

The line L in the figure above is moving from left to right at the rate of $3 / 2$ units per second. What is the rate at which the area of the region under the curve

$$
y=\frac{x^{2}}{e^{x^{2}}}
$$

that lies to the right of the y-axis and is being swept by L is changing?

Let A_{c} (resp. B_{c}) denote the area of the region under the curve

$$
y=\frac{x^{2}}{e^{x^{2}}}
$$

between the line $\boldsymbol{x}=\boldsymbol{c}$ and the y-axis (resp. the line $\boldsymbol{x}=1$). Show that there exists exactly one c such that $\mathrm{A}_{\mathrm{c}}=\mathrm{B}_{\mathrm{c}}$.

