c, 6, 54-55, 209, 523,

532-533
.exe, 6, 55
.~ 14, 91, 209, 538
.0,211,523,532-533,

538
.ob),211
a.out, 6

FILLO, 377, 379
fill 0, 468
filL array, 260-262
fill_array(),261,373,

376
fi nd_nexLday 0,

347-348
find_p;vot(),392
findJoots, 297-299,

303-305
flex utility, 540
float, 77, 110-111, 119
floath,641,644,701
floating types, 17, Ill, 119
floating-point constant, 13,

79,119-120
floating-point exception,

564
floorO,648
flow of control, 21-28,

147-184
fl owe r structure, 426
flush (C++), 595
fmodO,648
fopen(),47, 50S-506, 512,

655
for, 25, 77, 167-169, 171
forkO, 556-557, 560, 563,

681
formal parameter, 34, 198,

296
formats

%%,494
%c,494
%d,494
%e,494
%f,494
%G,494

%g,494
%i,494
%n,494
%0,494
%p,494
%s,494
%u,494
%x,494

formatted input/output, 18,
660

formfeed \ f, 113
fprintf(), 52, 503,660
fputcO,659
fputsO,659
freadO,662
freeO, 459,664
freopenO,655
frexpO,648
fri end (C++), 603
frontO,473
frui t structure, 409, 426
fscanf(),503-504,661
fseek(), 65 660
fsetpos(), 655-657, 660
ftell(),513,656-657,660
ftp, 211
full(),432,434,463,473
funcO,650
function, 29-36, 197-233,

696
argument, 29, 201
argument to mai nO, 48
array argument, 256
array parameter, 279
as argument, 293-295
body, 197-198
C++, 599
call operator 0, 8, 207
call-by-reference, 36,

208,252-253
call-by-reference (C++),

599-600
call-by-value, 33, 35,

207-208
character, 642
clock,676
common definitions, 652

'f Index 713

comparison, 372
concurrent process, 681
date, 675
declaration, 204-205
definition, 197-200,

204-206,256,696
diagnostic, 641
environment, 665
error, 643
fri end (C++), 603
general utilities, 663
graceful, 510
header, 197
inline (C++), 598
input/output, 653
integer arithmetic, 666
interprocess communica-

tion, 683
invocation, 198,204,

207-208
iteration, 225
Java, 627
jumps, 649
localization, 645
mathematical, 127, 646
member (C++), 601
member (Java), 630
memory allocation,

577,663,671
memory handling, 671
multibyte character, 668
multibyte string, 669
order, 206
overlaying process, 682
overload (C++), 610
overloading (C++), 603
override (Java), 633
parameter, 34, 198-199,

202,296
program leaving, 670
program suspend, 683
prototype, 18, 29, 92,

201-205,697
pseudo random number,

665
pure virtual (C++), 611
recursion, 223-232

714 'f Index

function (cont'd)
return, 200
scope, 222
searching, 664
signal handling, 650
sorting, 664
starting point, 7, 29, 48
storage class, 205
string handling, 272-273,

666,671
string multibyte, 669
time, 675-676
type, 198-199
variable argument, 651

functions and macros
abortO, 389, 670
abse), 130,648,666
acosO,647
addO,283
add_vector e), 562
add30,599
asctimeO,677
asinO,647
asserte),212-213,388,

641
assign_valuese),420
atanO,647
atan20,647
atexitO,670
atofO,666
atoi 0,667
atol 0, 667
averageO,599
bisectione),298,304
bit_printe),338-339
bsearch 0, 664
bubbleO,257
buildtreeO,483
calloc(),259-260,482,

573, 663-664
cei 10,648
clearerrO,658
clock(), 104, 528, 530,

676
closeO,681
cmpe), 373-374, 376

cntrl_c_handler(),
565-566

compare(),354,372
compare_fractional_

partO,381
cosO, 127,647
coshO,647
countO,455
counLitO,456
create_employee_da-

taO,344
create_treee),479
ctimeO,677
deal_the_cards(),423
dequeueO,472
difftimeO,677
d;vO,666
dot_product(),283
double_spacee),507
empty(),432,434,462,

473
enqueueO,473
error_ex;te),562-563
error_exit_calloc_

fail edO, 289
error_exit_too_many_

wordsO,289
error_exit_word_too_

10ngO,290
eva1 uateO, 467
exec ... 0,558,682
execl(),558,680,682
execleO,682
exec1 pO, 682
execl peO, 682
execvO,682
execve O! 682
execvp 0, 682
execvpeO,682
exitO, 27, 670
expO, 127,647
fO,696
fabsO, 130,648
factorial 0, 225
fail 0, 412
fclose(), 505, 509,655
feofO,658

ferrorO,658
fflushO,655
fgetcO,659
fgetpos(),656-657
fgets 0, 658-659
fibO,557
fibonacci 0,227
FILLO, 377, 379
fi 110,468
fill_arraye),373,376
fi nd_nexLday 0,

347-348
find_pivot(),392
f100rO,648
fmodO,648
fopen(),47,505-506,

512,655
forke),556-557,560,

563,681
fprintfe),52,503,660
fputcO,659
fputsO,659
freadO,662
freeO, 459,664
freopenO,655
frexpO,648
frontO,473
fscanf(),503-504,661
fseek(),513,655-657,

660
fsetpose), 655-657,

660
ftelle),513,656-657,

660
fulle),432,434,463,

473
funcO,650
fwri te 0, 662
get_matrix_space(),

578
get_n_from_user(),

230
get_vector_spacee) ,

575
getc(), 51, 382,658
getcharO,39-40,

124-125,382,658

getenvO,665
getsO,658
gfopenO,511
gmtimeO,677
initO,614
init_gnodee),481
iniLnodeO,479
i ni ti al i zeO, 462, 468,

472
inorderO,477
;salnum(),383,642
isa1phae),40, 383,642
i sasci i 0, 383
iscntrle),383,642
isdigite), 383,642
isflushO,424
isgraphe),383,642
islowere),383,642
isprinte),383,642
ispuncte), 383,642
isspace(), 271, 353,

383,642
isupper(), 383,642
isxdigite),383,642
keplerO,302
labsO.666
ldexpO,648
ldivO,666
lexicoO.382
10caltimeO,677
logO, 127, 647
10g100,647
10ngjmpO,649
1 rand48 0, 105
mai nO, 7, 29,48
malloce), 259-260,

663-664
maximumO,31
mb 1 en 0, 668-669
mbstowcs 0, 669
mbtowc 0, 669
memchrO,671
memcmpO,671
memcpyO,671
memmoveO,671
memsetO,671
mergeO, 264, 269

mergesorte),266,269
message_fore),387
mktimeO,677
modfO,649
monitorO,524
moveO,230
multi plyO. 283
NDEBUG(),389,641
new_gnodeO,481
openO.681
operator+(),604-605
packO,341
parti ti on 0, 393
pcloseO,520
perrore),644,658,672
philosophere),570
pick_upO,569
pipeO, 561,683
pl ay_pokerO , 421-422
pope),432-433,462
popenO,520
postorderO,478
powe),29,127,648
powerO,204
preorderO,478
PRINTO, 377, 379
print_list(),456
printf(),18-20,493,

495,660
printlnO,627
prn_arrayO,374
prn_card_values(),

421
prn_dataO,470
prn_final_statuse),

351
prn_game_statuse) ,

351
prn_helpO,351
prn_info(), 31, 508
prn_instructionse),

352
prn_stackO,470
prn_tbl_of_powerse),

203
prn_timeO,529
probabilitY(),222

'f Index 715

push(),431,433,462,
468

pULdown 0, 569
putc(),52,382,659
putchare),39-40,

124-125,382,659
putsO,659-660
qsort(), 372, 375, 379,

381,664-665
quicksorte),372,392
raiseO,650
rand(),94-95,104,353,

376,422,665
randomO,222
readO,681
realloc(),663-664
release_matrix_

spaceO,577-578
remove 0, 519, 662
rename 0, 662
report_and_tabu-

lateO,355
resetO, 431, 433
reverseO,614
rewind(), 655-657, 660
s_to_l 0, 453
scanfe),18-21,499,661
selection_by_ma-

chineO,352
selection_by_player

0,353
setbufO,656
setj mp 0, 649
setlocal eO, 646
setvbufO,656
shuffleO,423
signal (), 564-566,570,

650
sin(),127,295,647
sinhO,647
sleepO,683
sort_wordse),288
spawn ... e), 560,682
spawnl(),560,680
sprintfe),503-504
sqrtO, 127,648
srande),95,422,665

716 'f Index

functions and macros
(cont'd)

srand480, 105
sscanf(),503-504,661
start_time(),529
strcatO, 273,275-276,

671
strchrO,672
strcmp(),273,672,675
strcoll(),672,675
strcpY(),44,273-274,

672
strcspnO, 672
strerror(),644,672
strftime(), 678-679
string_to_list(),452
strlenO, 673
strncatO, 673
strncmpO, 673
strncpyO, 673
strpbrkO, 673
strrchrO, 673
strspnO, 674
strstrO, 674
strtod(), 666-667
strtokO, 674
strtol 0,667
strtoul 0,668
strxfrmO, 675
sumO, 256
sum_arrayO, 261
swap(), 28~423
system(),518-519,665
tanO, 127,647
tanhO, 647
time(), 104,422, 528,

530, 676
tmpfile(), 656, 670
tmpnam(), 656
toasci i 0, 383
tolower(),383,643,

700
topO, 432, 462
toupper(),383,643,

700
ungetcO,660
unlinkO,662

unpack 0, 342
va_argO, 651
va_endO, 651
va_startO,651
va.....sumO, 652
vfo rl< 0, 682
vfprintfO,661
wai to, 570
wcstombsO, 669
wctomb 0, 669
word_cntO, 272
writeO,681
wrtO,269
wrCarrayO, 262
wrCitO,225
wrcwordsO, 290

fundamental data type,
107-137

fwri te 0, 662

G
%G format, 494
%g format, 494
garbage, 223, 247
gdbbutility,539
general utilities, 663
generic pointer, 251,460
generic pointer voi d *, 694
get from operator (C++) »,

597
get_matrix_space(),578
get_n_from_user(), 230
get_vector_space(),575
getc(), 51, 382,658
getchar 0, 39-40,

382,658
getenvO, 665
getsO,658
gfopenO,511
global, 199,221
gmti me 0, 677
go_try, 581. 583
goto. 77. 178, 182.649
graceful function. 510
grad_student class (C++),

609

greater than operator >,
147,149-150

greater than or equal opera
tor >=,147,149-150

grep utility, 539

H
.h file extension. 14,91,209,

532, 538
handler (C++), 614
handler (Java). 636
header file. 7. 14, 91, 701
hexadecimal, 117, 134-137

escape sequence. 695
integer. 80

Hoare, A., 391
home_address structure,

418
huge (Borland), 77

#include, 7, 13-16, 91-92,
365-366

%i format, 494
identifier, 10, 16, 78-79,

122,202
external, 79
label, 701
variable, 701

#if,384,386
if, 21, 77, 159-162
if-else, 22, 159-160, 162,

166, 181, 183
#ifdef,384
#i fndef, 3,84
implicit conversion, 132
improved, 594,626
Improved class (Java), 626
#include, 209
increment operator ++,

85-86
indentutiJity, 539
index

See subscript, 245

indirection
See dereferencing, 248

infinite loop, 164, 168, 174
infix, 464
inheritance (C++), 608
inheritance (Java), 632
initO,614
i ni cgnodeO, 481
inicnodeO,479
initialization, 223,695

array, 246-247, 260, 281,
695

automatic aggregate, 695
class (C++), 606
default, 223
structure, 418, 695
union, 695
variable, 223

initialize(),462,468,
472

in 1 i ne (C++), 598
inorderO,477
input, 18,493-518

keyboard, 19
redirect <,27,56-57
stdin, 503,654
stream, 19

input (C++), 595
input/output

character, 658
direct, 662
formatting, 660
functions, 653

int, 77, 110-111, 116-118,
122

inLor-float, 425
integer, 7, 110-114,

116-119, 124, 134, 136
arithmetic functions, 666
constant, 13, 79, 117
decimal, 80
hexadecimal, 80
octal,80
overflow, 117
promotion, l31
size, 116

integral type, 111, 116-117,
123

interprocess communica-
tion functions, 683

interrupt, 56
interrupt (Borland), 77
iostream.h (C++), 594
is_flushO,424
isalnum(),383,642
isalpha(),40,383,642
i sasci i 0,383
iscntrl(), 383,642
isdigit(),383,642
isgraph(), 383,642
islower(), 383,642
isprint(),383,642
ispunct(),383,642
isspace(), 271, 353, 383,

642
isupper(),383,642
isxdigit(),383,642
iteration, 225
iterative action, 147

J
Java, 2,4,625-638

ADT,629
applet, 635
appletviewer, 636
benefits, 638
Class, 629
constructor, 631
exception, 636
inheritance, 632
output, 626
overloading, 631
override, 633
polymorphism, 633
type. 627
variable, 627

jump, 178, 649

K
kepler, 301-302
keplerO,302

'f Index

keyboard input, 19
keywords, 12, 77

717

asm (Borland), 77
auto,77,205,216-217
break, 179,182
case, 181-182,347,

694
cdecl (Borland), 77
char, 77, 110-111,

114-115
canst, 17,

307-308,
continue,

182
default, 77, 182
do, 77,172-173,367
double, 77, 110-111,

119,693
else, 77
enum,77,694
extern, 77, 205,

216-219, 308
far (Borland), 77
float, 77, 110-111, 119
for, 25, 167-169,171
goto, 77,178,182,649
huge (Borland), 77
if, 21, 77,159-162
if-else, 22, 159-160,

162, 166, 181, 183
int, 77, 110-111,

116-118,122
interrupt (Borland), 77
long, 77, 110-111,

117-119
long double, 110-111,

119,693
long float, 693
near (Borland), 77
pasca 1 (Borland), 77
regi ster, 77, 205, 216,

219-220,651
return, 8, 35, 77, 182,

200-201
short, 77,110-111,

117-118,131
signed,77,110,131,693

718 " Index

si gned char, 110-111,
115

signed int, 110
signed long int 110
signed short in~ 110
sizeof, 77, 122-123,

259,450
static, 77, 205, 216,

218, 220-222
struct, 77,407-408
switch, 77,181,694
typedef, 77, 122, 282,

408,410,651
union, 77,424-425
unsigned, 77, 110-111

117-119,131 '
unsi gned char,

110-111,115
unsigned int, 110
unsi gned long,

110-111, 118-119
unsigned long int 110
unsi gned short, '

110-111
unsigned short int,

110
void, 77, 198,202,693

697 '
void *,694
void~', 251,460
volatile, 77,307-308

695 '
whi 1 e, 23-24,

166-167, 172
keywords (C++)

catch,615
class, 601
delete, 607
friend,603
inline, 598
new,607
operator, 603
templ ate (C++),612
throw,614
try, 614

keywords (Java)
class, 625,627,629

L
label, 178, 701
labsO,666
1 conv structure, 645
ldexpO,648
ldivO,666
leaf node, 475
leaving program functions

670 '
left shift operator «, 332,

335-336
less than operator <, 147,

149-151
less than or equal operator

<=,23,147,149-150
letters, 70
lex utility, 540
lexical element, 69-70
1 exi coO, 382
lib command, 526
librarian, 526
libraries, 91, 526-527,

641-683
assert.h, 212, 267, 388,

641
ctype.h, 382, 641-642
ermo.h, 641, 643, 695
float.h,641,644,701
iostream.h (C++), 594
limits.h, 339, 641, 645,

701
locale.h, 641, 645
mathh, 128, 641, 646
process.h, 558
setjmp.h, 641, 649
signal.h, 564, 641, 650
standard, 8, 92-93, 273,

641-683
stdarg.h, 641, 651, 661
stddef.h, 371,641, 652
stdio.h, 7-8, 14, 16, 18,

39,92,124-125,382,
641,653

stdlib.h, 27,94,259,372,
482,641,663

string.h, 43, 272, 641,
670

time.h, 351,422,528,
641,675

LIFO, 463
limits.h, 339, 641, 645, 701
#line, 390
line number, 390
__ LINE __ , 387, 700
linked_list, 449, 453, 456
1 i nked_l i st structure

449 '
Jist, 447-483

concatenation, 457
deletion, 459
insertion, 458
linked,479-483
operation, 451
print, 456
processing, 455
queue, 471
stack,460

1 i st structure, 447
Jiteral,80
loader, 54
local variable, 199, 217
locale.h, 641, 645
localization, 645
localtimeO,677
locate, 250
logO, 127,647
10g100,647
logical bitwise operators,

334
logical operators, 147-148,

154-156
long, 77, 110-111, 117-119
long double, 110-111

119, 693 '
long float,693
longjmpO,649
loop, 23, 56, 163-164, 168,

174,182 .
loop, 174
lower_case, 519
lowercase letter, 70
1 rand480, 105
Is, 56

M
ll1acro, 124, 368-370

argull1ent, 377
predefined,387

macros
__ DATE __ , 387, 700
__ FILE __ , 387, 700
__ LINE __ , 387, 700
__ STDC __ , 387, 700
__ TIME __ , 387, 700

main(),7,29,48,290
make utility, 212, 338,

532-538
makefile, 212, 532-534
malloc(),259-260,

663-664
marathon, 11
ll1ask, 337, 429
math.h, 128, 641, 646
mathematicalfunction, 127,

646
matrix, 278, 282, 571-572,

575-577, 579
matrix, 282-283,577-578
max-min, 32
MAX_RAND, 378
maximumO,31
maxmin, 30, 32
mb 1 en 0, 668-669
mbstowcsO,669
mbtowc 0, 669
ll1ember,411
member access operator ->,

411,413-414,428
ll1ell1ber access operator .,

408,411,414
ll1ember function (C++), 601
member function (Java), 630
ll1ember nall1e, 409, 701
memchrO,671
memcmpO,671
memcpyO,671
memmoveO,671
memory

allocation, 254,259,577,
663,671

handling functions, 671

location, 250
See also allocation, 217

mell10ry ll1anagell1ent (C++)
delete,607
new,607

memsetO,671
mergeO, 264, 269
merge_sort, 263-264, 266,

269
mergesort, 266
mergesort(),266,269
message_fore), 387
ll1ethod, 627
mLkm, 597-598
minimumO,31
Illinus equal operator -=, 88
Illinus operator -,84,90
mixed expression, 38, 133
mktimeO,677
mnemonic identifier, 367
modfO,649
modulus equal operator

88
modulus operator %, 52,

81-82
monitorO,524
moon, 596, 628
Moon class (Java), 628
moveO,230
MS-DOS, 5, 53, 55-56
mulUime, 530
ll1ultibyte character con-

stant, 344
multibyte string functions,

669
ll1ultidimensional array,

277-290,698
multiplication, 12
multiplyO,283
multiprocess, 555
mv command, 54
my_echo, 291
my_string, 601

N
%n format, 494

" Index 719

\n newline, 8-9, 79, 113
nall1e space, 346, 409, 701
narrowing, 133
natural number, 116
nawk utility, 540
NDEBUG(),389,641
near (Borland), 77
negation, 154-155
negation operator !,

147-148,154-155
negative constant, 80
nested block, 214
new (C++),607
new_gnodeO,481
newline \n, 8-9, 79, 113
Newton-Raphson algorithm,

196
nexCday, 347
nibble, 135-136
nice_day, 39-40
no_change, 36
node, 475
node structure, 476, 480
nonprinting character, 112
nonzero, 148
NoSuchNameException

class (Java), 636
not equal operator ! =, 125,

147, 152-154
NULL, 148,259-260, 371
null character \0,41-42,

113, 270-271
null string, 44
number, 79
numeric constant, 694

o
%0 forll1at, 494
.0 file extension, 211, 523,

532-533, 538
.obj file extension, 211
object, 606
object code, 54, 69
object-oriented program-

ming,593,615

720 'f Index

octaL 117, 135-137
constant, 134
integer, 80

offset, 653
offset pointer, 262
one's complement operator,

333
OOP, 593,615
OOP Design Methodology,

609
openO,681
opening a file, 655
operating system, 53-57
operator, 69, 82

arithmetic, 81
assignment, 87-89
associativity, 83-84, 148,

150,332,415,705
binary, 82, 148
bit shift, 335
bitl'Yise, 331-344,429
bitwise logical, 334
equality, 147-148
logical,147-148,

154-156
overload (C++), 603
precedence, 83-84,

148-150, 415,
705

relational, 147-151
unary, 85, 148

operator (C++), 603
operator+(),604-605
operators, 81

address &, 19,
248,251,428

and (bitwise) &, 334
and (logical) &&,147,

154-157
and equal &=, 88
assignment =, 10,

87-88, 108-109
comma" 82,171-172,

699
complement ~, 332-333
conditional expression

7:,182-183

decrement --, 85--86
defi ned preprocessor,

700
de 1 ete (C++), 607
dereferencing or indirec

tion '\ 44, 248, 250,
253,289

divide equal
equal ==, 21,

152-153

88
147,

exclusive or (bitwise) A,

332, 334
function call 0, 8, 207
get from (C++) », 597
greater than >, 147,

149-150
greater than or equal >=,

147, 149-150
increment ++, 85-86
left shift «,

335-336
less than <,147,149-151
less than or equal <=, 23,

147,149-150
member access ->, 411,

413-414,428
member access ., 408,

411,414
minus -, 84, 90
minus equal -=, 88
modulus %, 81-82
modulus equal 88
negation!,147-148,

154-155
new (C++), 607
not equal! =. 125, 147,

152-154
or (bitwise) I, 332, 334
or (logical) II, 147,

154-157
or equal (exclusive)

88
or equal (inclusive) 1=, 88
overload (C++), 610
plus (unary) +, 696
plus +, 84
plus equal +=, 88

put to (C++) «, 595
right shift »,

335-336
shift left equal «=, 88
shift right equal »=, 88
sizeof,77,

259,450
subscript [],

245-248, 262
times equal 88

or (bitwise) operator I, 332.
334

or (logical) operator 11.147,
154-157

or equal (exclusive) operator
A=,88

or equal (inclusive) operator
1=.88

OS/2. 5
output, 6-10,18,493-518

redirect >,56-57
stdout, 503,654

output (C++), 594
output (Java), 626
overflow, 117
overlaying a process, 682
overload (C++), 603

function, 603, 610
operator, 610
operator, 603
operators, 603

overload (Java)
function, 631

ovLstring, 604

p
%p format, 494
pacific sea, 15-16
packO,341
pack_bits, 341
parallel block, 215
parameter

array, 256, 279
formal, 34, 198, 296
list, 199, 202
type list, 29

parametric polymorphism
(C++), 612

template, 612
parentheses 0, 7, 12, 34,

41,71,82-83,125,181,
198,200,248,368

partitionO,393
pascal (Borland), 77
pcard structure, 427
pcloseO,520
perl utility, 540
perror(),644,658,672
person, 629
Person class (Java), 629
Personl class (Java), 634
Person2 class (Java), 637
PersonTest class (Java),

630
pgm.h,210
philosopher(),570
pi cLupO, 569
pipe, 520, 526,683
pi peO, 561,683
play_poker(),421-422
plus (unary) operator +, 696
plus equal operator +=, 88
plus operator +, 84
pointer, 36, 42, 46, 205,

248-269,413-414
arithmetic, 36, 254-255,

257
array of, 284, 572
arrays, 253, 698
call-by-reference, 252
constant, 46, 308
conversion, 251
expression, 255, 701
file, 47
generic, 251, 460
NULL, 148
offset, 262
to, 19,44, 72, 248, 251,

428
to file, 50
variable, 46, 248

poker, 419

Polish notation, 464-466,
468

polish_stack, 465-468, 470
polymorphic function (C++),

610
polymorphism (Java), 633
polynomial, 296-297
pop(),432-433,462
popenO,520
postfix, 85-86, 274
postorderO,478
pow(), 29, 127,648
pow_of_2, 89-90
powerO,204
power_square, 127
#pragma,389,700
precedence, 83-84,

148-150,332,415,705
precision, 121,495,497
predefined macro, 387
prefix, 85-86
preorderO,478
preprocessor, 7, 69, 91,

365-394, 700
#,7,13,91,365
#define, 13-14, 16,

366-368
#elif, 386, 700
#else, 386
#endif, 384, 386
#error,389,700
#if, 384, 386
#ifdef,384
#ifndef,384
#include, 7, 13-16,

91-92, 209, 365-366
#line, 390
#pragma,389,700
#undef, 384-385
directives, 91
operator #, 387-388, 700
operator ##, 387-388,

700
Press, W., 105
PRINTO, 377, 379
prinLargs, 558-559
print_list(),456

'f Index 721

printenv, 521
printf(),18-20,493,495,

660
printing character, 111
printlnO (Java), 627
privacy, 221
privacy (C++), 601
prn_arrayO,374
prn_card_values(),421
prn_dataO,470
prn_final_status(),351
prn_game_status(),351
prn_hel pO, 351
prn_info(), 31, 508
prn_instructions(),352
prnJand, 93-94
prn_stackO,470
prn_tbl_of_powers(),

203
prn_timeO,529
probabilitY(),222
process, 555
process.h, 558
profiler, 524
program

characters, 70
leavillg, 670
suspension functions,

683
program development, 209,

212
promotion, 38, 131-133
prototype, 18, 29, 32, 92,

201-205,697
pseudo random-number

generator, 665
punctuator, 71, 81-82
pure virtual function (C++),

611
push(),431,433,462,468
put to operator (C++) «,

595
puCdownO,569
putc(), 52, 382,659
putchar(), 39-40,

124-125,382,659
putsO,659-660

722 T Index

Q
q_sort, 373, 524
qsort(), 372, 375, 379,

381,664-665
qualifier, 17, 307
question mark \?, 113
queue, 471
queue, 471-472,474
quicksort, 391, 394
quicksort(), 372, 392

R
\ r carriage return, 113
ragged_array, 292
rai seO, 650
rand(),95, 104, 353, 376,

422,665
randO,94
RAND_MAX, 101
randomO,222
random-number functions,

665
range, 121
range error, 644, 647
readO,681
real numbers, 121
real roots, 191
realloc(),663-664
rectangl e class (C++), 611
recursion, 223-232,452
redirect input <,27,56-57
redirect output >, 56-57
register, 77, 205, 216,

219-220, 651
relational operators,

147-151
release_matrix_

spaceO,577-578
remove(),519,662
rename, 55
renameO,662
report_and_tabulate(),

355
reserved word, 7, 12
resetO, 431, 433

return, 8, 35, 77, 182,
200-201

reverseO,614
rewind(),655-657,660
Richards, M., 1
right shift operator », 332,

335-336
Ritchie, D., 1
rocks_ paper_scissors,

349-352, 354-355
root node, 475
rules, 534
run-time error, 54-55
running_sum, 26-27

s
%s format, 494
s_to_l 0, 453
scalar, 282
scan field, 501
scanf(),18-21,499,661
scientific notation, 17, 119
scope

block,213-214
function, 222
restriction, 221
rules, 213

scores, 37
sea, 6, 9-10
searching functions, 664
sed utility, 540
selection_by_ma-

chineO,352
selection_by_player(),

353
self-referential structure,

447
semaphore, 568
semicolon terminator ;, 8,

11,63,82,87,108,158
set, 521
setbufO,656
setjmpO,649
setjmp.h, 641, 649
setlocaleO,646
setvbufO,656

shell, 580-582, 584
shift left equal operator

«=, 88
shift operator, 335
shift right equal operator

»=,88
short, 77, 110-111,

117-118,131
short-circuit evaluation, 157
shuffleO,423
side-effect

fputcO,659
getcO,658
increment and decre-

ment,86
macro evaluation, 658

SIG_DFL, 564-565
SIG_IGN, 564-565
SIGFPE, 564-565
SIGILL, 564
SIGINT, 564
signal handling, 564, 650
signal(), 564-566, 570,

650
~gnaLh, 564,641,650
signed, 77, 110, 131,693
signed char, 110-111, 115
signed int, 110
si gned long i nt, 110
signed short int, 110
SIGSEGV, 564
sine), 127, 295,647
single quote \ I , 113
sinhO,647
sizeof, 77, 122-123, 259,

450
sl eepO, 683
sma 11_ integer structure,

428
sort

bubble, 38, 257-258
functions, 664
merge, 263
quick sort, 372
quicksort, 391, 394

sort, 288,377,380-381
sort.h, 284, 378

sorL words, 285, 288-290
sort_words(),288
source file, 5, 534
spawn ... (), 560, 682
spawnl(),560,680
special characters, 82
sprintf(),503-504
sqrtO, 127,648
sqrLpow, 128
square class (C++), 612
srand(), 95,422, 665
srand480,105
sscanf(), 503-504, 661
stack

as list, 460
stack, 431-432, 434,

461-463,613
stack class (C++), 613
stack structure, 431-432,

461,466
standard C, 1, 3
standard header file, 14
standard library, 8, 92-93,

273,641-683
start_time(),529
statement, 11

compound, 22, 157
empty, 158
expression, 158-159
labeled, 178
terminator ;, 8, 11, 63,

82, 87, 108, 158
statements

break, 77, 179, 182
case, 77, 181-182, 347,

694
continue, 77, 179-180,

182
default, 77, 182
do, 77, 172-173, 367
else, 77
for,25, 77, 167-169, 171
goto, 77, 178, 182,649
if, 21, 77, 159-162
if-else, 22, 159-160,

162, 166, 181, 183

return, 8, 35, 77, 182,
200-201

switch, 77, 181,694
whi 1 e, 23-24, 77,

166-167, 172
static, 77, 205, 216, 218,

220-222
status, 579, 581-582, 584
stdarg.h, 641, 651, 661
__ STDC __ , 387, 700
stddef.h, 371, 641, 652
stderr, 503,654
stdin, 503,654
stdio.h, 7-8, 14, 16, 18, 39,

92,124-125,382,641,
653

stdlib.h, 27, 94, 259, 372,
482,641,663

stdout, 503,654
Steps to be followed in writ

ing and running a C pro
gram, 54

storage allocation, 215
storage class, 205, 216-222
storage mapping, 279
storage types

auto, 77, 205
auto

automatic vari
ables, 216-217

extern, 77,205,231,308
extern

global,216-219
register, 77,205,651
register

memory regi ster,
216,219-220

static, 77,205,216,
218, 220-222

strcat(), 273, 275-276,
671

strchrO,672
strcmp(), 273, 672,675
strcoll(),672,675
strcpy(),44,273-274,672
strcspn 0, 672
stream I/O (C++), 595-596

T Index

streams, 654
stderr, 503,654
stdin, 503,654
stdout, 503,654

723

strerror(),644,672
strftime(), 678-679
string, 36, 39,46, 270-276

constant, 8, 80-81, 270,
694-695

control, 12, 18
conversion functions,

666
conversion specification,

12,18,495,502
functions, 272-273
handling functions, 671
literal, 80
multibyte functions, 669
null,271
size, 270

stri ng class (C++), 601,
603-604,606

string.h, 43,272,641,670
string_to_list(),452
stringization, 387-388, 700
strlen(), 273, 673
strncatO,673
strncmpO,673
strncpyO,673
strpbrkO,673
strrchrO,673
strspnO,674
strstrO,674
strtod(), 666-667
strtokO,674
strtol 0,667
strtoul 0, 668
struct, 77,407-408
structure, 407-424,

447-483, 699
access, 411, 417
as argument, 416
initialization, 418, 695
list, 447-483
member, 411
pOinter to, 414
self-referential, 447

724 ... Index

structures
abc, 428-429
card,407-409,419
complex, 413
data, 465
date, 410
dept, 416
elem, 465, 471
flower, 426
fruit,409,426
home_address,418
lconv,645
linked_list, 449
1;st,447
node,476,480
pcard,427
small_;nteger, 428
stack, 431-432, 461,

466
student, 411
tm,675
vegetable,409,427

strxfrmO,675
student, 411
student class (C++), 609
Student class (Java),

633-634
student structure, 411
StudentTest class (Java),

634
subscript operator [], 37,

245-248, 253, 262
subscript range, 575
subtree, 475
sum, 71
sumO, 223, 256
sum_arrayO, 261
sum_square, 294-295
suspend program functions,

683
swap(),252,289,423
switch, 77, 181,694
symbolic constant, 14, 367,

385
syntax, 69, 73
syntax error, 54-55
syntax summary, 685-692

system command, 518
system names, 79
system tools, 518-540
system(),518-519,665

T
tab \t, 112-113
table_or_powers, 203-204
tables

Access permissions, 517
Additional keywords for

Turbo C, 77
ASCII abbreviations, 704
Assignment operators,

88
Binary representation,

343
Bitwise and two's com

plement, 333
Bitwise operators, 332
C compiler that gets in-

voked, 522
C header files, 641
Calls to sumO, 257
Character constants and

integer values, 112
Compiler options, 523
Conversions to base 2, 8,

10, 16, 135
ctype.h calls, 383
ctype.h macros, 383
Decimal and hexadeci-

mal,134
Declarations of arrays,

277
Expressions equivalent to

a[i] [j], 278
File modes, 506
File names, 514
Filenames written in C,

503
float and unsigned, 119
Function call for sumO,

224
Fundamental data types,

110

Fundamental data types
long form, 110

Fundamental type sizes,
142

Fundamental types by
functionality, 111

Hexadecimal number
conversions, 135

Keywords, 77
long and unsigned, 119
Modes for spawn ... 0,

560
Octal digit in the file per

mission, 517
Operating system com

mands, 539
Operator precedence and

associativity, 84, 148,
332,415,705

Predefined macro, 387
pri ntfO conversion

character, 19,494
Production symbols, 74
program characters, 70
Relational, equality, and

logical operators, 147
scanfO conversion, 500
scanfO conversion, 20
Special characters, 113
Three modes for a file, 47
Two-dimensional array,

278
Using strftimeO, 679
Utilities, 540
Value of fibonacci, 227
Values of and and or ex-

pressions, 156
Values of bitwise opera

tors, 334
Values of equality ex

pressions, 152
Values of not expres

sions, 154
Values of relational ex

pressions, 150
tag name, 345-346,

407-410,424,701

tanO, 127, 647
tanhO,647
tbLof-powers, 206
tcc command, 55
template, 345, 408, 410, 424
template (C++),612
temporary file, 510
text editor, 5, 53-55
Thompson, K., 1
three-dimensional array,

280
throw (C++), 614
time functions, 675
time(), 104,422, 528, 530,

676
time.h, 351, 422, 641, 675
time.h library, 528

387, 700
times equal operator 88
timing code, 528-530
tUb command, 526
tm structures, 675
tmpfile(),656,670
tmpnam(),519,656
toasci i 0,383
token, 69-70, 81
tolower(),383,643,700
tools, 91, 518-540
topO, 432, 462
top-down design, 204
touch utility, 538
toupper(), 383,643, 700
towerLof_hanoi,229-231
traditional C, 1

vs. ANSI, 693-702
translation unit, 54
traversal, 477, 482
tree, 479-480, 482

binary, 475-483
true, 21,147-148
truth table, 192
try (C++), 614
try_me, 580
try_qsort, 374
Turbo C keywords, 77
two-dimensional array,

277-278

two's complement, 333-334
type

arithmetic, 111
class (C++), 601
derived, 245,424
derived data, 408
enumeration, 131,

345-355,694
floating, 17, 111, 119
function, 198-199
fundamental, 107-13 7
generic pointer, 251,460
integral, Ill, 116-117,

123
Java, 627
parameter list, 29
qualifier, 17, 307
user-defined, 408, 602

typedef, 77,122,282,371,
408,410,651

types, 693
char, 77, 110-111,

114-115
cl ass (C++), 601
c1 ass (Java), 625, 627,

629
double,77,110-111,

119,693
enum, 77,694
float, 77, 110-111, 119
i nt, 77, 110-111,

116-118,122
long, 77, 110-111,

117-119
long double, 110-111,

119,693
long float,693
short, 77, 110-111,

117-118,131
signed, 77, 110, 131,693
signed char, 110-111,

115
signed int, 110
signed long int, 110
signed short int, 110
struct, 77,407-408
template (C++),612

T Index 725

union, 77,424-425
unsigned, 77, 110-111,

117-119,131

u

unsi gned char,
110-111,115

unsigned int, 110
unsi gned long,

llO-111, ll8-ll9
unsigned long int,110
unsi gned short,

110-111
unsigned short int,

110
void, 77, 198,202,693,

697
void*, 251,460

%u format, 494
unary operator, 85, 148
#undef, 384-385
underscore _, 78-79
ungetcO,660
union,
uni on,
UNIX, 5, 53, 5 130
unlinkO,662
unpackO,342
unsigned, 77, 110-111,

ll7-ll9,131
unsigned char, 110-111,

115
unsigned int, 110
unsi gned long, 110-111,

ll8-119
unsigned long int, 110
unsigned short, 110-111
unsigned short int, 110
upper_case, 520
uppercase letter, 70
user-defined type, 408, 602
usual arithmetic conver-

sion, 131

726 'f Index

utilities, 524-540
awk,540
bison, 540
cb, 539
esh,540
dbx, 539
dift, 539
(lex, 540
gdb,539
grep, 539
indent, 539
lex, 540
make, 212, 338, 532-538
nawk,540
perl,540
sed,540
touch,538
we, 539
yacc, 540

utility library, 663

V
\ v vertical tab, 113
va_argO, 651
va_endO, 651
va_startO, 651
va_sumO, 652
variable, 10,12,107,223,

248
aggregate, 407
arguments, 651
boolean, 169
environment, 521-522
external, 199
global, 199, 216-219, 221
identifier, 701
Java, 627
local, 199, 217
loop, 219
pointer, 46
static external, 221
storage allocation, 215
storage class, 216-222
string, 270
type, 216
visibility,215

vector, 282, 575
See array, 262

vegetab 1 e structure, 409,
427

vertical bar as choice sepa-
rator 1,73-74

vertical tab \ v, 113
vforkO, 682
vfpri ntfO, 661
vi editor, 54
vi text editor, 5
visibility, 221
void, 198,202,693,697
void ~', 694
void'''. 460
volatile, 77,307-308,695

w
wait, 568
waitO, 570
we utility, 539
wchar_t,371
wcstombs 0, 669
wctomb 0, 669
wgcd class (Java), 635
while, 77,166-167,

172
white space, 70, 72-73,

81-82
widening, 132-133
width,427
word_cntO, 272
writeO, 681
wrt, 211
wrtO, 269
wrLarrayO, 262
wrLbkwrds, 225-226
wrLi nfoO, 211
wrcitO, 225
wrcwordsO, 290

x
%x format, 494

y
yace utility, 540

Z
zero, 41-42, 44, 113, 148,

223, 270-271

1

C Jntcrnl(:cs
ili.fJl'l.,!iHvutations

Cprogral

FAQs

C Interfaces and Implementations
Techniques for Creating Reusable Software
David R. Hanson
Every programmer and software project manager must master the art of creating
reusable software modules, which are the building blocks of large, reliable
applications. Unlike some modem object-oriented languages, C provides little
linguistic support or motivation for creating reusable application programming
interfaces (APIs). While most C programmers use APIs and the libraries that
implement them in aimost every application they write, relatively few program
mers create and disseminate new, widely applicable APIs. C Inteifaces and
Implementations shows how to create reusable APIs using interface-based design,
a language-independent methodology that separates interfaces from their
implementations. This methodology is explained by example. The author
describes in detail twenty-four interfaces and their implementations, providing
the reader with a thorough tmderstanding of this design approach.

544 pages • Paperback • ISBN 0-201-49841-3
http://Y\'\vw.awl.com/ csengl titles I 0-201-49841-31

A Retargetable C Compiler
Design and Implementation
Christopher W. Fraser and David R. Hanson
This book examines the design and implementation of lcc, a production-quality,
retargetable compiler for the ANSI C progranunmg language designed at
AT&T Bell Laboratories and Princeton University. The authors' innovative
approach-a "literate program" that intermingles the text with the source
code-gives a detailed tour of the code that explains the implementation and
design decisions reflected in the software. And while most books describe toy
compilers or focus on isolated pieces of code, the authors provide the entiTe
source code for a real compiler, which is available via ftp. Structured as a self
study guide that describes the real-world tradeoffs encountered in building a
production-quality compiler, this book is useful to individuais who work in
application areas applying or creating language-based tools and techniques.

592 pages' Hardcover • ISBN 0-8053-1670-1
http://www.awl.com/cseng/titles/0-8053-1670-1/

C Programming FAQs
Frequently Asked Questions
Steve Summit
Steve Summit furnishes you with answers to some of the most frequently
asked questions in C. Extensively revised from his popular FAQ list on the
Internet, more than 400 questions are answered to illustrate key points and
to provide practical guidelines for programmers. C Programming FAQs is a
welcomed reference for all C programmers, providing accurate answers,
insightful explanations, and clarification of fine points, along with numerous
code examples.

432 pages • Paperback' ISBN 0-201-84519-9
http://www.awl.com/cseng/titles/0-201-84519-9/

•

