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CHAPTER 1

Preliminaries

Historical Backgroud

Commutative ring theory originated in number theory, algebraic geometry, and
invariant theory. The rings of “integers” in algebraic number fields and algebraic func-
tion fields, and the ring of polynomials in two or more variables played central roles in
development of these subjects.

The ring Z[i] was used in a paper of Gauss (1828), in which he proved that non-unit
elements in Z[i] can be factored uniquely into product of “prime” elements, which is
a central property of ordinary integers. He then used this property to prove results
on ordinary integers. For example, it is possible to use unique factorization in Z[i] to
show that every prime number congruent to 1 modulo 4 can be written as a sum of
two squares. It has then become more clear that to derive results even on ordinary
integers, it was useful to study broader sets of numbers, so number theory had to be
expanded to include new classes of commutative rings.

Figure 1.0.1. Carl
Friedrich Gauss

It had also become clear, by the middle of the
nineteenth century, that the study of finite field
extensions of the rational numbers is indispens-
able to number theory. However, the “integers”
in such extensions may fail to satisfy the unique
factorization property. In attempting to solve the
Fermat’s last theorem, the rings Z[ζ] (where ζ is
a root of unity) were studied by Gauss, Dirich-
let, Kummer, and others. Kummer (1844) ob-
served that unlike Z[i], the rings Z[ζ] fails to have
unique factorization property where ζ is a primi-
tive twenty–third root of unity. In 1847, he wrote
a paper on his theory of ideal divisors ([1]).

Dedekind came up with a general approach to the theory, which had been based
widely on calculations until that time. He introduced the notion of an ideal, and
generalized prime numbers to prime ideals (1871). He proved that although elements of
a ring might not satisfy unique factorization property, ideals can be expressed uniquely
as a product of prime ideals. Dedekind attended Dirichlet’s lectures on number theory
while he was at Göttingen. Later, he edited his notes, and published them in 1863 as
Lectures on Number Theory, under Dirichlet’s name. In the third and fourth editions,
in 1879 and 1894 respectively, he wrote supplements that gave an exposition of his own
work on ideals ([3]).
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2 1.0. Historical Backgroud Ch. 1 : Preliminaries

Figure 1.0.2. Richard Dedekind

After the introduction of Cartesian coordinates and complex numbers, it became
possible to connect geometry and algebra. To any subset I of the polynomial ring
R = C[X1, . . . , Xn], we can associate the algebraic subset

Z(I) = {(a1, . . . , an) ∈ Cn : f(a1, . . . , an) = 0 for all f ∈ I}.
of Cn called an affine variety. On the other hand, to every set X ⊆ Cn, we can associate
the subset

I(X) = {f ∈ C[X1, . . . , Xn] : f(X1, . . . , Xn) = 0 for all (a1, . . . , an) ∈ X}
of R, which is indeed an (radical) ideal of R. Hilbert’s Nulstellensatz (1893) provides a
one–to–one correspondence between affine varieties (which are geometric objects) and
radical ideals (which are algebraic objects). So, it is reasonable to think that algebraic
geometry starts with Hilbert’s Nulstellensatz.

Figure
1.0.3. David
Hilbert

The study of geometric properties of plane
curves that remain invariant under certain classes
of transformations led to the study of elements of
the polynomial ring F [X1, . . . , Xn] left fixed by the
action of a group of automorphisms of R, which
gave rise to what is known as invariant theory.
The fundamental problem was to find a finite sys-
tem of generators for the subalgebra consisting of
fixed elements. In a series of papers at the end
of 1800’s, Hilbert solved the problem by giving an
existence proof. The first step in the solution is
now generally known as Hilbert basis theorem [3].

The axiomatic treatment of commutative rings
was not developed until the 1920’s in the work of
Emmy Noether and Krull. In about 1921, Emmy
Noether managed to bring the theory of polyno-

mial rings and the theory of rings of numbers under a single theory of abstract com-
mutative rings. [5]. In her 1921 paper, she recognized that a representation could be
thought of as a module over the group algebra. She was able to develop the theory
in greater generality, by working with rings satisfying the descending chain condition
rather than just algebras over a field. Emmy Noether’s use of the ascending chain con-
dition for commutative rings led to the study of noncommutative rings satisfying the

2



Ch. 1 : Preliminaries 1.0. Historical Backgroud 3

same condition ([3]). She also influenced many leading 20th century contributors of the
theory including Artin, for whom the class of Artinian rings is named, and Krull, who
made important contributions to the theory of ideals in commutative rings, introducing
concepts that are now central to the subject such as localization and completion of a
ring, as well as regular local rings. Wolfgang Krull established the concept of the Krull
dimension of a ring first for Noetherian rings. Then he expanded his theory to cover
general valuation rings and Krull rings. To this day, Krull’s principal ideal theorem is
regarded as one of the most important foundational theorems in commutative algebra.

Figure 1.0.4. Emmy Noether

The credit for raising Commutative Algebra to a fully-fledged branch of mathemat-
ics belongs to many famous mathematicians; including Ernst Kummer (1810-1893),
Leopold Kronecker (1823-1891), Richard Dedekind (1831-1916), David Hilbert (1862-
1943), Emanuel Lasker (1868-1941), Emmy Noether (1882-1935), Emil Artin (1898-
1962), Wolfgang Krull (1899-1971), and Van Der Waerden (1903-1996). Nowadays,
Commutative Algebra is rapidly growing and developing in many different directions.
It has multiple connections with such diverse fields as complex analysis, topology,
homological algebra, algebraic number theory, algebraic geometry, finite fields, and
computational algebra.
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4 1.1. Rings, Homomorphisms, Subrings Ch. 1 : Preliminaries

1.1. Rings, Homomorphisms, Subrings

In this section, we give a brief account of some preliminary concepts as well as
conventions that we will use throughout this course.

By a ring R, we mean a (nonempty) set with two binary operations (addition and
multiplication) satisfying the following conditions:

(1) (R,+) is an abelian group,
(2) multiplication is associative, i.e., for all elements x, y, and z in R, x(yz) =

(xy)z, and distributive over addition, i.e., for all x, y, and z in R, we have x(y + z) =
xy + xz and (y + z)x = yx+ zx.

We shall consider only commutative rings, namely rings in which xy = yx for all
elements x and y, with an identity element (denoted by 1), namely 1x = x1 for all
elements x.

When 0 = 1 in a ring, it is clear that the ring consists only of its zero element, in
which case we call the ring “zero ring”. Throughout, we assume our rings to be nonzero.

Examples 1.1. (i) One of the most fundamental example of commutative rings is
the ring of integers Z.

(ii) The subset Z[i] = {a+ ib : a, b ∈ Z} of complex numbers forms a commutative
ring where the ring operations are ordinary addition and multiplication. This ring is
called the ring of Gaussian integers.

(iii) For an integer n > 1, the ring of residue classes of integers modulo n, denoted
Zn, is an example of finite commutative rings.

(iv) Another example of commutative ring is given by the set C[0, 1] of all continuous
real–valued functions defined on the closed interval [0, 1] equipped with the operations
as follows: for f, g ∈ C[0, 1]

(f + g) (x) = f (x) + g (x) for all x ∈ [0, 1]

and
(fg) (x) = f(x)g(x) for all x ∈ [0, 1].

(v)For a commutative ring R, the set of all polynomial in the indeterminate X with
coefficients in R will be denoted by R[X]. Note that R[X] turns out to be a commuta-
tive ring with identity with respect to ordinary polynomial addition and multiplication.
We can also form the ring of polynomials over R[X] in another indeterminate Y . The
new ring can be denoted by R[X][Y ]. A typical element of this polynomial ring is of
the form f0 + f1Y + · · ·+ fnY

n for some integer n ≥ 0 and elements f0, . . . , fn ∈ R[X].
Such an element can be expressed as

n∑
i=0

m∑
j=0

aijX
iY j,

where aij ∈ R for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, which can be viewed as a polynomial in
two indeterminates X and Y . It follows that we denote the ring R[X][Y ] by R[X, Y ].
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It should be noted that a polynomial
n∑
i=0

m∑
j=0

aijX
iY j

is zero if and only if aij = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. This property is
summarized by saying that “X and Y are algebraically independent over R”. In general,
for a ring S, a subring R of S, and elements α1, . . . , αn ∈ S, we say that α1, . . . , αn are
algebraically independent over R (or, the set {α1, . . . , αn} is algebraically independent
over R if whenever ∑

(i1,...,in)∈Ψ
ri1,...,inα

i1
1 . . . α

in
n = 0

for some finite subset Ψ of Nn and ri1,...,in ∈ R, then ri1,...,in = 0 for all (i1, . . . , in) ∈ Ψ.
In a similar fashion, we can form polynomial rings successively by defining R0 = R,
Ri = Ri−1[Xi] for 1 ≤ i ≤ n, where X1, . . . , Xn are indeterminates. We denote
Rn by R[X1, . . . , Xn] and call it the ring of polynomials over R in indeterminates
X1, . . . , Xn. Note that the indeterminates X1, . . . Xn are algebraically independent
and that a typical element of R[X1, . . . , Xn] is of the form∑

ri1,...,inX
i1
1 . . . X in

n ,

where the sum is finite, i1, . . . in are nonnegative integers, and ri1,...,in ∈ R. The total
degree of such a polynomial is defined to be the sum i1 + · · ·+ in if it is nonzero, and
−∞ if it is zero.

(vi)Let R be a commutative ring and X an indeterminate. An expression such as
a0 + a1X + · · · + anX

n + · · · where the coefficients a0, a1, . . . , an, . . . ∈ R is called a
formal power series (in X) over R. Two formal power series ∑∞i=0 aiX

i and ∑∞i=0 biX
i

are thought of as equal when ai = bi for all i ≥ 0. The set of all formal power series
over R, denoted R[[X]], can be turned into a commutative ring with the following
operations: for all ∑∞i=0 aiX

i and ∑∞i=0 biX
i in R[[X]],

∞∑
i=0

aiX
i +

∞∑
i=0

biX
i =

∞∑
i=0

(ai + bi)X i,

and ( ∞∑
i=0

aiX
i

)( ∞∑
i=0

bjX
j

)
=
∞∑
k=0

ckX
k,

where, for every k ≥ 0,

ck =
k∑
i=0

aibk−i.

The zero element of R[[X]] is the element ∑∞i=0 0X i, which is denoted by 0 and the
identity element is 1 + 0X + 0X2 + · · · , denoted simply 1. Assuming coefficients after
the highest degree term all zero, any polynomial can be regarded as a formal power
series as well. So we can regard R[X] as a subset of R[[X]].

(vii) Let R be a commutative ring and let X1, . . . , Xn are indeterminates. As in the
case of polynomials, we can form power series rings iteratively as follows: set R0 = R,
and Ri = Ri−1[[Xi]] for 1 ≤ i ≤ n. To understand how elements occur in such a power
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series ring, we introduce the concept of homogeneous polynomial in R[X1, . . . , Xn]: a
polynomial in R[X1, . . . , Xn] is called homogeneous if it is of the form∑

i1+···+in=d
ri1,...,inX

i1
1 . . . X in

n

for some d ≥ 0 and ri1,...,in ∈ R. Here d is called the (homogeneous) degree of the
polynomial. Note that we consider the zero polynomial as homogeneous. It is easy to
prove that the finite sum of homogeneous polynomials with the same degree is again
a homogeneous polynomial, and also that any finite set of homogeneous polynomials
with different degrees is algebraically independent over R. Moreover; any element in
the ring Rn can be written as a sum of the form

∞∑
i=0

fi,

in a unique way, where fi is a homogeneous polynomial in R[X1, . . . , Xn] which is either
zero or of degree i. We denote the ring Rn by R[[X1, . . . , Xn]] and call it the formal
power series ring over R in n indeterminates X1, . . . , Xn. For two ’formal power series’∑∞
i=0 fi and

∑∞
i=0 gi are equal precisely when fi = gi for all i ≥ 0. Also, the operations

of addition and multiplication are as follows:( ∞∑
i=0

fi

)
+
( ∞∑
i=0

gi

)
=
∞∑
i=0

(fi + gi) ,

( ∞∑
i=0

fi

)( ∞∑
i=0

gi

)
=
∞∑
i=0

 ∑
j+k=i

fjgk

 .
Definition 1.2. A ring homomorphism is a mapping f from a ring R into a ring

S such that for all x and y in R,
(i) f(x+ y) = f(x) + f(y),
(ii)f(xy) = f(x)f(y), and
(iii) f(1R) = 1S.
The subset {f(x) : x ∈ R}, denoted Im f , is called the image of f .
Note that composition of two homomorphisms of rings (when possible) is again a

homomorphism.
Example 1.3. Let S be a commutative ring and R a subring of S. Let α1 . . . , αn ∈

S. Then there is a unique ring homomorphism ε : R[X1, . . . , Xn] → S such that
ε(r) = r and ε(Xi) = αi for all 1 ≤ i ≤ n. This homomorphism is called the evaluation
homomorphism (or simply evaluation) at α1, . . . , αn.

Definition 1.4. Let R and S be rings. If there is a ring homomorphism f : R→ S,
then we shall say that S is an R–algebra(or an algebra over R).

If R is a ring, then the mapping f : Z → R defined by f(n) = n(1R) for all n ∈ Z
is a ring homomorphism. It follows that every ring has a natural Z–algebra structure.

Definition 1.5. A subset S of a ring R is said to be a subring of R if S is closed
under addition and multiplication and contains the identity element of R.

By definition, any nonzero commutative ring is an algebra over its subrings.



Ch. 1 : Preliminaries 1.2. Zero–divisors, Nilpotent and Unit Elements 7

Examples 1.6. (i) If R is a commutative ring, and X is an indeterminate, then R
is a subring of R[X], and R[X] is a subring of R[[X]].

(ii) Let R be a ring. It is not difficult to see that the intersection of subrings of R is
again a subring of R. This observation leads to the following special type of subrings
of R. Let S be a subring of R, and let A be a subset of R. We define the subalgebra of
R generated by the subset A over the subring S to be the intersection of all subrings
of R containing both S and A, and denote it by S[A]. Notice that S[A] is the smallest
subring of R containing both S and A. Since S is a subring of S[A], S[A] is an algebra
over S, which explains the name “subalgebra”. In the case in which A = {α1, . . . , αn}
is a finite subset of R, we write S[A] as S[α1, . . . , αn]. In this case it turns out that

S[α1, . . . , αn] =
{∑
finite

sm1,...,mnα
m1
1 . . . αmnn : m1, . . . ,mn ≥ 0, and sm1,...,mn ∈ S

}
.

(Note that we make the convention that the symbol a0 represents 1.) It should be now
clear why we use the notation Z[i] for the ring of Gaussian integers (observe that since
i2 = −1 ∈ Z, in is either ±1 or ±i, and so Z[i] is just the subalgebra of C generated by
the subset {i} over the subring Z). It can be easily seen that for any subsets A and B
of R, S[A∪B] = S[A][B]. We can also conclude that S[A] is the union of subalgebras
S[B], where B ranges over all finite subsets of A.

Exercise 1.7. Let S be a commutative ring and R a subring of S. Let α1, . . . , αn ∈
S be algebraically independent over R. Show that the subalgebra R[α1, . . . , αn] is
isomorphic to the polynomial ring R[X1, . . . , Xn].

1.2. Zero–divisors, Nilpotent and Unit Elements

An element a of a ring R is said to be a zero–divisor if there exists a non–zero
element b ∈ R such that ab = 0. In other words, a zero–divisor is an element which
divides zero. If a ring R has no zero–divisors other than zero, then we call R an integral
domain (or, simply, domain).

Exercise 1.8. Let R be commutative ring and letX,X1, . . . , Xn be indeterminates.
(i) Show that if f ∈ R[X] is a zero–divisor in R[X], then there exists a nonzero

element c ∈ R such that cf = 0.
(ii)Show that if R is an integral domain, then so is R[X1, . . . , Xn].
(iii) Show that R is an integral domain if and only if R[[X1, . . . , Xn]].

There is a special type of zero–divisors: nilpotent elements. An element x of a ring
is called nilpotent if it vanishes when raised to a power, i.e., xn = 0 for some n > 0.

Exercise 1.9. Let R be a commutative ring and let X be an indeterminate. Let
f = a0 +a1X+ · · ·+anX

n ∈ R[X]. Show that f is nilpotent if and only if a0, . . . , anare
all nilpotent.

A unit in R is an element x if there exists an element y ∈ R such that xy = 1.
Here we call y an inverse of x. Note that once we have an inverse of x, it is unique.
So, we call y “the” inverse of x and and write y = x−1. Note that the units of a ring
constitute a multiplicative abelian group. One can see that a nonzero commutative
ring is a field if and only if it has only two ideals, namely 0 and R. A field is a nonzero
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ring in which every nonzero element is unit. Note that every finite integral domain is
a field. Moreover; for an integer n > 1, Zn is a field if and only if Zn is a domain if and
only if n is a prime number.

Exercise 1.10. Let R be a commutative ring and let a be a nilpotent element of
R. Then show that for any unit element u of R, u+ a is unit in R.

Exercise 1.11. Let R be a commutative ring and let X be an indeterminate. Let
f = a0 + a1X + · · ·+ anX

n ∈ R[X].
(i)Show that f is a unit element of R[X] if and only if a0 is unit and a1, . . . , an are

all nilpotent.
(ii) Show that R[X] is never a field.

Exercise 1.12. Let R be a commutative ring and letX1, . . . , Xn be indeterminates.
Let

f =
∞∑
i=0

fi ∈ R[[X1, . . . , Xn]],

where fi is either zero or a homogeneous polynomial of degree i in R[X1, . . . , Xn] for
every i ≥ 0. Prove that f is a unit of R[[X1, . . . , Xn]] if and only if f0 is a unit of R.

1.3. Field of Fractions of an Integral Domain

Let R be an integral domain. Set S := {(a, b) : a, b ∈ R and b 6= 0}. For
(a, b), (c, d) ∈ S we define a relation as follows:

(a, b) ∼ (c, d)⇐⇒ ad = bc.

It is easy to see that ∼ is an equivalence relation. For (a, b) ∈ S, we denote the
equivalence class containing (a, b) by a/b or

a

b
.

Let Q denote the set of all equivalence classes. Then we can make Q into a field with
the following operations: for a/b, c/d ∈ Q,

a

b
+ c

d
= ad+ bc

bd

and
a

b

c

d
= ac

bd
.

Note that we have a mapping

ι : R→ Q

r 7→ r/1

which is indeed an embedding of R into Q as a subring. Redefining elements r of R
as r/1 in Q, we can also assume that R, itself, is a subring of Q. Moreover; if F is
a field and f : R → F is a ring homomorphism, then there is a ring homomorphism
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g : Q → F such that gι = f , i.e., there is a ring homomorphism g : Q → Fwhich
makes the following diagram commute:

R
ι //

f
��

Q

F

g

??

It follows that every integral domain R is contained in a field which is contained in
every field containing R.

1.4. Factorization of Elements in a Commutative Ring

Definition 1.13. Let R be an integral domain. A nonzero element p ∈ R is called
irreducible if

(i) p is not a unit element of R, and
(ii) whenever p = ab for some a, b ∈ R, then either a or b is a unit element of R.

Definition 1.14. Let R be an integral domain. We say that R is a unique factor-
ization domain (UFD for short) if

(i) each nonzero element which is not a unit in R is expressible as a product
p1p2 . . . pn of irreducible elements p1, p2, . . . , pn of R, and

(ii) whenever s, t ∈ N and p1, . . . , pn, q1, . . . , qm are irreducible elements of R such
that

p1p2 . . . pn = q1q2 . . . qm

then n = m and there exists units u1, . . . , un in R such that, after a suitable reindexing,
pi = uqi for all 1 ≤ i ≤ n.

Definition 1.15. Let R be an integral domain. We say that R is a Euclidean
domain if there is a function ∂ : R \ {0} → N, called the degree function of R, such
that

(i) whenever a, b ∈ R \ {0} and a = bc for some c ∈ R, then ∂(b) ≤ ∂(a), and
(ii) whenever a, b ∈ R \ {0} with b 6= 0, then there exist q, r ∈ R such that

a = qb+ rwith either r = 0 or r 6= 0 and ∂(r) < ∂(b).

Note that the ring of integers Z, the ring of Gaussian integers Z[i] and the ring
of polynomials F [X] over a field F in indeterminate X are examples of Euclidean
domains.

Theorem 1.16. Every Euclidean domain is a UFD.

Theorem 1.17. If R is a UFD, then so is R[X].
It follows from above results that if F is a field, then the polynomial ring F [X1, . . . , Xn]

in n indeterminates X1, . . . , Xn is a UFD. Also, the same applies when F = Z.

1.5. Ideals, Quotient (Factor) Rings

An ideal I of a ring R is a nonempty subset of R which is an additive subgroup for
which x ∈ R and y ∈ I imply xy ∈ I. Notice that a ring has at least two natural ideals,
namely {0} and R itself, where the first one is called the zero ideal denoted simply 0.



10 1.5. Ideals, Quotient (Factor) Rings Ch. 1 : Preliminaries

Exercise 1.18. Let R1, . . . , Rn be commutative rings. Show that the Cartesian
product set R1 × · · · × Rn can be given a commutative ring structure with respect to
componentwise operations of addition and multiplication. In other words we define
operations by

(r1, . . . , rn) + (s1, . . . , sn) = (r1 + s1, . . . , rn + sn)
and

(r1, . . . , rn)(s1, . . . , sn) = (r1s1, . . . , rnsn)
for all ri, si ∈ Ri (i = 1, . . . , n). We call this new ring the direct product of R1, . . . , Rn.

Show that, if Ii is an ideal of Ri for each i = 1, . . . , n, then I1 × · · · × In is an ideal
of the direct product ring ∏n

i=1Ri. Also prove that each ideal of ∏n
i=1Ri is of this form.

When I is an ideal of a ring R, the quotient additive group R/I inherits a multipli-
cation from R which makes it into a ring, called the quotient ring (or factor ring) of R
modulo I. The elements of R/I are cosets of I in R, and the mapping φ : R −→ R/I
such that φ(a) = a + I is a surjective ring homomorphism, which is usually referred
to as the natural or canonical ring homomorphism from R to R/I. The following fact
about ideals of quotient rings is used very often.

the ideals of a quotient ring. Let I be an ideal of a commutative ring R.
(i) If J is an ideal of R containing I, then the Abelian group J/I is an ideal of R/I.

Also, for r ∈ R, r + I ∈ J/I if and only if r ∈ J .
(ii) If J is an ideal of the quotient ring R/I, then there exists a unique ideal J of

R containing I such that J = J/I; indeed, this J is given by
J = {a ∈ R : a+ I ∈ J }.

Proposition 1.19. If R is a ring and I is an ideal of R, then there is a one–to–one
order–preserving correspondence between the ideals J of R containing I and the ideals
J of R/I, given by J = φ−1(J ). We can give this correspondence explicitly by

τ : {J : J is an ideal of R and J ⊇ I} → {ideals of R/I}
J 7→ J/I

Theorem 1.20. Let I and Jbe ideals of a commutative ring R such that I ⊆ J .
Then the mapping

η : (R/I)/(J/I)→ R/J

defined by η((r + I) + J/I) = r + J for all r ∈ R is a ring isomorphism.

Theorem 1.21. Let R and S be commutative rings, and let f : R → S be a ring
homomorphism. Then the mapping f̄ : R/ ker f → Im f defined by f̄(r+ ker f) = f(r)
for all r ∈ R is a ring isomorphism.

For any ring homomorphism f : R → S, the subset f−1(0) is an ideal of R, called
the kernel of f . We denote the kernel of f by ker(f). It is well–known that R/ ker(f) ∼=
f(R).

Let R be ring and let S be a subset of R. Then the intersection of all ideals of R
containing S (which is known to be an ideal of R) is called the ideal of R generated
by the subset S, denoted (S) (or, sometimes, 〈S〉). If I = (S), then we say that S is a
generator set for I or I is generated by S. Then we have
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(i) (S) is an ideal of R,
(ii) S ⊆ (S), and
(ii) (S) is the smallest ideal of R among the ideals which contain S.

It can also be shown that

(S) =
{

n∑
i=1

aixi : n ∈ N, ai ∈ R andxi ∈ S for i = 1, . . . , n
}
.

If S = {x1, . . . , xn} is a finite subset of R and I = (S), then we say that I is a finitely
generated ideal of R, in which case we write I = (x1, . . . , xn). If n = 1, then I = (x1) is
called a principal ideal generated by x1. In this case, for any element x ∈ R, we have
(x) = {rx : r ∈ R}. We often denote the principal ideal (x) in R by Rx. Note that in
any ring, 0 and R are principal ideals since 0 = (0) = (∅) and R = (1). A ring whose
every ideal is principal is called a principal ideal ring. If a domain is also a principal
ideal ring, then it is a principal ideal domain (PID, for short). For example, Z and
Z[i] are examples of principal ideal domains. It is also a well–known fact that if F is a
field, then the polynomial ring F [X] in one indeterminate X over F is a PID (but the
same is not true in general if F is not a field; for example, if F = Z).

Theorem 1.22. Every Euclidean domain is a PID. Indeed, we have the following
sequence of implications (none of which can be reversed):

Euclidean domain =⇒ PID =⇒ UFD

Exercise 1.23. Prove that the polynomial ring F [X, Y ] over the field F in inde-
terminates X and Y is not a principal ideal domain (and so, not a Euclidean domain)
by showing that the ideal (X, Y ) of F [X, Y ] is not principal. (We remark that this
exercise provide an example of a UFD which is not a PID).

Exercise 1.24. Find a commutative ring in which there is an ideal that cannot be
generated by a finite set.

Exercise 1.25. Let R be a commutative ring and X1, . . . , Xn indeterminates. Let
a1, . . . , an ∈ R, and let

f : R[X1, . . . , Xn]→ R

be the evaluation homomorphism at a1, . . . , an. Show that the kernel of f is the ideal
of R[X1, . . . , Xn] generated by elements X1 − a1, . . . , Xn − an, i.e.,

ker f = (X1 − a1, . . . , Xn − an) .

1.6. Operations on Ideals

In this section, we give some basic arithmetic of ideals which is crucial for studying
commutative rings. Ideals provide a strong connection relating geometric ideas to the
realm of number theory. Indeed, ideals are considered first, in Dedekind’s famous work
in 1871, as a continuation of study of numbers which was, then, mostly related to
the Fermat’s last theorem. Just as with numbers, there are some operations on ideals
which are widely used in the theory as effective ways to produce new ideals from old
ones. We start with addition and multiplication.
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Addition and Multiplication. It is easy to see that the intersection of any num-
ber of ideals gives again an ideal. However; the union of ideals does not necessarily
give rise to an ideal. Indeed, the union I ∪ J of ideals I and J is again an ideal if
and only if one of I and J contains the other. Although a union of ideals is generally
not an ideal, we can still consider an ideal which contains such a union, namely the
ideal generated by the union and call it the sum of the ideals which participate in the
union. More precisely, if Λ is a nonempty index set and {Iλ : λ ∈ Λ} is a family of
ideals of a ring R, then the sum of the ideals Iλ, denoted

∑
λ∈Λ Iλ, is defined to be the

ideal of R generated by the subset ⋃λ∈Λ Iλ. In case Λ = ∅, we assume ∑λ∈Λ Iλ = 0. By
definition, one can show, when Λ 6= ∅, that an element x ∈ R lies in the sum ∑

λ∈Λ Iλ
if and only if there exist n ∈ N, λ1, . . . , λn ∈ Λ, and aλi ∈ Iλi (i = 1, . . . , n) such that
x = ∑n

i=1 aλi . In particular, for elements a1, . . . , anin a commutative ring R, we have
(a1, . . . , an) = (a1) + · · ·+ (an).

Just as we can add ideals, we can also multiply (finitely many of) them. Let
I1, . . . , In be ideals of R. Then the ideal of R generated by the subset

{a1, . . . , an : ai ∈ Ii for each i = 1, . . . , n}
is defined as the product of the ideals I1, . . . , In, denoted I1 . . . In or ∏n

i=1 Ii. It follows
that an element x ∈ R lies in the product ∏n

i=1 Ii if and only if x = ∑
r(i1,...,in)ai1 . . . ain

for some r(i1,...,in) ∈ R and aij ∈ Ij (i = 1, . . . , n), where for all but a finite number
of r(i1,...,in) are zero. Notice that, in particular, positive powers of ideals are defined.
Conventionally, we write I0 = R for any ideal I. Notice that for ideals I and J of R,
we always have IJ = JI ⊆ I ∩ J .

The three operations (intersection, addition, and multiplication) are all commuta-
tive and associative. Also, multiplication of ideals is distributive over addition, i.e., for
ideals I, J , and K, I(J +K) = IJ + IK.

In the ring Z, intersection and addition are distributive over one another, which
is not the case for a general commutative ring. However, we have the following rule,
known as the modular law: for ideals I, J , and K, if I ⊇ J or I ⊇ K, then

I ∩ (J +K) = (I ∩ J) + (I ∩K) .
Let R1, . . . , Rn be commutative rings. Then the Cartesian product set

n∏
i=1

Ri = R1 × · · · ×Rn

can be turned into a commutative ring under componentwise operations of addition and
multiplication. More precisely, we define addition and multiplication on the Cartesian
product set by

(r1, . . . , rn) + (s1, . . . , sn) = (r1 + s1, . . . , rn + sn)
and

(r1, . . . , rn)(s1, . . . , sn) = (r1s1, . . . , rnsn)
for all ri, si ∈ Ri (i = 1, . . . , n). We call this ring the direct product of R1, . . . , Rn. It is
not difficult to see that any ideal of ∏n

i=1Ri has the form I1 × · · · × In, where Ii is an
ideal of Ri for each i = 1, . . . , n.
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We call two ideals I and J of a ring R comaximal if I + J = R. It is not difficult
to see that for a pair of comaximal ideals I and J , I ∩ J = IJ . In general, for ideals
I1, . . . , In which are pairwise comaximal, we have

(i) I1 . . . In = I1 ∩ . . . ∩ In,
(ii) for every j, Ij and

⋂
i 6=j Ii are comaximal, and

(iii) the mapping φ : R → ∏n
i=1R/Ii defined by φ : r 7→ (r + I1, . . . , r + In) is a

surjective ring homomorphism whose kernel is equal to ⋂ni=1 Ii.

Proposition 1.26. Let I be an ideal of a commutative ring R, and let J,K be
ideals of R containing I. Then we have

(i) (J/I) ∩ (K/I) = (J ∩K) /I,
(ii) (J/I) + (K/I) = (J +K)/I,
(iii) (J/I) (K/I) = (JK + I) /I; in particular, (J/I)n = (Jn + I) /I for all n ≥ 0,

and
(iv) for elements a1, . . . , an ∈ R,

∑n
i=1(R/I)(ai + I) = [(∑n

i=1Rai) + I] /I.

Radicals. Let R be a commutative ring, and let I be an ideal of R. It can be
easily proved that the subset

{r ∈ R : there existsn ∈ Nwith rn ∈ I}
of R is an ideal of R. This ideal, denoted

√
I, is called the radical of I (in R). In

particular, if I = 0, then we call the radical
√

0, the nilradical of R. It is clear, by
definition, that I ⊆

√
I for all ideals I of R. We shall describe later the radical of an

ideal as the intersection of all prime ideals containing the ideal.

Exercise 1.27. Let R be a commutative ring, and let I, J be ideals of R. Prove
that

(i)
√
I + J =

√(√
I +
√
J
)
;

(ii)
√√

I =
√
I;

(iii)
√
I 6= R if and only if I 6= R;

(iv) if
√
I and

√
J are comaximal ideals, then so are I and J ;

(v)
√
IJ =

√
I ∩ J =

√
I ∩
√
J .

Ideal Quotients (Colon Ideals). If I and J are ideals of a ring R, then their
ideal quotient is

(I : J) = {x ∈ R : xJ ⊆ I} ,
which is an ideal. The ideal (I : J) is sometimes referred to as a colon ideal because
of the notation. In particular, the ideal (0 : J) is called the annihilator of J , denoted
ann(J) or annR(J).

It should be noted that we could have defined the ideal quotient (I : J) by assuming
J to be only a subset (i.e., not an ideal) of R because for any subset A ⊆ R, (I : (A)) =
{r ∈ R : ra ∈ I for all a ∈ A}. We denote the set on the right by simply (I : A). In
particular, for an element a ∈ R, the ideal (I : {a}) will be abbreviated to (I : a). Note
also that all these apply particularly to annihilators.
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Exercise 1.28. Let I, J,K be ideals of a commutative ring R, and let {Iλ : λ ∈ Λ}
be a family of ideals of R. Show that

(i) ((I : J) : K) = (I : JK) = ((I : K) : J);
(ii) (⋂λ∈Λ Iλ : J) = ⋂

λ∈Λ (Iλ : J) ;
(iii)(J : ∑λ∈Λ Iλ) = ⋂

λ∈Λ (J : Iλ).

Extension and Contraction. Let R and S be commutative rings and let f :
R → S be a ring homomorphism. If J is an ideal of S, f−1(J) = {r ∈ R : f(r) ∈ J}
is an ideal of R which is usually denoted by J c. We call J c the contraction of J to R.
On the other hand, for an ideal I of R, the subset f(I) = {f(r) : r ∈ R} need not be
an ideal of S. Instead, we will consider the ideal of S generated by the subset f(I),
namely, f(I)S, which is denoted by Ie. We call Ie the extension of I to S.

Exercise 1.29. Let R and S be commutative rings and let f : R → S be a ring
homomorphism. Let I, I1, I2 be ideals of R and J, J1, J2 be ideals of S. Shoe that

(i) (I1 + I2)e = Ie1 + Ie2 ;
(ii) (I1I2)e = Ie1I

e
2 ;

(iii) (J1 ∩ J2)c = J c1 ∩ J c2 ;
(iv)

(√
J
)c

=
√
J c;

(v) I ⊆ Iec;
(vi) J ce ⊆ J ;
(vii) Ie = Iece;
(viii) J c = J cec.
Let R and S be commutative rings and let f : R→ S be a ring homomorphism. In

the following discussion, all extension and contraction notations will be taken under f.
We fix some notation, at this point, which will be used throughout these notes. We let
IR denote the set of all ideals of the ring R. We also set

CR = {J c : J ∈ IR},
and

ES = {Ie : I ∈ IR}.
Observe that, the above exercise leads us to obtain one to one correspondence between
CR and ES defined by

CR → ES
I 7→ Ie

whose inverse is given by
ES → CR
J 7→ J c.

In particular, if f is surjective, then CR = {I ∈ IR : I ⊇ ker f} and ES = IS. Moreover;
we have a bijection mapping

{I ∈ IR : I ⊇ ker f} → IS
I 7→ f(I)

whose inverse is given by contraction.
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Exercise 1.30. Let R be a commutative ring and let X be an indeterminate. Let
f : R → R[X] denote the natural ring homomorphism, and use the extension and
contraction notations in connection with f .

Let I be an ideal of R, and for r ∈ R, denote the natural image of r in R/I by r̄.
Then show that

(i) there is a ring homomorhism
η : R[X]→ (R/I)[X]

such that
η

(
n∑
i=0

riX
i

)
=

n∑
i=0

r̄iX
i

for all n ∈ N and r0, r1, . . . , rn ∈ R;
(ii) Ie = ker η, i.e.,

Ie = IR[X] =
{

n∑
i=0

riX
i ∈ R[X] : n ∈ N, ri ∈ I for all 1 ≤ i ≤ n

}
;

(iii) Iec = I, and hence CR = IR;
(iv)R[X]/Ie = R[X]/IR[X] ∼= (R/I)[X]; and
(v) if I1, . . . , In are ideals of R, then

(I1 ∩ . . . ∩ In)e = Ie1 ∩ . . . ∩ Ien.

1.7. Maximal Ideal, Quasi–local Ring and Jacobson Radical

An ideal M of a commutative ring R is said to be maximal if M is a maximal
member, with respect to inclusion, of the set of proper ideals R. Equivalently, an ideal
Mof R is a maximal ideal if and only if

(i) M ⊂ R, i.e., M is a proper ideal in R, and
(ii) there is no proper ideal of R strictly containing M , i.e., M ⊆ I ⊆ R for some

ideal I of R implies either M = I or I = R.
It is clear that an ideal I of a commutative ring R is a maximal ideal in R if and

only if R/I is a field. Also, M is a maximal ideal of a commutative ring R containing
an ideal I of R if and only if M/I is a maximal ideal of R/I.

Exercise 1.31. Let K be a field and let a1, . . . , an ∈ K. Show that the ideal
(X1 − a1, . . . , Xn − an)

of the ring K[X1, . . . , Xn],where X1, . . . , Xn are indeterminates, is maximal.

Exercise 1.32. Recall that the set of all continuous real–valued functions on the
closed interval [0, 1], denoted C[0, 1], is a commutative ring. Let z ∈ [0, 1]. Show that

Mz := {f ∈ C[0, 1] : f(z) = 0}
is a maximal ideal of C[0, 1]. Show further that every maximal ideal of C[0, 1] is of
this form. (Hint for the second part: Let M be a maximal ideal of C[0, 1]. Argue by
contradiction to show that the sets

{a ∈ [0, 1] : f(a) = 0 for all f ∈M}
is non–empty: use the fact that that [0, 1] is a compact subset of R.)
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We remark that an easy application of Zorn’s Lemma says that every non–trivial
commutative ring has at least one maximal ideal. This, in particular, yields that every
proper ideal of a commutative ring R is contained at least one maximal ideal of R. It
follows that an element of a commutative ring is a unit if and only if it lies outside all
maximal ideals.

Definition 1.33. A commutative ring R which has exactly one maximal ideal, say
M , is called a quasi–local ring. In this case, the field R/M is called the residue field of
R.

Theorem 1.34. Let R be a commutative ring. Then R is a quasi–local ring if and
only if the set of non–units of R form an ideal. It follows that the unique maximal
ideal of a quasi–local ring is precisely the set of non–units of R.

Definition 1.35. Let R be a commutative ring. The intersection of all the maximal
ideals of R is called the Jacobson radical of R. The Jacobson radical of R is denoted
by Jac(R).

Theorem 1.36. Let R be a commutative ring and let r ∈ R. Then r ∈ Jac(R) if
and only if, for every a ∈ R, the element 1− ra is a unit of R.

Exercise 1.37. Let R be a quasi–local commutative ring with maximal ideal M .
Show that the ring R[[X1, . . . , Xn]] of formal power series over R in indeterminates
X1, . . . , Xn is again a quasi–local ring, and that its maximal ideal is generated by
M ∪ {X1, . . . , Xn}.

1.8. Prime Ideals

Let P be an ideal of a commutative ring R. We say that P is a prime ideal of R if
(i) P ⊂ R, i.e., P is a proper ideal of R, and
(ii) whenever ab ∈ P for some a, b ∈ R, then either a ∈ P or b ∈ P .
Observe that the zero ideal in a commutative ring R is a prime ideal if and only

if R is an integral domain. More generally, a proper ideal P of a commutative ring R
is a prime ideal if and only if R/P is an integral domain. In particular, we conclude
that every maximal ideal of a commutative ring is also a prime ideal. Note that, in
a PID, nonzero prime ideals are precisely those principal ideals which are generated
by irreducible elements. Thus nonzero prime ideals of a PID are also maximal. For
instance, in Z, all prime ideals are of the form pZ, where p is a prime number, and
also, in the polynomial ring K[X] where K is a field, nonzero prime ideals are those
principal ideals generated by irreducible polynomials.

Definition 1.38. Let R be a commutative ring. We call the set of all prime ideals
of R the prime spectrum or just the spectrum of R. We denote the spectrum of R by
Spec(R).

We remark that Spec(R) is always non–empty for a commutative ring R since R
has at least one maximal ideal which is also a prime ideal.

Let R and S be commutative rings and let f : R→ S be a ring homomorphism. It
is not difficult to see that prime ideals of S remain prime when contracted into R, i.e.,
if Q ∈ Spec(S), then Qc ∈ Spec(R). Note that the same does not apply to maximal
ideals; to see this, consider the embedding Z→ Q.
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Exercise 1.39. Let R1, . . . , Rn be commutative rings. Determine all prime and
maximal ideals of the direct product ring ∏n

i=1Ri.
Definition 1.40. Let R be a commutative ring and I a proper ideal of R. If J is

another ideal of R containing I such that J/I ∈ Spec(R/I), then J ∈ Spec(R) since
prime ideals are preserved under contractions. It should be also noted that prime ideals
of a quotient ring R/I are of the form P/I where P ∈ Spec(R) such that P ⊇ I. The
following exercise says the same thing in the language of extension and contraction.

Exercise 1.41. Let R and S be commutative rings, and let f : R → S be a sur-
jective ring homomorphism. Use the extension and contraction notation in connection
with f . Let I ∈ CR. Show that I is a prime (resp. maximal) ideal of R if and only if
Ie is a prime (resp. maximal) ideal of S.

Definition 1.42. We say that a subset S of a commutative ring R ismultiplicatively
closed if

(i) 1 ∈ S, and
(ii) for all s1, s2 ∈ S, we have s1s2 ∈ S.
Notice that if P is a prime ideal of a commutative ring R, then R \ P is a multi-

plicatively closed subset of R. Also, for any nonzero element r ∈ R, {rn : n ≥ 0} is
an example of a multiplicatively closed subset of R. By Zorn’s Lemma, we have the
following crucial result which connects the idea of multiplicatively closed sets to that
of prime ideals.

Theorem 1.43. Let I be an ideal of a commutative ring R, let S be a multiplicatively
closed subset of R such that I ∩ S = ∅. Then the set

Ψ = {J ∈ IR : J ⊇ I and J ∩ S = ∅}
of ideals of R has a maximal element (with respect to inclusion), and any such maximal
element of Ψ is a prime ideal of R.

Definition 1.44. Let I be an ideal of a commutative ring R. We define the variety
of I, denoted Var(I), to be the set

{P ∈ Spec(R) : P ⊇ I}.
Corollary 1.45. Let I be an ideal of a commutative ring R. Then

√
I =

⋂
P∈Var(I)

P.

In particular, the nilradical
√

0 of R is equal to⋂
P∈Spec(R)

P.

Following above corollary, we can conclude that the nilradical of the factor ring
R/
√

0 is zero. Such a ring (namely, a ring with zero nilradical) is said to be reduced.
Exercise 1.46. Let R be a commutative ring and let X be an indeterminate. Use

the extension and contraction notation with reference to the natural ring homomor-
phism f : R→ R[X]. Let I be an ideal of R. Then show that

(i) I ∈ Spec(R) if and only if Ie ∈ Spec(R[X]), and
(ii)
√
Ie =

(√
I
)e
.
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Exercise 1.47. Let K be a field, and let R = K[X1, . . . , Xn] where X1, . . . , Xn are
indeterminates. Let a1, . . . , an ∈ K. Show that, in R,

0 ⊂ (X1 − a1) ⊂ (X1 − a1, X2 − a2) ⊂ . . .

⊂ (X1 − a1, . . . , Xi − ai) ⊂ . . .

⊂ (X1 − a1, . . . , Xn − an)
is a strictly ascending chain of prime ideals.

By another application of Zorn’s Lemma on the partially ordered set Var(I) by
reverse inclusion (for an ideal I of a commutative ring), we obtain the following im-
portant result.

Theorem 1.48. Let I be a proper ideal of a commutative ring R. Then the set
Var(I) contains a minimal element with respect to inclusion. We call any such minimal
member a minimal prime ideal of I or a minimal prime ideal containing I. In the case
when R is not trivial, the minimal prime ideals of the zero ideal are referred to as the
minimal prime ideals of R.

For an ideal I of a commutative ring R, we denote the set of all minimal prime
ideals of R by Min(I). Then Min(I) ⊆ Var(I).

Theorem 1.49. Let R be a commutative ring, I an ideal of R, and P ∈ Var(I).
Then there exists a minimal prime ideal P ′ of I such that P ⊇ P ′.

Corollary 1.50. Let I be a proper ideal of a commutative ring R. Then
√
I =

⋂
P∈Min(I)

P.

Lemma 1.51. Let P be a prime ideal of a commutative ring R, and let I1, . . . , In be
ideals of R. Then the following statements are equivalent:

(i) P ⊇ Ij for some 1 ≤ j ≤ n;
(ii) P ⊇ ⋂ni=1 Ii;
(iii) P ⊇ ∏n

i=1 Ii.

Corollary 1.52. Let I1, . . . , In be ideals of a commutative ring R, and let P be a
prime ideal of R such that P = ⋂n

i=1 Ii. Then P = Ij for some 1 ≤ j ≤ n.

Exercise 1.53. Let P be a prime ideal of a commutative ring R. Show that√
P n = P for all n ≥ 0.

the prime avoidance theorem. Let P1, . . . , Pn, where n ≥ 2, be ideals of the
commutative ring R such that at most two of P1, . . . , Pn are not prime. Let S be an
additive subgroup of R which is closed under multiplication. Suppose that

S ⊆
n⋃
i=1

Pi.

Then S ⊆ Pj for some 1 ≤ j ≤ n.

The reason for the name ’prime avoidance’ becomes clear after the following refor-
mulation of the above theorem:
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With the notation of above theorem, if S * Pi for every 1 ≤ i ≤ n, then there
exists

s ∈ S \
n⋃
i=1

Pi,

so that s ’avoids’ all the ideals P1, . . . , Pn, most of which are prime.

Theorem 1.54. Let R be a commutative ring and let P1, . . . , Pn ∈ Spec(R). If I is
an ideal of R and a is an element of R such that

aR + I *
n⋃
i=1

Pi,

then there exists b ∈ I such that

a+ b /∈
n⋃
i=1

Pi.

Exercise 1.55. Let R be a commutative ring, and let f = ∑∞
i=0 fi ∈ R[[X]], where

X is an indeterminate, fi is a homogeneous polynomial in R[X] which is either 0 or
of degree i, for each i ≥ 0. Use the contraction notation with reference to the natural
inclusion ring homomorphism form R to R[[X]].

(i) Show that f ∈ Jac(R[[X]]) if and only if f0 ∈ Jac(R).
(ii) Let M be a maximal ideal of R[[X]]. Show that M is generated by M c ∪ {X},

and that M c is a maximal ideal of R.
(iii) Show that each prime ideal of R is the contraction of a prime ideal of R[[X]].

1.9. Modules

Although there is an extensive theory of modules over arbitrary rings, we shall
confine ourselves to deal with modules over commutative rings.

Let R be commutative ring. An R–module (or, a module over R) is an additive
Abelian group M equipped with a ’scalar multiplication’ of its elements by elements
of R, that is, a mapping

· : R×M →M,

such that
(i) r · (m+m′) = r ·m+ r ·m′ for all r ∈ R, m,m′ ∈M ,
(ii) (r + r′) ·m = r ·m+ r′ ·m for all r, r′ ∈ R, m ∈M ,
(iii) (rr′) ·m = r · (r′ ·m) for all r, r′ ∈ R, m ∈M , and
(iv) 1R ·m = m for all m ∈M .

Remark. Note that we usually omit the notation ’·’ to denote scalar multiplication
and just use juxtaposition for it. Note also that these axioms have many easy conse-
quences regarding addition, subtraction and scalar multiplication, just as with vector
spaces, which we shall not mention here at all.

Examples 1.56. (i) Any commutative ring R is a module over itself with respect
to the scalar multiplication taken as the multiplication of R. More generally, any ideal
of R is an R–module under the addition and multiplication of R.
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(ii) For an ideal I of a commutative ring R, the quotient ring can be given an
R–module structure. We know that R/I is an additive Abelian group. Now we define,
in a canonical way, a scalar multiplication on R/I by elements of R as follows:

· : R× (R/I) → R/I

(r, a+ I) 7→ ra+ I.

This scalar multiplication together with the standard addition on R/I turns R/I into
an R–module.

(iii) Let R be a commutative ring, and let S be an R–algebra with ring homomor-
phism f : R→ S. Then S is an R–module with respect to its own addition and scalar
multiplication defined by

R× S → S

(r, s) 7→ f(r)s.
(iv) Let G be an additive Abelian group. Then with the scalar multiplication given

by

ng =


g + · · ·+ g (n terms) for n > 0

0 for n = 0
(−g) + · · ·+ (−g) (n terms) for n < 0

for all g ∈ G and n ∈ Z, G becomes a Z–module. Indeed, this is the only scalar
multiplication which turns G into a Z–module. It follows that the concept of Abelian
group is the same as the concept of Z–module.

Let R and S be commutative rings, and let f : R → S be a ring homomorphism.
Let N be an S–module. Then N has also an R–module structure with respect to the
same addition and scalar multiplication given by

R×N → N

(r, n) 7→ f(r)n.
In this case, we say that N is regarded as an R–module by means of f , or by restriction
of scalars when there is no danger of confusion about which ring homomorphism is
being used. In particular, if we take S, itself, as an S–module, then S turns into an
R–module by restricting scalars using f .

Let M be a module over a commutative ring R, and let N be a nonempty subset of
M. If N is itself an R–module with respect to the operations forM , then we say that N
is a submodule of M . To indicate that N is a submodule of M , we write N ≤M . Note
that we distinguish between the notations ≤ and <, where the latter means proper
containment. For a module M over a commutative ring R, and a nonempty subset
N of M , it is easy to see that N ≤ M if and only if rn + r′n′ ∈ N for all r, r′ ∈ R
and n, n′ ∈ N . Let J ⊆ M . We define the submodule of M generated by J to be the
intersection of the family of all submodules of Mwhich contain J . Note that this is the
smallest submodule of Mcontaining J with respect to the inclusion relation. Clearly,
if J = ∅, then N = 0,and if J 6= ∅, then

N =
{

n∑
i=1

riji : n ∈ N+, r1, . . . , rn ∈ R, j1, . . . , jn ∈ J
}
.
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If J = {j1, . . . , jm} is a finite set, then

N =
{

m∑
i=1

riji : r1 . . . , rm ∈ R
}
,

in which case we say that N is a finitely generated R–module. In particular, if J = {j},
then we have N = {rj : r ∈ R}. Such an R–module is called cyclic.

Let M be a module over a commutative ring R. Let {Gλ}λ∈Λ be a family of
submodules of M . We define the sum ∑

λ∈Λ Gλ to be the submodule of M generated
by ⋃λ∈ΛGλ. In particular, this sum is zero when Λ = ∅. It is not difficult to see that
this operation is both commutative and associative. Moreover; we may write∑

λ∈Λ
Gλ =

{
n∑
i=1

gλi : n ∈ N+, λ1, . . . , λn ∈ Λ, and gλi ∈ Gλi for all i = 1, . . . , n
}
.

If Λ = {1, . . . , n}, then we have
n∑
i=1

Gi =
{

n∑
i=1

gi : gi ∈ Gi for all i = 1, . . . , n
}
.

We often denote ∑n
i=1Gi by G1 + · · · + Gn. We can write a submodule generated by

a subset of M in terms of the sum of cyclic modules; namely if m1, . . . ,mn ∈M , then
the submodule of M generated by m1, . . . ,mn is Rm1 + · · ·+Rmn.

Let M be a module over a commutative ring R. Let I and J be ideals of R. We
denote by IM the submodule of Mgenerated by the subset {rm : r ∈ R, m ∈M}}.
Then

IM =
{

n∑
i=1

rimi : n ∈ N+, r1, . . . , rn ∈ R, m1, . . . ,mn ∈M
}
.

Note that I(I ′M) = (II ′)M . Note also that for a ∈ R, we write aM instead of (Ra)M .
In fact, (Ra)M = {am : m ∈M}.

Definition 1.57. Let M be a module over a commutative ring R. Let N≤ M ,
and let U ⊆M with U 6= ∅. It is clear that the subset

{r ∈ R : ru ∈ N for all u ∈ U}of
is an ideal of R denoted (N : U) (or (N :R U)). Observe that if L is a submodule of
M generated by U , then (N : U) = (N : L).

In the special case when N = 0, the ideal
(0 : U) = {r ∈ R : ru = 0 for all u ∈ U}

is called the annihilator of U , and denoted by ann(U) or annR(U). Also for m ∈ M ,
we call (0 : m) the annihilator of m.

Exercise 1.58. Let I be an ideal of a commutative ring R. Show that I =
annR(R/I) = (0 :R 1 + I).

Exercise 1.59. Let M be a module over a commutative ring R, let N , L be
submodules of M , and let {Nλ}λ∈Λ and {Lγ}γ∈Γ be two families of submodules of M .

(i) (⋂λ∈ΛNλ : L) = ⋂
λ∈Λ(Nλ : L);

(ii)
(
N : ∑γ∈Γ Lγ

)
= ⋂

γ∈Γ(N : Lγ).
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Change of Rings. Let M be a module over a commutative ring R. Let I be an
ideal of R such that I ⊆ ann(M). Then it is easy to see that M has also an (R/I)–
module structure with respect to its own addition and scalar multiplication given by

(R/I)×M → M

(r + I,m) 7→ rm.

Note that the condition that I ⊆ ann(M) is used to make the mapping above unam-
biguous. It should be also noted that a subset of M is an R–module if and only if it is
an (R/I)–submodule.

Definition 1.60. Let M be a module over a commutative ring R, let G be a
submodule of M , let I be an ideal of R. Then we write (G :M I) to denote the
submodule {m ∈ M : rm ∈ G for all r ∈ I} of M . Observe that G ⊆ (G :M I). In the
particular case when G = 0, the submodule (0 :M I) = {m ∈M : rm = 0 for all r ∈ I}
can be regarded as the annihilator of I in M .

Exercise 1.61. Let M be a module over a commutative ring R, let N be a sub-
module of M , and let {Nλ}λ∈Λ be a family of submodule of M . Also let I, J , K be
ideals of R, and let {Iα}α∈A be a family of ideals of R. Show that

(i) ((N :M J) :M K) = (N :M JK) = ((N :M K) :M J);
(ii) (⋂λ∈ΛNλ :M I) = ⋂

λ∈Λ(Nλ : I);
(iii)(N :M

∑
α∈A Iα) = ⋂

α∈A(N :M Iα);
Construction of Quotient (Factor) modules. Let M be a module over a

commutative ring R, let N be a submodule ofM . Since N is a submodule of the Abelian
group M , M/N is defined as an Abelian group written additively. In addition to the
operation of addition on M/N we define the scalar multiplication as

R× (M/N) → M/N

(r,m+N) 7→ rm+N

to make M/N into an R–module.
Note that if M is a module over a commutative ring R and I is an ideal of R,

then I ⊆ annR(M/IM) and hence M/IM is also an (R/I)–module under that scalar
multiplication defined by (r+ I)(m+ IM) = rm+ IM for all r ∈ R and m ∈M (check
this!).

If N is a submodule of M , then for any submodule N ′ of M containing N , N ′/N
is a submodule of the factor module M/N . As a matter of fact, all submodules of
M/N are of this form. Let N1 and N2 be submodules of M which contain N . Then
N1/N ⊆ N2/N if and only if N1 ⊆ N2. It therefore follows that there is a one–to–one
order preserving correspondence between the submodules of M/N and submodule of M
containing N . Moreover; we have

(i) (N1/N) + (N2/N) = (N1 +N2) /N ,
(ii) I (N1/N) = (IN1 +N) /N for any ideal I of R,
(iii) (N1/N) ∩ (N2/N) = (N1 ∩N2) /N , and
(iv) ann ((N1 +N2) /N1) = (N1 : N2).
We also remark that when a module M is finitely generated then so is any factor

moduleM/N ofM for ifM is generated by a set {m1, . . . ,mn}, thenM/N is generated
by the set {m1 +N, . . . ,mn +N}.
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Definition 1.62. Let M and N be two modules over a commutative ring R, and
let f : M → N be a mapping. We say that f is a homomorphism of R–modules or
R–module homomorphism, or only R–homomorphism if

f(rm+ r′m′) = rf(m) + r′f(m′)

for all r, r′ ∈ R and m,m′ ∈M . Such an R–homomorphism is called a monomorphism
if it is injective, an epimorphism if it is surjective, and an isomorphism if it is both
injective and surjective. Also, f is said to be a R–module endomorphism (or, R–
endomorphism) of M if f : M → M is an R–homomorphism. An endomorphism of a
module M which is both injective and surjective is called an automorphism of M . The
unit automorphism of a module M will be denoted by IdM .

The mapping M → N which sends every element of M to the zero element of N is
called the zero homomorphism, denoted 0.

If fi : M → N (for i = 1, 2) are R–homomorphisms, then the mapping f1+f2 : M →
N defined by (f1 +f2)(m) = f1(m)+f2(m) for all m ∈M is also an R–homomorphism,
called the sum of f1 and f2. Note that if f : M → N is an R–isomorphism, then the
mapping f−1 : N → M is also an R–isomorphism, in which case we say that M
and N are isomorphic R–modules and write M ∼= N . It is clear that isomorphic
R–modules have equal annihilators. It should be also noted that the composition
of two R–homomorphisms (resp., R–isomorphisms)– when possible – is again an R–
homomorphism (resp., R–isomorphism). It follows that the set of all endomorphisms
of a moduleM (denoted EndR(M)) becomes a ring (not necessarily commutative) with
identity with respect to the operations of addition and composition.

Observe that there is a ring homomorphism ϕ : R→ EndR(M) defined by

ϕ(r) : M −→ M

m 7−→ rm

for all r ∈ R and all m ∈ M . It follows that ϕ allows us to view EndR(M) as an
R–algebra although it is usually noncommutative. Thus we can think of elements of R
as acting on EndR(M) via ϕ. That is, we can define the multiplication rf ∈ EndR(M)
for r ∈ R and f ∈ End(M) by

rf : M → M

m 7→ rf(m).

Proposition 1.63. Let M be a module over a commutative ring R, let I be an
ideal of R, and let f be an R–endomorphism of M such that f(M) ⊆ IM . Then f
satisfies an equation of the form

fn + a1f
n−1 + · · ·+ an−1f + an = 0,

where the ai are in I i.

Proof. Let {m1, . . . ,mn} be a set of generators of M . Since f(M) ⊆ IM , for
every 1 ≤ i ≤ n, there exist aij ∈ I (j = 1, . . . , n) such that f(mi) = ∑n

j=1 aijmj. This
gives that ∑n

j=1(δijf −aij)mj = 0 for every 1 ≤ i ≤ n, where δij denotes the Kronecker
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delta. It follows that we have the equation of matrices ΦX = 0, where

Φ =


f − a11 −a12 · · · −a1n
−a21 f − a22 · · · −a2n
... ... . . . ...
−an1 −an2 · · · f − ann


and

X =


m1
m2
...
mn

 .
Multiplying both sides by the adjoint matrix of Φ, just as in the usual theory of matrices
over fields, we obtain [det(Φ)In]X = 0, where Indenotes the identity matrix of order n.
It follows that det(Φ) annihilates all the generators mi ofMwhich yields det(Φ)M = 0.
However; det(Φ) is an R–endomorphism of M of the form

fn + an−1f
n−1 + · · ·+ an.

This completes the proof. �

We remark that det(Φ), in the proof of the above proposition, is obtained by sub-
stituting f for X into the characteristic polynomial of the matrix A = [aij], namely,
P (X) = det[XIn − A]. If M is the free R–module with basis m1, . . . ,mn and I = R,
then this proposition is just what is known as Cayley–Hamilton theorem: let P (X) be
the characteristic polynomial of a square matrix A, then P (A) = 0.

Theorem 1.64 (Nakayama’s Lemma). Let M be a finitely generated module over
a commutative ring R, and let I be an ideal of R. If M = IM , then there exists a ∈ R
such that aM = 0 and 1− a ∈ I. If, in addition, I ⊆ Jac(R), then M = 0.

Proof. Setting f = IdM in the preceding theorem, we get the relation a = 1 +
a1 + · · ·+ an = 0 as an endomorphism of M which yields that aM = 0, and 1− a ∈ I.
Now, if I ⊆ Jac(R), then a is a unit of R, and hence 0 = a−1aM = M . �

Corollary 1.65. LetM be a module over a commutative ring R, N a submodule of
M , and I an ideal of R contained in Jac(R). If M/N is a finitely generated R–module
and M = N + IM , then M = N .

Let Γ be a set of generators of a module M over a commutative ring R. We say
that Γ is a minimal generating set ofM if any proper subset of Γ does not generateM .
Two minimal generating set do not necessarily have the same cardinality; for example,
when M = R, if x and y are non–units of Rsuch that x + y = 1, then both {1} and
{x, y} are minimal generating sets of R. Notice that such an example does not arise
for quasi–local rings. The following theorem says that the cardinality of a minimal
generating set of a finitely generated module over a quasi–local ring is an invariant
property for the module.

Theorem 1.66. Let (R,M) be a quasi–local ring and let M be a finitely generated
R–module. Set k = R/M and M = M/MM . Now M is a finite dimensional vector
space over k, and we write n for its dimension. Then
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(i) If we take a basis {γ1, . . . , γn} forM over k, and choose an inverse image ui ∈M
of each γi (i.e., γi = ui + MM), then {u1, . . . , un} is a minimal generating set of M .
Conversely, every minimal generating set of M is obtained in this way.

(ii) Any minimal generating set of M has n elements.
(iii) If {u1, . . . , un} and {v1, . . . , vn} are both minimal generating sets of M , and

vi = ∑
aijuj with aij ∈ R, then det[aij] is a unit in R, so that [aij] is an invertible

matrix.

Proof. (i) SinceM = ∑n
i=1Rγi = ∑n

i=1R(mi+MM) = (∑n
i=1Rmi+MM)/MM ,

we have M = ∑n
i=1Rmi + MM . Since M/(∑n

i=1Rmi) is also finitely generated, by
Corollary 1.65, M = ∑n

i=1Rmi. If {m1, . . . ,mn} is not minimal, that is, if a proper
subset, for example {mi1 , . . . ,mik} (k < n), generatesM , then {m̄i1 , . . . , m̄ik} generates
M , which is a contradiction. Hence {m1, . . . ,mn} is a minimal generating set of M .

Now, if {m1, . . . ,mt} is a minimal generating set of M and ūi is the image of ui in
M for every 1 ≤ i ≤ t, then ū1, . . . , ūt generateM over k. Hence {m̄1 . . . , m̄t} is a basis
for M since otherwise some proper subset of {m̄1, . . . , m̄t} would be a basis for M , and
then by above a proper subset of {u1, . . . , ut} would generate M , a contradiction.

(ii) Let {m1, . . . ,mt} be a minimal generating set of M . Then by (i), {m̄1, . . . , m̄t}
is a basis for M . Since dimkM = n by assumption, we must have t = n.

(iii) Left to the student. �

Exercise 1.67. Prove part (iii) of Theorem 1.66.

Definition 1.68. Let R′ and R′′ be two algebras over a commutative ring R, and let
ϕ : R′ → R′′ be a ring homomorphism. We say that ϕ is an R–algebra homomorphism
if it is a homomorphism of R–modules when R′ and R′′ are regarded as R–modules by
means of their structural ring homomorphisms.

Exercise 1.69. Let R be a commutative ring, and let R′, R′′ be commutative
R–algebras having structural ring homomorphisms f ′ : R → R′ and f ′′ : R → R′′.
Let ϕ : R′ → R′′ be a ring homomorphism. Then show that ϕ is an R–algebra
homomorphism if and only if ϕ ◦ f ′ = f ′′.

Let M be a module over a commutative ring R, and N a submodule of M . Then
the mapping π : M →M/N defined by π(m) = m+N for all m ∈M is surjective, and
hence, an epimorphism, called the canonical projection of M onto M/N . Suppose that
M ′ is a second R–module, and that f : M → M ′ is a homomorphism of R–modules.
The kernel of f , denoted by ker f , is the set {m ∈ M : f(m) = 0M ′}. It is clear that
ker f = 0 if and only if f is a monomorphism. The image of f , denoted by Im f , is the
subset f(M) = {f(m) : m ∈M} of M ′. Evidently, Im f is a submodule of M ′. Notice
that the kernel of the canonical projection of M onto M/N is equal to the submodule
N . Thus the projection from M onto M/0 is an isomorphism. One can easily deduce
that a subset N of a module M is a submodule of M if and only if N is a kernel of a
homomorphism from M to some R–module.

LetR be commutative ring,M anR–module, and f : M →M anR–endomorphism.
For P (X) = a0 + a1X + · · · + anX

n ∈ R[X], we put P (f) = a0 + a1f + · · · + anf
n ∈
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EndR(M). Define a scalar multiplication on the additive abelian group M by

· : R[X]×M −→ M

(P (X),m) 7−→ P (f)(m).

With this multiplication, M becomes a module over R[X].

Theorem 1.70. Let M be a finitely generated module over a commutative ring R.
If f : M → M is an R–endomorphism and f is surjective, then f is also injective, so
f is an automorphism of M .

Proof. (Vasconcelos) Since M can be viewed as an R[X]–module by setting X ·
m = f(m) for m ∈ M , we have XM = M . By Nakayama’s Lemma, there exists
P (X) ∈ R[X] such that (1 +XP )M = 0. Now, if u ∈ ker f , then 0 = (1 +XP )(u) =
u+ P (f)u = u. It follows that f is injective, and so an automorphism. �

the first isomorphism theorem for modules. Let M and M ′ be modules
over a commutative ring R, and let f : M → M ′ be an R–homomorphism. Then f
induces an isomorphism f̄ : M/ ker f → Im f for which f̄(m + ker f) = f(m) for all
m ∈M .

Corollary 1.71. Let R be a commutative ring. For an R–module M , let SM
denote the set of all submodules of M . Let f : M → M ′ be an epimorphism of R–
modules. Then the mapping

τ : {N ∈ SM : N ⊇ ker f} → SM ′
N 7→ f(N)

is an inclusion preserving bijection.

Proposition 1.72. Let M and M ′ be modules over a commutative ring R, and let
f : M →M ′ be an R–homomorphism. Let N be a submodule of M such that N ⊆ ker f
. Then f induces an R–homomorphism g : M/N → M ′ for which g(m + N) = f(m)
for all m ∈M . Moreover; if G is a submodule of M and G′ is a submodule of M ′ such
that f(G) ⊆ G′, then f induces an R–homomorphism f̃ : M/G → M ′/G′ for which
f̃(m+G) = f(m) +G′ for all m ∈M .

second isomorphism theorem for modules. Let M be a module over a com-
mutative ring R. Let N , N ′ be submodules of Msuch that N ′ ⊇ N . Then there is an
isomorphism

α : (M/N) / (N ′/N)→M/N ′

by α((m+N) +N ′/N) = m+N ′ for all m ∈M .

the third isomorphism theorem for modules. Let M be a module over a
commutative ring R, and let K, L be submodules of M . Then there is an isomorphism

σ : K/(K ∩ L)→ (K + L)/L

such that σ(k +K ∩ L) = k + L for all k ∈ K.
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Definition 1.73. Let R be a commutative ring, letM ,M ′, andM ′′ be R–modules,
and let f : M ′ →M and g : M →M ′′ be R–homomorphisms. We say that the sequence

M ′ f // M
g // M ′′

is exact if Im f = ker g.
More generally, we say that a sequence

· · · // Mn−1
dn−1 // Mn

dn // Mn+1
dn+1 // Mn+2 // · · ·

of R–modules and R–homomorphisms is exact at a term M r in the sequence for which
both dr−1 and dr are defined if

Mr−1
dr−1 // Mr

dr // Mr+1

is an exact sequence; and we say that the whole sequence is exact if and only if it is
exact at every term Mr for which both dr−1 and dr are defined.

Let M , N be modules over a commutative ring R, and let h : M → N be an
R–homomorphism.

(i) The sequence

0 // M
h // N

is exact if and only if h is a monomorphism.
(ii) The sequence

M
h // N // 0

is exact if and only if h is an epimorphism.
(iii) For any submodule G of M , there is an exact sequence

0 // G
i // M

π // M/G // 0

in which i is the inclusion homomorphism and π is the canonical epimorphism.

Definition 1.74. Let R be a commutative ring. An exact sequence of R–modules
and R–homomorphisms of the form

0 −→M ′ f−→M
g−→M ′′ −→ 0

is called a short exact sequence.
In order that a sequence

0 −→M ′ f−→M
g−→M ′′ −→ 0

of R–modules and R–homomorphisms be a short exact sequence, we must have
(i) f is a monomorphism,
(ii) g is an epimorphism, and
(iii) Im f = ker g.
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Direct Products and Direct Sums of Modules. Let R be a commutative ring
and let {Mλ : λ ∈ Λ} be a non–empty family of R–modules. Then the Cartesian
product set ∏λ∈ΛMλ is an R–module under componentwise operations of addition and
scalar multiplication. In other words we define the operations by

(mλ) + (m′λ) = (mλ +m′λ)
and

r(mλ) = (rmλ)
for all (mλ), (m′λ) ∈

∏
λ∈ΛMλ and r ∈ R. We call this new R–module the direct product

of the family {Mλ : λ ∈ Λ}.
The subset of ∏λ∈ΛMλ consisting of all (mλ)λ∈Λ∈

∏
λ∈ΛMλ with the property that

all but finite number of mλ are zero, is an R–submodule of ∏λ∈ΛMλ. We denote this
submodule by ⊕λ∈ΛMλ, and call it the direct sum, or sometimes the external direct
sum, of the family {Mλ : λ ∈ Λ}.

Note that in the case when Λ is finite, we have ⊕λ∈Λ Mλ = ∏
λ∈ΛMλ.

Now let M ′
µ denote the subset(mλ) ∈

⊕
λ∈Λ

Mλ : mλ = 0 for all λ ∈ Λwith λ 6= µ


of ⊕λ∈ΛMλ. It can be easily shown that

(i) M ′
µ is an R–submodule of ⊕λ∈ΛMλ and M ′

µ
∼= Mµ for all µ ∈ Λ,

(ii) ∑λ∈ΛM
′
λ = ⊕

λ∈ΛMλ, and
(iii) for each µ ∈ Λ, we have

M ′
µ

⋂ ∑
λ ∈ Λ
λ 6= µ

M ′
λ = 0.

Definition 1.75. Let M be a module over a commutative ring R, and let {Mλ :
λ ∈ Λ} be a family of submodules of M . If

[(1)]M = ∑
λ∈ΛMλ

[(2)] for each µ ∈ Λ,
Mµ

⋂ ∑
λ ∈ Λ
λ 6= µ

Mλ = 0,

then we say that M is the direct sum, or sometimes the internal direct sum, of its
family of submodules {Mλ : λ ∈ Λ} and write⊕

λ∈Λ
Mλ.

Note that if M = ⊕
λ∈Λ Mλ for a family of submodules {Mλ : λ ∈ Λ} of M , then

by condition (1) in the above definition, for any element m ∈ M , there exist n ∈ N0,
λ1, . . . , λn ∈ Λ and mi ∈Mλi (i = 1, . . . , n) such that

m =
n∑
i=1

mi.
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Now, the condition (2) implies that the number n, the λi’s, and the elements mi ∈Mλi

are uniquely determined by m. This property distinguishes the internal direct sums
from ordinary sums.

Note also that, by the arguments given before the above definition, for a family
{Mλ : λ ∈ Λ} of modules over a commutative ring R, and derived submodules

M ′
µ =

(mλ) ∈
⊕
λ∈Λ

Mλ : mλ = 0 for all λ ∈ Λwith λ 6= µ

 ,
the external direct sum ⊕

λ∈ΛMλ of Mλ’s is equal to the internal direct sum ⊕
λ∈ΛM

′
λ

of its family of submodules {M ′
λ : λ ∈ Λ}.

Suppose that R is a commutative ring and {Mλ : λ ∈ Λ} is a non–empty family
of R–modules. The canonical projection of M = ⊕

λ∈ΛMλ onto Mµ is the mapping
pµ : M → Mµ defined by pµ((mλ)) = mµ for all (mλ) ∈ M (where all but a finite
number of mλ are nonzero). The canonical injection of Mµ into M = ⊕

λ∈ΛMλ is the
mapping qµ : Mµ → M defined by qµ(x) = (mλ), for all x ∈ Mµ, where mλ = 0 for
all λ ∈ Λ with λ 6= µ and mµ = x. It is easy to see that canonical projections pλ are
surjective while canonical injections qλ are injective. Moreover; we have

(i) pµ ◦ qµ = IMµ ,
(ii) pλ ◦ qµ = 0 for all µ ∈ Λ with µ 6= λ, and
(iii) when Λ is finite, ∑λ∈Λ qλ ◦ pλ = IM .

Exercise 1.76. Let M,M1, . . .Mn be modules over a commutative ring R.
(i) Show that there is an exact sequence

0 −→Mj
qj−→

n⊕
i=1

Mi

p′j−→
n⊕

i = 1
i 6= j

Mi −→ 0

of R–modules and R–homomorphisms in which qj is the canonical injection and
p′j((m1, . . . ,mn)) = (m1, . . . , m̂j, . . . ,mn)

(where m̂j denotes the absence of the j–th coordinate in (m1, . . . ,mn)) for all (m1, . . . ,mn) ∈⊕n
i=1Mi.
(ii) Suppose that there exist, for each 1 ≤ i ≤ n, homomorphisms p̃i : M → Mi

and q̃i : Mi →M such that, for 1 ≤ i, j ≤ n,
p̃i ◦ q̃i = IMi

and p̃i ◦ q̃j = 0 for i 6= j,

and ∑n
i=1 q̃i ◦ p̃i = IM . Show that the mapping f : M →⊕n

i=1Mi defined by
f(m) = (p̃1(m), . . . , p̃n(m)) for all m ∈M

is an isomorphism.

Definition 1.77. Let R be a commutative ring. A short exact sequence

0 −→M ′ f−→M
g−→M ′′ −→ 0

is said to split if Im f = ker g is a direct summand of M , i.e., if there is a submodule
N of M such that M = ker g ⊕N .
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An example of a split short exact sequence is
0 −→M ′ q1−→M ′ ⊕M ′′ p2−→M ′′ −→ 0,

where M ′ and M ′′ are R–modules, q1 is the canonical injection, and p2 is the canonical
projection.

Exercise 1.78. Let R be a commutative ring, and let

(∗) 0 −→M ′ f−→M
g−→M ′′ −→ 0

be a short exact sequence of R–modules and R–homomorphisms. Show that the fol-
lowing conditions are equivalent:

(i) The short exact sequence (∗) splits;
(ii) There exists an R–homomorphism h : M ′′ →M such that gh = IM ′′ ;
(iii) There exists an R–homomorphism e : M →M ′ such that ef = IM ′ .
Definition 1.79. Let M be a module over a commutative ring R. Suppose that

M contains a subset {eλ : λ ∈ Λ} with the following properties:
(i) {eλ : λ ∈ Λ} generates M , and
(ii) each m ∈M can be uniquely written in the form m = ∑

λ∈Λ rλeλ, where rλ ∈ R
for all λ ∈ Λ and only finitely many of the rλ are nonzero.

Then we say that M is a free R–module with a base {eλ : λ ∈ Λ}.
Note that R is a free R–module with base {1R}. The zero module 0 is a free

R–module with an empty base.
Remark 1.80. LetM be a module over a commutative ring R, and let {eλ : λ ∈ Λ}

be a subset of M such that M = ∑
λ∈ΛRmλ. Then M is a free R–module with base

{eλ : λ ∈ Λ} if and only if whenever ∑
λ∈Λ

rλeλ = 0

for some rλ ∈ R (λ ∈ Λ) in which only a finite number of the rλ’s are nonzero, then
rλ = 0 for all λ ∈ Λ.

Proposition 1.81. Let R be a commutative ring.
(i) Let {Rλ : λ ∈ Λ} be a nonempty family of R–modules with Rλ = R for all λ ∈ Λ.

Then ⊕λ∈ΛRλ is a free R–module, with base {eλ : λ ∈ Λ}, where for each µ ∈ Λ, the
element eµ ∈

⊕
λ∈ΛRλ has its components in Rµequal to 1 and all its other components

zero.
(ii) Let M be an R–module. Then M is free if and only if M is isomorphic to an R–

module of the type described in part (i) above. In fact, ifM has a base {eλ : λ ∈ Λ},then
M ∼=

⊕
λ∈ΛRλ, where Rλ = R for all λ ∈ Λ.

Exercise 1.82. Let R be a commutative ring, and let {eλ : λ ∈ Λ} be a set of
symbols, indexed by a non–empty set Λ. Construct a freeR–module having {eλ : λ ∈ Λ}
as a base.

Proposition 1.83. Let M be a module over a commutative ring R. Then there
exist a free R–module F and an R–module epimorphism f : F →M .

Also, if M is finitely generated by n elements, then F can be taken to be a free
R–module with a finite base of n elements.
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Proposition 1.84. Let R be a nontrivial commutative ring, and let F be a free
R–module with a finite base. Then every base for F is finite, and any two bases for F
have the same number of members. The number of members in a base for F is called
the rank of F .

Proof. (Sketch) Let F be a free R–module with a base {e1, . . . , en}. Take a
maximal ideal M of R and consider the R–module F/MF . Since F/MF is annihilated
by M, it is also a vector space over R/M. Now, the proposition follows if one shows
that the set {e1 + MF, . . . , en + MF} forms a basis for F/MF over R/M. �

Exercise 1.85. Suppose that F is a free module over a nontrivial commutative
ring R, and that F is finitely generated. Show that every base for F is finite.





CHAPTER 2

Chain Conditions

Let (S,≤) be a partially ordered set. One can easily see that the following two
conditions are equivalent:

(i) Every ascending chain x1 ≤ x2 ≤ . . . ≤ xi ≤ xi+1 ≤ . . . of elements in S is
stationary, i.e., there exists a positive integer n such that xn = xn+i for all
i ∈ N.

(ii) Every non–empty subset of S has a maximal element.
We say that (S,≤) satisfies the ascending chain condition (abbreviated a.c.c.) if it
satisfies one of the above conditions. Note that if we define a new relation on S by
reversing ≤, then we again have a partially ordered set, and hence we can adapt the
above conclusion for also descending chains in (S,≤), namely, for every descending
chain x1 ≥ x2 ≥ . . . ≥ xi ≥ xi+1 ≥ . . . of elements in S, there exists a positive integer
n such that xn = xn+i for all i ∈ N if and only if every non–empty subset of S has
a minimal element, in which case we say that (S,≤) satisfies the descending chain
condition (abbreviated d.c.c.).

LetM be a module over a commutative ring R. We denote the set of all submodules
ofM by SM . If SM satisfies a.c.c., then we say thatM is a Noetherian R–module (after
Emmy Noether), and if SM satisfies d.c.c., then we say thatM is an Artinian R–module
(after Emil Artin). It follows that an R–module M is Noetherian if and only if, for
every descending chain

L1 ⊆ L2 ⊆ . . . ⊆ Li ⊆ Li+1 ⊆ . . .

of submodules of M , there exists a positive integer n such that Ln = Ln+i for all i ∈ N
if and only if every non–empty subset of SM has a maximal element with respect to
inclusion. Moreover; M is an Artinian R–module if and only if, for every descending
chain

L1 ⊇ L2 ⊇ . . . ⊇ Li ⊇ Li+1 ⊇ . . .

of submodules ofM , there exists a positive integer n such that Ln = Ln+i for all i ∈ N.
A commutative ring R is said to be a Noetherian ring (resp., Artinian ring) if R

is a Noetherian (resp., Artinian) module when considered as a module over itself in
the natural way. For example, the ring of integers Z is a Noetherian ring. However;
Z is not an Artinian ring since for any prime number p, we have the infinite strictly
descending chain

(p) ⊃ (p2) ⊃ · · · ⊃ (pi) ⊃ (pi+1) ⊃ · · ·
of ideals of Z. Indeed, every principal ideal domain is Noetherian (see Exercise 2.1 (i)),
and no integral domain which is not a field is Artinian (see Exercise 2.1 (ii)). Note
also that a field is both Noetherian and Artinian.

33
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Exercise 2.1. (i) Prove that every P.I.D. is a Noetherian ring.
(ii) Show that an Artinian integral domain is a field.

Exercise 2.2. Let M be an Artinian module over a commutative ring R. Let
f : M → M be an R–endomorphism of M which is injective. Prove that f is also
surjective, so f is an automorphism of M .

Example 2.3. Let p be a fixed prime number. Then

Zp∞ := {α ∈ Q/Z : α = r

pn
+ Z for some r ∈ Z and n ∈ N0}

is a submodule of the Z–module Q/Z. For each t ∈ N0 we set

Gt := {α ∈ Q/Z : α = r

pt
+ Z for some r ∈ Z}.

Then
(i) Gt is the submodule of Zp∞ generated by (1/pt) + Z, for each t ∈ N0. (Here we

assume that G0 = 0),
(ii) each proper submodule of Zp∞ is equal to Gi for some i ∈ N0, and
(iii) the set of all proper submodules of Zp∞ forms the strictly ascending (non–

terminating) chain
G0 ⊂ G1 ⊂ . . . ⊂ Gn ⊂ Gn+1 ⊂ . . . ,

and so Zp∞ is an Artinian, non–Noetherian Z–module.

Proof. It is easy to check that Zp∞ is a Z–submodule of Q/Z. Also, since (r/pt)+
Z = r[(1/pt) + Z], part (i) is clear.

(ii) Let H be a proper submodule of Zp∞ . We may assume that H 6= 0 since
otherwise we have H = G0. By definition, we have Zp∞ = ⋃

i∈N0 Gi. Also, since
(1/pn) + Z = p((1/pn+1) + Z) for each n ∈ N0, we have the chain

G0 ⊆ G1 ⊆ . . . ⊆ Gn ⊆ Gn+1 ⊆ . . .

of submodules of Zp∞ . Since H is a proper submodule of Zp∞ , there is a greatest
integer i ∈ N such that Gj ⊆ H. If this were not the case, then, for each j ∈ N, there
would exist nj ∈ N with nj ≥ j and Gnj ⊆ H, so that Gj ⊆ H, and this would lead to
he contradiction that H = Zp∞ . Let m be this greatest integer. Then Gm ⊆ H.

We shall show that H = Gm. Suppose, on the contrary, that Gm 6= H. Then there
exists α ∈ H \Gm. Now, there exist r ∈ Z and t ∈ N0 such that α = (r/pt) +Z. Since
α 6= 0, if r has a factor which is a power of p, then this power should be smaller than
pt. It follows that, without loss of generality, we may take r /∈ pZ, that is, (r, pt) = 1.
Then there exist a, b ∈ Z such that ar + bpt = 1, and so

1
pt

+ Z = ar

pt
+ Z = aα ∈ H.

This gives that

Gt =
(

1
pt

+ Z
)
Z ⊆ H,

which contradicts with the choice of m. Hence H = Gm, as claimed.
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(iii) We shall show that, for all i ∈ N0, (1/pi+1) + Z /∈ Gi. Indeed, if we had
(1/pi+1) + Z ∈ Gi, then there would exist r ∈ Z such that

1
pi+1 −

r

pi
∈ Z,

so that 1− rp ∈ pi+1Z, a contradiction. Hence
(2.1) G0 ⊂ G1 ⊂ . . . ⊂ Gn ⊂ Gn+1 ⊂ . . . .

This, in particular, shows that Zp∞ is not a Noetherian Z–module. On the other
hand, since the chain in 2.1 forms up the total list of proper submodules of Zp∞ , any
descending chain of submodules of Zp∞ contains only finitely many submodules which
are essentially equal to some Gi (except possibly the first term). This shows that Zp∞
is an Artinian Z–module. �

Proposition 2.4. Let K be a field, and V be a vector space over K. Then the
following statements are equivalent:

(i) V is a finite–dimensional K–space;
(ii) V is a Noetherian K–module;
(iii) V is an Artinian K–module.

Proof. By comparing dimensions of subspaces, we see that any chain of subspaces
in a finite–dimensional vector space has finitely many terms. This establishes both
(i)⇒ (ii) and (i)⇒ (iii). For implications (ii)⇒ (i) and (iii)⇒ (i), we assume that
V is not finite–dimensional and show that V is neither Noetherian nor Artinian as a
K–space. Let {vi}i∈N be a linearly independent subset of V . We set

Ln :=
n⊕
i=1

Kvi and Mn :=
∞⊕

i=n+1
Kvi.

Now, we have the strictly ascending chain
L1 ⊂ L2 ⊂ . . . ⊂ Ln ⊂ Ln+1 ⊂ . . .

and the strictly descending chain
M1 ⊃M2 ⊃ . . . ⊃Mn ⊃Mn+1 ⊃ . . .

of subspaces of V . This proves that V is neither a Noetherian nor an Artinian K–
module. �

Proposition 2.5. Let M be a module over a commutative ring R. Then M is
Noetherian if and only if every submodule of M is finitely generated.

Proof. (⇒) LetN be a submodule ofM . Suppose thatN is not finitely generated.
Let Γ be the set of all submodule of N which are finitely generated. Then Γ 6= ∅ since
0 ∈ Γ. Since every submodule of N is also a submodule of M , by maximal condition
on M (i.e., M is Noetherian), Γ has a maximal member with respect to inclusion. Let
this maximal member be L. We have L ⊂ N since N is not finitely generated. Let
n ∈ N \L. Then L+Rn is a finitely generated submodule of Nand L ⊂ L+Rn since
n ∈ (L+Rn) \N . This is a contradiction. Thus N must be finitely generated.

(⇐) Let
L1 ⊆ L2 ⊆ . . . ⊆ Ln ⊆ Ln+1 ⊆ . . .
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be an ascending chain of submodules of M . Then G = ⋃
i∈N Li is a submodule of M .

By hypothesis G is finitely generated, say by g1, . . . , gt . Then there is a sufficiently
large n ∈ N such that g1, . . . , gt ∈ Ln. It follows that

G =
t∑
i=1

Rgi ⊆ Ln ⊆ Ln+1 ⊆ . . . ⊆ G.

Hence Ln = Ln+i for all i ∈ N. It follows that M is Noetherian. �

Proposition 2.6. Let M be a module over a commutative ring R, let N be a
submodule of M . Then the R–module M is Noetherian (resp. Artinian) if and only if
both M and M/N are Noetherian (resp. Artinian).

Proof. Let M be Noetherian as R–module. Since every submodule of N is also a
submodule ofM , it is clear that N is also a Noetherian R–module. Also, any ascending
chain of submodules of M/N must be of the form

N1/N ⊆ N2/N ⊆ . . . ⊆ Ni/N ⊆ Ni+1/N ⊆ . . . ,

where
N1 ⊆ N2 ⊆ . . . ⊆ Ni ⊆ Ni+1 ⊆ . . .

is an ascending chain of submodules of M containing N . Since the latter chain must
stop, so must the former. The case in which M is Artinian can be handled similarly.

Now suppose both M and M/N are Noetherian. Let

L1 ⊆ L2 ⊆ . . . ⊆ Li ⊆ Li+1 ⊆ . . .

be an ascending chain of submodules of M . Consider the ascending chain

N ∩ L1 ⊆ N ∩ L2 ⊆ . . . ⊆ N ∩ Li ⊆ N ∩ Li+1 ⊆ . . .

of submodules of N and the ascending chain

(N + L1)/N ⊆ (N + L2)/N ⊆ . . . ⊆ (N + Li)/N ⊆ (N + Li+1)/N ⊆ . . .

of submodules of M/N . Since both N and M/N are Noetherian, there exist n,m ∈ N
such that

N ∩ Ln = N ∩ Ln+i for all i ∈ N0

and
N + Lm = N + Lm+j for all j ∈ N0.

Let k = max{n,m}. We claim that Lk = Lk+i for all i ∈ N0. We already know that
Lk ⊆ Lk+i. Let l ∈ Lk+i. Since

l ∈ Lk+i ⊆ N + Lk+i = N + Lk,

there exists a ∈ N and b ∈ Lk such that l = a+ b. Hence

a = l − b ∈ N ∩ Lk+i = N ∩ Lk,

so that both a and b lie in Lk and l = a + b ∈ Lk. Therefore Lk+i ⊆ Lk, and so
Lk = Lk+i for all i ∈ N0. The proof of the case when both N and M/N are Artinian
can be given in a similar way. �
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Corollary 2.7. Let R be a commutative ring, and let

0 −→ L
f−→M

g−→ N −→ 0
be a short exact sequence of R–modules and R–homomorphisms. Then the R–moduleM
is Noetherian (resp. Artinian) if and only if L and N are Noetherian (resp. Artinian).

Corollary 2.8. Let M1, . . . ,Mn be modules over a commutative ring R. Then the
direct sum ⊕n

i=1Mi is Noetherian (resp. Artinian) if and only if M1, . . . ,Mn are all
Noetherian (resp. Artinian).

Proof. The proof follows easily by induction on n (together with the above corol-
lary). �

Corollary 2.9. Let R be a commutative ring. If R is Noetherian (resp. Artinian),
then every finitely generated R–module is Noetherian (resp. Artinian).

Proof. If M is a finitely generated R–module, where R is a Noetherian (resp.
Artinian) ring, then it can viewed as a factor module of a finitely generated free R–
module. By Corollary 2.8, such a free module (and hence any of its factors) must be
Noetherian (resp. Artinian). This completes the proof. �

Lemma 2.10. Let M be module over a commutative ring R, and let m ∈M . Then
there is an isomorphism of R–modules

f : R/(0 : m) −→ Rm

such that f(r + (0 : m)) = rm for all r ∈ R. Furthermore, M is cyclic if and only if
M is isomorphic to an R–module of the form R/I for some ideal I of R.

Remark 2.11. Let M be a module over a commutative ring R, and let I be an
ideal of R such that I ⊆ ann(M). Then M is also an (R/I)–module and a subset of
M is an R–submodule of M if and only if it is an (R/I)–submodule of M . It follows
that M is Noetherian (reps. Artinian) as an R–module if and only if it is Noetherian
(resp. Artinian) as an (R/I)–module.

In particular, if I is an ideal of R, then R/I is Noetherian (resp. Artinian) as
R–module if and only if it is a Noetherian (resp. Artinian) ring.

Exercise 2.12. Let M be a module over a commutative ring R. Show that
(i) if M is a Noetherian R–module, then R/ ann(M) is a Noetherian ring, and
(ii) ifM is a finitelty generated Artinian R–module, then R/ ann(M) is an Artinian

ring.

Note that part (i) of the above exercise shows, in particular, that if one is going to
study Noetherian modules over commutative rings, then one might just study finitely
generated modules over commutative Noetherian rings becauseM is a finitely generated
module over R/ ann(M), as well, and a subset of M is an R–submodule of M if and
only if it is an (R/ ann(M))–submodule of M .

Exercise 2.13. (i) What can we say about Q? Is it Noetherian or Artinian as a
Z–module?

(ii) Answer the same question in (i) for Q/Z.
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Theorem 2.14. Let G be a module over a commutative ring R, and assume that G
is annihilated by the product of finitely many (not necessarily distinct) maximal ideals
of R, that is, there exist n ∈ N and maximal ideals M1, . . . ,Mn of R such that

M1 . . .MnG = 0.
Then G is a Noetherian R–module if and only if G is an Artinian R–module.

Proof. We use induction on n. Let n = 1. Then there exists a maximal ideal M
of R such that MG = 0. It follows that G is an R/M–space. By Proposition 2.4, G
is a Noetherian R/M–module if and only if it is an Artinian R/M–module. However;
the set of R–submodules of G is the same as the set of R/M–subspaces of G. This
gives that G is Noetherian (resp. Artinian) as R–module if and only if it is Noetherian
(resp. Artinian) as R/M–module. This completes the proof the proposition for n = 1.

Now, suppose that n > 1 and that the result has been proved for smaller values of
n. Since we can write (M1 . . .Mn−1)MnG = 0, by induction hypothesis, we obtain that
the R–module MnG is Noetherian if and only if it is Artinian. Also, since G/MnG is
annihilated by the maximal ideal Mn of R, one can conclude, by the above paragraph,
that G/Mn is a Noetherian R–module if and only if G/MnG is an Artinian R–module.
On the other hand, if we consider the natural short exact sequence

0 −→MnG −→ G −→ G/MnG −→ 0,
then we get that G is Noetherian if and only if MnG and G/MnG are Noetherian if
and only if MnG and G/MnG are Artinian (by above facts) if and only if G is Artinian
(by Corollary 2.7). This completes the proof. �

Remark 2.15. With the help of above theorem, we can find many examples of
modules which are both Noetherian and Artinian. Indeed, if G is a finitely generated
module over a commutative Noetherian ring R and M1, . . . ,Mn are maximal ideals of
R, then G and G/M1 . . .MnG are both Noetherian. Since G/M1 . . .MnG is annihi-
lated by the product M1 . . .Mn of maximal ideals, it is both Noetherian and Artinian.

Definition 2.16. Let G be a module over a commutative ring R. We say that G
is a simple R–module if G 6= 0 and the only submodules of G are 0 and G itself.

Lemma 2.17. Let G be a module over a commutative ring R. Then G is a simple
R–module if and only if G is isomorphic to an R–module of the form R/M for some
maximal ideal M of R.

Proof. Suppose first that G is simple. Then G is a cyclic R–module. Thus
G ∼= R/I for some ideal I of R . Since R/I is simple as an R–module, I must be a
maximal R–submodule (or, equivalently a maximal ideal) of R. Now, let I be maximal
ideal of R. Since R/I has exactly two ideals, namely 0 and R/I itself, the R–module
R/M has exactly two submodules, namely 0 and R/I. This completes the proof. �

Definition 2.18. Let G be a module over a commutative ring R. The length of a
strictly increasing chain

G0 ⊂ G1 ⊂ . . . ⊂ Gn−1 ⊂ Gn

of submodules of G is the number of links, that is, one less than the number of terms.
We consider

G0
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to be a chain of length 0.
A strictly increasing chain

G0 ⊂ G1 ⊂ . . . ⊂ Gn−1 ⊂ Gn

of submodules of G such that G0 = 0 and Gn = G is called a composition series for G
if Gi/Gi−1is a simple R–module for each i = 1, . . . , n.

By definition, a composition series of a module G is a strictly ascending chain of
submodules starting from 0 and ending in G which cannot be extended to a longer
strictly ascending chain by inserting an extra term.

Theorem 2.19. Let G be a module over a commutative ring R, and assume that
G has a composition series of length n. Then

(i) no strictly ascending chain of submodules of G of finite length with the first term
0 and last term G can have length greater than n,

(ii) every composition series for G has length exactly n, and
(iii) each strictly ascending chain of submodules of G of length n′ ≤ n with the first

term 0 and last term G can be extended to a composition series for G by insertion of
n− n′ additional terms; in particular,

(iv) each strictly ascending chain of submodules of G of length n with the first term
0 and last term G is a composition series for G.

Proof. Clearly we can assume that n > 0. For each R–module M with a compo-
sition series, we denote the smallest length of a composition series for M by `(M). We
set `(M) =∞ if M does not have a composition series. We shall first show that if H
is a proper submodule of G, than `(H) < `(G).

Let `(G) = t and let
0 = G0 ⊂ G1 ⊂ . . . ⊂ Gt−1 ⊂ Gt = G

gives us a composition series for G of length t. We set Hi := H∩Gi for each i = 1, . . . , t.
Then by the First Isomorphism Theorem, for each i = 1, . . . , t, the composite R–
homomorphism

Hi = H ∩Gi
i−→ Gi

π−→ Gi/Gi−1,

where i is the inclusion map and π is the canonical epimorphism, has kernel equal to
H ∩Gi ∩Gi−1 = Hi−1 and so induces an R–monomorphism

ψi : Hi/Hi−1 −→ Gi/Gi−1

h+Hi−1 7−→ h+Gi−1.

Thus Hi/Hi−1 is isomorphic to a submodule of Gi/Gi−1. Since Gi/Gi−1 is a simple
R–module, Hi/Hi−1 is either 0 or simple. Also, Hi/Hi−1 is a simple module if and only
if ψi is an isomorphism. Thus, if we remove any repetitions of terms in

0 = H0 ⊆ H1 ⊆ . . . ⊆ Ht = H ∩Gt = H,

we obtain a composition series for H. Thus `(H) ≤ `(G). Furthermore, we must have
`(H) < `(G), for otherwise the above process must lead to

H0 ⊂ H1 ⊂ . . . ⊂ Ht−1 ⊂ Ht
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as a composition series for H, so that Hi/Hi ∩Gi−1 = Hi/Hi−1 6= 0 for all i = 1, . . . , t.
Since H0 = 0 = G0, it would then follow successively that

H1 = G1, H2 = G2, . . . , Ht = Gt,

contradicting the fact that H ⊂ G. Thus we have shown that `(H) < `(G), as claimed.
Note also that we have shown that every submodule of G has a composition series.

(i) Now let
G′0 ⊂ G′1 ⊂ . . . ⊂ G′r−1 ⊂ G′r

be a strictly ascending chain of submodules of G such that G′0 = 0 and G′r = G. Now
`(0) = 0, and so it follows from the receding paragraph that

0 = `(G′0) < `(G′1) < . . . < `(G′r−1) < `(G′r) = `(G).

Hence r ≤ `(G) ≤ n. Therefore, since G has a composition series of length n and a
composition series for G is, in particular, a strictly ascending chain of submodules of
G with the first term 0 and last term G, we must have, by above, n ≤ `(G), so that
n = `(G).

(ii) Now suppose that G has a composition series of length n1. Then n1 ≤ `(G) = n
by part (i) because a composition series is a strictly ascending chain from 0 to G. Also,
we have `(G) ≤ n1 by definition of `(G).

(iii) and (iv) A strictly ascending chain from 0 to G of length n′ < n = `(G) cannot
be a composition series for G because, by part (ii), all composition series for G have
length n, and so it can be extended to a strictly ascending chain of length n′+1 by the
insertion of an extra term; on the other hand, a strictly ascending chain of submodules
of G from 0 to G of length n must already be a composition series for G because
otherwise it could be extended to a strictly ascending chain of submodules of length
n+ 1, contrary to part (i). �

Definition 2.20. Let G be a module over a commutative ring R. We say that G
has finite length if G has a composition series. When this is the case, the length of G,
denoted by `(G), is defined to be the length of any composition series for G.

When G does not have finite length, that is, when G has no composition series, we
write `(G) =∞.

Proposition 2.21. Let G be a module over a commutative ring R. Then G has
finite length if and only if G is both Noetherian and Artinian.

Proof. (⇒): Assume that G has finite length n. Then by Theorem 2.19, any
strictly ascending chain must have length at most n. Thus any strictly ascending chain
must be stationary, so that G is Noetherian. Similarly, any strictly descending chain
of submodules of G is stationary, and so G is also Artinian.

(⇐): Assume that G is both Noetherian and Artinian. Set

Φ := {H ≤ G : `(H) <∞}.

Since 0 ∈ Φ, Φ 6= ∅. It follows that Φ has a maximal elements, say H because G is
Noetherian (or, in other words, any non–empty set of submodules of G has a maximal
member with respect to inclusion). We shall show that H = G. Suppose, on the
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contrary, that H is a proper submodule of G. Since H ∈ Φ, H has a composition
series. Let `(H) = n and suppose that

0 = H0 ⊂ H1 ⊂ . . . ⊂ Hn = H

is a composition series for H. The fact that G is Artinian implies that G/H is an
Artinian (non–zero) R–module by Proposition 2.6. It follows that G/H has a simple
submodule, say H ′/H. Then

0 = H0 ⊂ H1 ⊂ . . . ⊂ Hn ⊂ H ′

is a composition series for H ′, which contradicts the maximality of H. Therefore
H = G, and hence `(G) <∞. �

Definition 2.22. Let G be a module over a commutative ring R, and suppose that
G has finite length. Let

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gn−1 ⊂ Gn = G

be a composition series for G (so that `(G) = n). Then the set {Gi/Gi−1 : i = 1, . . . , n}
of simple R–modules is called the set of composition factors of the above composition
series. Note that this set is empty if G = 0.

Now assume that G 6= 0 and that

0 = G′0 ⊂ G′1 ⊂ . . . ⊂ G′n−1 ⊂ G′n = G

is another composition series for G. We say that two composition series for G are
isomorphic if there exists a permutation σ of the set {1, . . . , n} of the first n positive
integers such that, for all i = 1, . . . , n,

Gi/Gi−1 ∼= G′σ(i)/G
′
σ(i)−1.

One useful way of interpreting simplicity of a factor module is by the concept of
maximal submodules. For a module G and a submodule H of G, we say that H is a
maximal submodule of G if H 6= G and there is no submodule of G that lies properly
between H and G. Notice that the quotient module G/H is simple if and only if H is
a maximal submodule of G.

Lemma 2.23. Let G be a module over a commutative ring R, and let H,H ′ be
submodules of G such that H 6= H ′ and both G/H and G′/H ′ are simple. Then

G/H ∼= H ′/(H ∩H ′) and G/H ∼= H/(H ∩H ′).

Proof. Suppose that H = H +H ′. Then we have H ′ ⊆ H. Since G/H ′ is simple,
H ′ is a maximal submodule of G. Also since G/H is simple, H 6= G, and hence, by
maximality of H ′, H = H ′, a contradiction. Now, by the Third Isomorphism Theorem
for modules, it suffices to show that H +H ′ = G. However, this follows easily because
H ⊂ H +H ′ and H is a maximal submodule of G. �

Theorem 2.24 (The Jordan–Hölder Theorem). Let G be a nonzero module of finite
length over a commutative ring R. Then every pair of composition series for G are
isomorphic.
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Proof. Since G 6= 0, we have n := `(G) ≥ 1. We use induction on n. The claim
is clear when n = 1, and so we assume that n > 1 and that the result has been proved
for smaller values of n. Let

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gn−1 ⊂ Gn = G

and
0 = G′0 ⊂ G′1 ⊂ . . . ⊂ G′n−1 ⊂ G′n = G

be two composition series for G. We first assume that Gn−1 = G′n−1. Then we have
Gn/Gn−1 = G′n/G

′
n−1

and both
G0 ⊂ G1 ⊂ . . . ⊂ Gn−1

and
G′0 ⊂ G′1 ⊂ . . . ⊂ G′n−1

are composition series for Gn−1 = G′n−1. Since `(Gn−1) = n − 1, we can apply the
inductive hypothesis to these two composition series for Gn−1 and the desired result in
this case follows easily.

Now, assume that Gn−1 6= G′n−1. We set H := Gn−1∩G′n−1. Then, by above lemma,
we have the isomorphisms

Gn/Gn−1 ∼= G′n−1/H and G′n/G
′
n−1
∼= Gn−1/H,

so that four of these modules are simple. Thus, if H = 0 (so that both Gn−1 and G′n−1
are simple and n = 2), the desired conclusion has been obtained. Thus we assume that
H 6= 0.

In this case,
0 ⊂ H ⊂ Gn−1 ⊂ Gn

is a strictly ascending chain of submodules of G, and both Gn/Gn−1 and Gn−1/H are
simple. Now, by Theorem 2.19 (iii), the above chain can be extended to a composition
series for G. Also we have `(H) = n− 2. In particular, we obtain a composition series

0 = H0 ⊂ H1 ⊂ . . . ⊂ Hn−3 ⊂ Hn−2 = H

for H. Now the two composition series
H0 ⊂ H1 ⊂ . . . ⊂ Hn−3 ⊂ Hn−2 ⊂ Gn−1 ⊂ Gn

and
H0 ⊂ H1 ⊂ . . . ⊂ Hn−3 ⊂ Hn−2 ⊂ G′n−1 ⊂ G′n

for G are isomorphic. But we can use the inductive hypothesis (on two composition
series for Gn−1) to see that the two composition series

G0 ⊂ G1 ⊂ . . . ⊂ Gn−1 ⊂ Gn

and
H0 ⊂ H1 ⊂ . . . ⊂ Hn−3 ⊂ Hn−2 ⊂ Gn−1 ⊂ Gn

for G are isomorphic. Similarly, the composition series
H0 ⊂ H1 ⊂ . . . ⊂ Hn−3 ⊂ Hn−2 ⊂ G′n−1 ⊂ G′n

and
G′0 ⊂ G′1 ⊂ . . . ⊂ G′n−1 ⊂ G′n
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are isomorphic, and so we can complete the inductive step.
The theorem is therefore proved by induction. �

Remark 2.25. Let M and M ′ be two isomorphic modules over a commutative ring
R. Since submodules of M and M ′ lie in one-to-one correspondence which preserves
inclusion, it is clear that M is Noetherian (resp., Artinian) if and only if M ′ is Noe-
therian (resp. Artinian). It follows that M has finite length if and only if M ′ has finite
length, in which case `(M) = `(M ′).

Proposition 2.26. Let R be a commutative ring, and let

0 −→ L
f−→M

g−→ N −→ 0
be a short exact sequence of R–modules and R–homomorphisms. Then M has finite
length if and only if L and N both have finite length. Moreover; if L, M , N all have
finite length, then

`(M) = `(L) + `(N).

Proof. Notice that the R–module M has finite length if and only if it is both
Noetherian and Artinian; this is the case if and only if L and N are both Noetherian
and Artinian; and this is the case if and only if both L and N have finite length.

For the rest of the proposition, we note that L ∼= Im f = ker g, and that by
the First Isomorphism Theorem for modules, we also have M/ ker g ∼= N . Thus, by
above remark, ker g and M/ ker g have finite length, and `(L) = `(ker g) and `(N) =
`(M/ ker g). It is thus sufficient to show that if G is a submodule of the R–module M ,
where M has finite length, then `(M) = `(G) + `(M/G). This equation is valid for
G = 0 or G = M . So assume that G 6= 0 and G 6= M . Then the strictly ascending
chain

0 ⊂ G ⊂M

of submodules of M can be extended to a composition series for M , say
0 = M0 ⊂M1 ⊂ . . . ⊂Mn−1 ⊂Mn = M,

(where we assume that `(M) = n). Suppose that Mt = G. Then
M0 ⊂M1 ⊂ . . . ⊂Mt

is a composition series for G, and it follows that
Mt/G ⊂Mt+1/G ⊂ . . . ⊂Mn/G

is a composition series for M/G. Hence `(G) + `(M/G) = t + (n− t) = n = `(M), as
required. �

Proposition 2.27. Let V be a vector space over a field K. Then V is a finite-
dimensional K–space if and only if it is a K–module of finite length, and when this is
the case, dimK V = `(V ).

Proof. We know, from Proposition 2.4, that V is finite-dimensional if and only
V satisfies either ascending or descending (and hence, both) chain conditions as a K–
module. This established the first part of the proposition. For the second part we
assume that dimK(V ) = n, argue by induction on n. When n = 0, we have V = 0, and
there is nothing to prove. When n = 1, the only subspaces of V are 0 and V itself, and



44 Ch. 2 : Chain Conditions

so 0 ⊂ V is a composition series for the K–module V , so that `(V ) = 1. We therefore
suppose that n > 1 and that the result has been proved for smaller values of n.

Let v ∈ V with v 6= 0. Set U = Kv. Now since dimK(U) = 1 and dimK(V ) =
dimK(U) + dimK(V/U), we must have dimK(V/U) = n − 1, and so by the inductive
hypothesis, `(U) = 1 and `(V/U) = n− 1. This gives, by Proposition 2.26, that

`(V ) = `(U) + `(V/U) = 1 + n− 1 = n,

and so the inductive step is complete.
This completes the proof. �

Exercise 2.28. Let
0 −→ Gn

dn−→ Gn−1 −→ · · · −→ Gi
di−→ Gi−1 −→ · · · −→ G1

d1−→ G0 −→ 0
be an exact sequence of modules and homomorphisms over a commutative ring R
(where n ∈ N and n > 1), and suppose that Gi has finite length for all i = 1, . . . , n−1.
Show that G0 and Gn have finite length, and that

n∑
i=0

(−1)i`(Gi) = 0.

Exercise 2.29. Let G be a module over a non-trivial commutative ring Noetherian
ring R. Show that G has a finite length if and only if G is finitely generated and there
exist n ∈ N and maximal ideals M1, . . . ,Mn of R (not necessarily distinct) such that

M1 . . .MnG = 0.

Exercise 2.30. Let R be a PID which is not a field. Let G be an R–module. Show
that G has finite length if and only if G is finitely generated and there exists r ∈ R
with r 6= 0 such that rG = 0.



CHAPTER 3

Primary Decomposition Theory

We start this section with a quotation from [5]. “The decomposition of an integer
into the product of powers of primes has an analogue in rings where prime integers
are replaced by prime ideals but, rather surprisingly, powers of prime integers are not
replaced by powers of prime ideals but rather by primary ideals. Primary ideals were
introduced in 1905 by Lasker in the context of polynomial rings. (Lasker was World
Chess Champion from 1894 to 1921.) Lasker proved the existence of a decomposition
of an ideal into primary ideals but the uniqueness properties of the decomposition were
not proved until 1915 by Macaulay.”

Let’s begin our discussion with a principal ideal domain R which is not a field. Let
I be a nonzero proper ideal of R. Then there is a nonzero, non-unit element a ∈ R such
that I = (a). Since R is, at the same time, a unique factorization domain, there exist
irreducible elements p1, . . . , pm of R, a unit u in R, and positive integers k1, . . . , km
such that a = upk1

1 . . . pkmm . It follows that we may write

I = Ra =
m∏
i=1

Rpkii .

Since
√
Rpkii = Rpi for each 1 ≤ i ≤ m, by Exercise 1.53; and since Rp1, . . . , Rpm

are pairwise comaximal, Rpk1
1 , . . . , Rp

km
m are pairwise comaximal, by Exercise 1.27 (iv).

This shows that
I = Ra = Rpk1

1 ∩ . . . ∩Rpkmm .

It follows that I can be written as an intersection of ideals which are powers of maximal
ideals; and, as we shall see, any positive power of a maximal ideal is what we call a
primary ideal. Such an expression of I as an intersection of primary ideals is called a
primary decomposition of I.

3.1. Primary Submodules and Primary Ideals

Definition 3.1. Let M be a nonzero module over a commutative ring R, and let
Q be a submodule of M. We say that Q is a primary submodule of M if it is a proper
submodule of M (i.e., Q 6= M) and whenever rm ∈ Q for some r ∈ R and m ∈ M ,
then either m ∈ Q or rnM ⊆ Q for some n ∈ N (i.e., r ∈

√
(Q : M)).

An ideal Q of R is called a primary ideal of R if it is a primary submodule of R
when regarded as a submodule of R in the natural way.

Proposition 3.2. Let R be a commutative ring. Then the following statements
hold:

(i) The following conditions are equivalent for a proper ideal Q of R:
(a) Q is a primary ideal of R;

45
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(b) ab ∈ Q for some a, b ∈ R and a /∈ Q implies bn ∈ Q for some n ∈ N (i.e.,
b ∈
√
Q).
(c) every zero-divisor in R/Q is nilpotent.

(ii) Every prime ideal of R is also a primary ideal of R.
Proof. Note that (Q : R) = Q. Now the assertion follows easily from the defini-

tions above. �

Lemma 3.3. Let M be a nonzero module over a commutative ring R, and let Q be
a submodule of M . If Q is a primary submodule of M , then (Q : M) is a primary ideal
of R.

Proof. Let ab ∈ (Q : M) with a, b ∈ R and a /∈ (Q : M). Then there exists
m ∈ M such that am /∈ Q. Also, we have b(am) = (ab)m ∈ Q, which implies, by
definition, that there exists n ∈ N such that bnM ⊆ Q, that is, bn ∈ (Q : M). This
completes the proof. �

Lemma 3.4. If Q is a primary ideal of a commutative ring R, then P :=
√
Q, the

radical of Q, is a prime ideal of R. Moreover, P is the only minimal prime ideal of Q,
that is, every prime ideal of R containing Q must contain P .

Proof. Let Q be a primary ideal of R and let ab ∈
√
Q with a, b ∈ R and a /∈

√
Q.

Then there exists a positive integer n such that anbn = (ab)n ∈ Q. Since a /∈
√
Q,

we have an /∈ Q. It follow that bn ∈
√
Q, and so b ∈

√
Q. By Proposition 3.2, this

establishes the first part of the lemma.
Now if P ′ is a prime ideal of R containing Q, then P =

√
P ⊇

√
Q = P . This

completes the proof. �

Remark 3.5. (i) Let M be a nonzero module over a commutative ring R and let
Q be a primary submodule. If we use Lemmas 3.3 and 3.4 together, we conclude that
P :=

√
(Q : M) is a prime ideal of R. In this case, we say that Q is a P–primary

submodule of M . We shall find this way of labeling a primary ideal very useful later.
(ii) As with primary submodules, we can also label primary ideals with their radi-

cals. By Lemma 3.4, the radical P :=
√
Q of a primary ideal Q of R is a prime ideal of

R, in which case we say that Q is a P–primary ideal of R. The reader should not be
misled into thinking that every ideal with prime radical is primary (see the example
below).

Example 3.6. Let K be a field, and let
R = K[X1, X2, X3]/(X1X3 −X2

2 ),
where X1, X2, and X3 are indeterminates. For each i = 1, 2, 3, let xi denote the natural
image of Xi in R. We know from Exercise 1.31 that the ideal (X1, X2) of R[X1, X2]
generated by X1 and X2 is a maximal ideal. Then, by Exercise 1.46, its extension to
K[X1, X2][X3] = K[X1, X2, X3] is a prime ideal, and this extension is also generated
by X1 and X2 by Exercise 1.30. Now, in K[X1, X2, X3], we have

(X1, X2) ⊇ (X1X3 −X2
2 ).

This gives that
P := (x1, x2) = (X1, X2)/(X1X3 −X2

2 ) ∈ Spec(R).
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We show now that P 2 is not primary. Note that, by Exercise 1.53,
√
P 2 = P . Now

x1x3 = x2
2 ∈ P 2. However, we have x1 /∈ P 2 and x3 /∈ P =

√
P 2, and so P 2 is not

primary. The claim that x1 /∈ P 2 is proved as follows. If this were not the case, then
we should have

X1 = X2
1f1 +X1X2f2 +X2

2f3 + (X1X3 −X2
2 )f4

for some fi ∈ K[X1, X2, X3] (i = 1, 2, 3, 4). But this is not possible since every term
which appears in the right-hand side of the above equation has degree at least 2.
Simiarly, if we had x3 ∈ P , then we should have

X3 = X1g1 +X2g2 + (X1X3 −X2
2 )g3

for some gi ∈ K[X1, X2, X3] (i = 1, 2, 3), and we can obtain a contradiction by evalu-
ating X1, X2, X3 at 0, 0, X3.

This example also shows that every positive power of a prime ideal need not be
primary.

Proposition 3.7. Let M be a nonzero module over a commutative ring R, let Q
be a proper submodule of M , and let P be a prime ideal of R. Then show that Q is a
P–primary submodule of M if and only if

(i) P ⊆
√

(Q : M), and
(ii) whenever rm ∈ Q with r ∈ R and m ∈M \ Q, then r ∈ P .
Proof. Straightforward. �

Exercise 3.8. Let f : M → M ′ be a homomorphism of nonzero R–modules over
a commutative ring R, and let P ∈ Spec(R).

(i) Prove that if Q′ is a P–primary submodule of M ′ such that f−1(Q′) 6= M , then
f−1(Q′) is a P–primary submodule of M .

(ii) Suppose that f is surjective and that Q is a submodule of M containing ker f .
Then show that Q is a P–primary submodule of M if and only if f(Q) is a P–primary
submodule of M ′.

(iii) Let N be a submodule of M , and let Q be a submodule of M containing N .
Then show that Q is a P–primary submodule of M if and ony if Q/N is a P–primary
submodule of M/N .

As an immediate consequence of the above exercise, we may conclude that if f :
R → R′ is a ring homomorphism, then for any prime ideal P ′ of R′ and P ′–primary
ideal Q′ of R′, Q′c is a P ′c–primary ideal of R (where the contraction notation is used
in conjunction with f); and also that, for ideals I,Q of a commutative ring R such
that I ⊆ Q, Q is a primary ideal of R if and only if Q/I is a primary ideal of R/I.

Exercise 3.9. (i)Let ϕ : R→ R′ be an epimorphism of commutative rings, let M
be a nonzero R′–module, and let Q be an R′–submodule of M . Then show that Q is
a primary submodule of the R′–module M if and only if it is a primary submodule of
M as an R–module (induced by restriction of scalars). Show also that if Q, considered
as R′–submodule, is P ′-primary, then it is ϕ−1(P ′)–primary when considered as an
R–submodule of M .

(ii) Let M be a module over a commutative ring R, and let I be an ideal of R
contained in annR(M). Prove that Q is a P–primary submodule of M considered as
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R–module if and only if P ⊇ ann(M) and Q is a (P/I)–primary submodule of M
considered as (R/I)–module.

Proposition 3.10. Let Q be a submodule of a nonzero module M over a commuta-
tive ring R and let

√
(Q : M) = M be a maximal ideal of R. Then Q is an M–primary

submodule of M .
Consequently, MnM is M–primary for every n ≥ 1 for which MnM 6= M .

Proof. Since (Q : M) ⊆
√

(Q : M) = M ⊂ R, it is clear that Q is proper. Let
r ∈ R and m ∈ Mbe such that rm ∈ Q but r /∈

√
(Q : M). Since

√
(Q : M) = M is

maximal and r /∈M, we must have
√

(Q : M) +
√
Rr = R, so that (Q : M) +Rr = R,

by Exercise 1.27 (iv). It follows that
Rm = (Q : M)m+Rrm ⊆ Q

since rm ∈ Q. This gives that m ∈ Q, and hence Q is M–primary.
The last claim is now immediate because

M =
√
Mn ⊆

√
(MnM : M)

for all n ∈ N and
√

(MnM : M) 6= R if MnM 6= M . �

Corollary 3.11. Let Q be an ideal of a commutative ring R, and let
√
Q = M be

a maximal ideal of R. Then Q is an M–primary ideal of R.

Example 3.12. Let R be a PID which is not a field. Since 0 ∈ Spec(R), 0 is a
primary ideal of R. Also, since for any irreducible element p of R, Rp is a maximal
ideal and

√
Rpn =

√
(Rp)n = Rp, by Proposition 3.10, Rpn is a primary ideal of R for

all n ∈ N. On the other hand, a nonzero primary ideal of R must be of the form Ra
for some nonzero a ∈ R, and a cannot be a unit since a primary ideal is proper. Since
R is a UFD, we may express a as a product of irreducible elements of R. If a were
divisible by two irreducible elements p, q ∈ R which are not associates (i.e. Rp 6= Rq),
then they would be both minimal prime ideals of Ra, which contradicts with Lemma
3.4. It follows that Ra is generated by a positive power of some irreducible element of
R. Therefore, the set of all primary ideals of R is

{0} ∪ {Rpn : p is an irreducible element of R, n ∈ N}.

As the following example shows, not every M–primary ideal, where M is a maximal
ideal of a commutative ring R, has to be a power of M.

Example 3.13. Let K be a field and let R denote the ring K[X, Y ] of polynomials
over K in the indeterminates X, Y . Let M = RX +RY , a maximal ideal of R. Then,
by Proposition 3.10, (X, Y 2) is an M–primary ideal of R since

M2 = (X2, XY, Y 2) ⊆ (X, Y 2) ⊆ (X, Y ) = M,

which implies that
M =

√
M2 ⊆

√
(X, Y 2) ⊆

√
M = M,

or equivalently √
(X, Y 2) = M.
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Furthermore, (X, Y 2) is not a positive power of a prime ideal P of R, because, if it
were, we should have to have P = M, and since the powers of M form a descending
chain

M ⊇M2 ⊇ . . . ⊇Mi ⊇Mi+1 ⊇ . . . ,

we should have to have (X, Y 2) = M or M2; neither of these is correct because X /∈
M2,while Y /∈ (X, Y 2).

Exercise 3.14. Generalize Proposition 3.10 by showing that for a nonzero module
M over a commutative ring R and a submodule N of M , if

√
(N : M) is a maximal

ideal of R, then N is a primary submodule of M .
Although its proof is routine, the following lemma is surprisingly useful when we

consider intersections of finite number of primary submodules (that we shall call pri-
mary decompositions). So, we omit the proof of the following lemma.

Lemma 3.15. Let M be a nonzero module over a commutative ring R, P a prime
ideal of R, and {Q1, . . . ,Qn} a set of P–primary submodules of M . Then the inter-
section Q1 ∩ . . . ∩Qn is also a P–primary submodule of M .

3.2. Primary Decompositions

Now, we can go into details of what we mention at the begining of this chapter,
primary decompositions. We shall see that if a submodule (or, in particular, an ideal)
is expressed as an intersection of primary submodules (or, primary ideals), then there
is a minimal one, in some sense, among all such intersections in which certain terms
and prime ideals associated to those terms are uniquely determined. We start with
definitions of some required concepts.

Definition 3.16. Let M be a nonzero module over a commutative ring R, and let
N be a submodule of M . A primary decomposition of N in M is an expression for N
as an intersection of primary submodules of M , in which case we say that N possesses
a primary decomposition, or simply, N is a decomposable submodule of M . On taking
M = R, we are led to the notions of primary decomposition of ideals and decomposable
ideals.

A primary decomposition

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n
of N (and it is to be understood that Qi is Pi–primary for all i = 1, . . . , n whenever
we use this type of terminology) is said to be a minimal primary decomposition of N if

(i) P1, . . . , Pn are distinct prime ideals of R, and
(ii) for all j = 1, . . . , n, we have

Qj +
n⋂
i=1
i 6=j

Qi,

or equivalently, for all j = 1, . . . , n, we have

I 6=
n⋂
i=1
i 6=j

Qi
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(i.e., Qi is not redundant for each i = 1, . . . , n and is needed in the decomposition). If
we take M = R, then we obtain the definition of minimal primary decomposition of
an ideal.

Remark 3.17. Let N be a decomposable submodule of a nonzero module M over
a commutative ring R, and let

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n

be a primary decompostion of N .
If for 1 ≤ i 6= j ≤ n, Pi = Pj = P , then by Lemma 3.15, Qi ∩ Qj is a P–primary

submodule of M . If we delete both Qi and Qj in the decomposition and write Qi ∩Qj
instead, we obtain a primary decomposition of N of n − 1 terms. Lemma 3.15 can
be applied repeatedly in this way to obtain a primary decomposition of N in which√

(Q : M) for primary terms Q in the decomposition are all distinct.
We can also refine our primary decomposition by eliminating redundant primary

terms inductively. For example if Q1 is irredundant, that is, if

Q1 ⊇
n⋂
i=2
Qi,

then deleting Q1 does not alter the intersection. Continuing in this way we can elimi-
nate all reduntant terms and obtain a primary decomposition of N in which no primary
term is redundant.

It follows that if we start with a primary decomposition of N , we can use processes
described above and come up with a minimal primary decomposition of N . This shows
that every decomposable submodule possesses a minimal primary decomposition.

Note also that all above discussions can be adapted for decomposable ideals so that
we can conclude that every decomposable ideal has a minimal primary decomposition.
More precisely, every primary decomposition of a decomposable ideal can be restricted
to a minimal one.

Lemma 3.18. Let M be a nonzero module over a commutative ring R, let P be
a prime ideal of R, and let Q be a P–primary submodule of M . Then the following
statements hold for an element m ∈M .

(i) If m ∈ Q, then (Q :R m) = R.
(ii) If m /∈ Q, then (Q :R m) is a P–primary ideal of R.

Proof. (i) : Obvious.
(ii) : Let m /∈ Q. Then, clearly, (Q :R m) 6= R. We shall first show that√

(Q :R m) = P . To see this let r ∈ (Q :R m). Then rm ∈ Q. Since Q is P–primary
andm /∈ Q, we have r ∈ P . Thus (Q :R m) ⊆ P . Now let p ∈ P . Since P =

√
(Q : M),

there exists a positive integer n such that pnM ⊆ Q. It follows that pnm ∈ Q, or equiv-
alently, p ∈

√
(Q :R m). This establishes the equality

√
(Q :R m) = P .

Now let rs ∈ (Q :R m) for some r, s ∈ R with s /∈ (Q :R m). Then r(sm) = (rs)m ∈
Q where sm /∈ Q, and since Q is a P–primary submodule of M , we must have r ∈ P .
It follows that (Q :R m) is a P–primary ideal of R. �
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Lemma 3.19. Let M be a nonzero module over a commutative ring R, let P be a
prime ideal of R, and let N be a decomposable submodule of M . Suppose that

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n
is a minimal primary decomposition of N in M . Then the following statements are
equivalent:

(i) P = Pj for some j = 1, . . . , n;
(ii) (N :R m) is a P–primary submodule of M for some m ∈M ;
(iii)

√
(N :R m) = P for some m ∈M .

Proof. (i) ⇒ (ii) : Let P = Pi for some i = 1, . . . , n. Since the given primary
decomposition N = ⋂n

i=1Qi is minimal, we may find an element

mj ∈
(

n⋂
i=1
i 6=j

Qi
)
\ Qj.

Then using Exercise 1.59 (i) together with Lemma 3.18 gives that

(N :R m) =
( n⋂
i=1
Qi :R mj

)
=

n⋂
i=1

(Qi :R mj) = (Qj :R mj)

is a Pj–primary ideal of R.
(ii)⇒ (iii) : Straightforward.
(iii)⇒ (i) : Suppose that

√
(N :R m) = P for some m ∈ M . By Exercise 1.59, we

may write

(N :R m) =
( n⋂
i=1
Qi :R m

)
=

n⋂
i=1

(Qi :R m).

If m ∈ Qi for all i = 1, . . . , n, then m ∈ N , and so (N :R m) = R, which contradicts
with

√
(N :R m) = P . Then the subset {i : m /∈ Qi} of the set {1, . . . , n} is nonempty.

On the other hand, we may write, with the help of Exercise 1.27 and Lemma 3.18,

P =
√

(N :R m) =
n⋂
i=1

√
(Qi :R m) =

n⋂
i=1
m/∈Qi

(Qi :R m) =
n⋂
i=1
m/∈Qi

Pi,

which implies, by Corollary 1.52, that P = Pj for some j = 1, . . . , n for which m /∈
Qj. �

Corollary 3.20 (The First Uniqueness Thoerem For Primary Decompositions).
Let M be a nonzero module over a commutative ring R, and let N be a decomposable
submodule of M . Suppose that

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n
and

N = Q′1 ∩ . . . ∩Q′m with
√

(Q′i : M) = P ′i for all i = 1, . . . ,m
are two minimal primary decompositions of N in M . Then n = m and {P1, . . . , Pn} =
{P ′1, . . . , P ′n}.
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Proof. By Lemma 3.19, if P ∈ {P1, . . . , Pn}, then
√

(N :R m) = P for some
m ∈ M . By the same lemma, using the second minimal primary decomposition of N ,
we obtain P ∈ {P ′1, . . . , P ′m}. This gives that {P 1, . . . , Pn} ⊆ {P ′1, . . . , P ′m}. Similary,
one can see the reverse inclusion, which completes the proof. �

Remark 3.21. Let R be a commutative ring, and let I be a decomposable ideal of
R with two minimal pirimary decomposition

I = Q1 ∩ . . . ∩Qn with
√
Qi = Pi for all i = 1, . . . , n

and
I = Q′1 ∩ . . . ∩Q′m with

√
Q′i = P ′i for all i = 1, . . . ,m.

Since these are also minimal primary decompositions of I when considered as a submod-
ule of R, by The First Uniqueness Theorem, given above, n = m and {P1, . . . , Pn} =
{P ′1, . . . , P ′m}. It follows that the number of primary terms as well as prime ideals
associated to these primary terms are independent of the choice of the primary decom-
position of I. This observation leads us to the following definition.

Definition 3.22. Let R be a commutative ring, and let I be a decomposable ideal
of R with a minimal primary decomposition

I = Q1 ∩ . . . ∩Qn with
√
Qi = Pi for all i = 1, . . . , n.

Then the set {P1, . . . , Pn} of prime ideals of R is called the associated prime ideals of
I and denoted by assR(I).

Exercise 3.23. Let f : R→ S be a homomorphism of commutative rings, and use
the contraction notation in conjunction with f . Let I̊ be a decomposable ideal of S.

(i) Let

I̊ = Q̊1 ∩ . . . ∩ Q̊n with
√
Q̊i = P̊i for all i = 1, . . . , n

be a primary decomposition of I̊. Show that

I̊c = Q̊c
1 ∩ . . . ∩ Q̊c

n with
√
Q̊c
i = P̊ c

i for all i = 1, . . . , n

is a primary decomposition of I̊. Deduce that I̊c is a decomposable ideal of R and that

assR(I̊c) ⊆ {P̊ : P̊ ∈ assS(I̊)}.
(ii) Now suppose that f is surjective. Show that if the first primary decomposition

in (i) is minimal, then so is the second.

Exercise 3.24. Let f : R→ S be a homomorphism of commutative rings, and use
the extension notation in conjunction with f . Let I,Q1, . . . , Qn, P1, . . . , Pn be ideals of
R all of which contain ker f . Show that

I = Q1 ∩ . . . ∩Qn with
√
Qi = Pi for all i = 1, . . . , n

is a primary decomposition of I if and ony if

Ie = Qe
1 ∩ . . . ∩Qe

n with
√
Qe
i = P e

i for all i = 1, . . . , n
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is a primary decomposition of Ie, and that the first of these primary decompositions
is minimal if and only if the second is. Deduce that I is a decomposable ideal of R if
and only if Ie is a decomposable ideal of S, and when this is the case,

assR(Ie) = {P e : P ∈ assR(I)}.

Corollary 3.25. Let M be a nonzero module over a commutative ring R, and let
N , L be proper submodules ofM such that N ⊇ L. For a submodule U ofM containing
L, denote the submodule U/L of M/L by U . Show that

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n
is a primary decomposittion of N in M if and only if Let M be a nonzero module over
a commutative ring R, and let N be a decomposable submodule of M . Suppose that

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n
is a primary decomposition of N/L in M/L, and that one of these primary decompo-
sitions is minimal if and only if the other is.

Proposition 3.26. Let I be an ideal of a commutative ring R, and let P be a prime
ideal of R. Then P is a minimal prime ideal of I (by means of 1.48) if and only if
P ∈ assR(I) and P is minimal in assR(I) with respect to the inclusion relation.

In particular, any decompoable ideal has a finite number of minimal prime ideals.
Also, if P1 ∈ Spec(R) is such that P1 ⊇ I, then P1 ⊇ P2 for some P2 ∈ assR(I).

Proof. Let
I = Q1 ∩ . . . ∩Qn with

√
Qi = Pi for all i = 1, . . . , n

be a minimal primary decomposition of I. If P is a prime ideal of R such that P ⊇ I,
then we have

P ⊇
√
I =

n⋂
i=1

√
Qi =

n⋂
i=1

Pi,

by Lemma 1.27 and Corollary 1.45. This gives, by Lemma 1.51, that P ⊇ Pj for some
j = 1, . . . , n. This establishes the last statement of the proposition.

Now, we shall prove the equivalence asserted in the first part of the proposition.
(⇒): Let P be a minimal prime ideal of I. Then, by above paragraph, there exists

P ′ ∈ assR(I) such that P ⊇ P ′. However, since assR(I) ⊆ Var(I), we must have
P = P ′, which is also the minimal member of assR(I) with respect to the inclusion
relation.

(⇐): Let P be a minimal element of assR(I) w.r.t. inclusion. Then P ⊇ I, and
so, by Theorem 1.49, P ⊇ P ′ for some P ′ ∈ Min(I). On the other hand, by the first
paragraph of the proof, there exists P ′′ ∈ assR(I) such that P ′ ⊇ P ′′. But in this case,
we have

P ⊇ P ′ ⊇ P ′′,

which implies that P = P ′ = P ′′ since P is a minimal member of assR(I). It follows
that P = P ′ ∈ Min(I).

The proof is complete since Min(I) ⊆ assR(I) and assR(I) is finite when I is de-
composable. �
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Definition 3.27. Let M be a nonzero module over a commutative ring R, and let
N be a decomposable submodule of M . Also let

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n
be a minimal primary decomposition of N in M . Then the minimal members of the
subset {P1, . . . , Pn} of prime ideals of R is said to be the minimal prime ideals of N
(in R). We call non-minimal members of {P1, . . . , Pn} embedded prime ideals of N .

Embedded prime ideals of a decomposable ideal can be also defined in a similar
fashion by considering the ideal as a submodule of R. In the following exercise, we see
that the set of embedded prime ideals of a decomposable ideal may be empty.

Exercise 3.28. Let I be a decomposable ideal of a commutative ring R with√
I = I. Show that I has no embedded prime.

Notice that if I is a decomposable ideal of a commutative ring R, then the minimal
prime ideals of I by means of 1.48 and those defined as in the above definition coincide
by Proposition 3.26. This can be generalized as in the following proposition the proof
of which is left as an exercise.

Proposition 3.29. Let M be a nonzero module over a commutative ring R, and
let N be a decomposable submodule of M . Then the set of minimal prime ideals of
(N : M) coincides with the set of minimal prime ideals of N (defined as in Definition
3.27).

Proof. Left to the reader. �

Exercise 3.30. Give a proof to Proposition 3.29.

After The First Uniqueness Theorem for primary decompositions with the moti-
vation from the theory of unique factorization in a PID given at the beginnig of this
chapter, it is natural to ask whether primary terms in a minimal primary decomposi-
tion of a submodule are determined uniquely or not. The following example show this
is not always the case.

Example 3.31. Let K be a field and let R denote the ring K[X, Y ] of polynomials
over K in two indeterminates X and Y . Let’s consider the ideals

M = (X, Y ), P = (Y ), Q = (X, Y 2), I = (XY, Y 2)
of R. Then by 1.31, M is a maximal ideal of R. Also, if we consider the natural ring
homomorphism

f : K[X] −→ K[Y ][X]
and use the extension notation with reference to this f , then by 1.31 and 1.46, we
obtain that P is a prime ideal of R. On the other hand, we know from Example 3.13,
that (X, Y 2) is an M–primary ideal of R which is not equal to M2. We shall show that

I = Q ∩ P and I = M2 ∩ P
are two minimal primary decompositions of I which has different M–primary terms.

It is clear that I ⊆ P and I ⊆M2 ⊆ Q. Then we have
I ⊆M2 ∩ P ⊆ Q ∩ P.
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Let f ∈ Q∩P . Since f ∈ P , we have f(X, 0) = 0, where f(X, 0) denotes the polynomial
in X obtained from f by evaluating X, Y at X, 0. Since f ∈ Q, we may also write
f = Xg+Y 2h for some g, h ∈ R. By evaluating X, Y at X, 0, we obtain 0 = Xg(X, 0),
or equivalently g(X, 0) = 0. This gives that g = Y g1 for some g1 ∈ R, and so

f = Xg + Y 2h = XY g1 + Y 2h ∈ I.

It follows that
I = M2 ∩ P = Q ∩ P.

Finally, since

X2 ∈M2 \ P, X2 ∈ Q \ P, Y ∈ P \Q, Y ∈ P \M2,

we can say that both primary decompositions of I are minimal.

Above example shows that it is not always possible to say that minimal primary
decompositions are uniquely determined. Anyways, we can still give a positive result
in this direction by restricting our attention to only those primary terms which are
associated to minimal prime ideals: these primary terms are independent of the choice
of minimal primary decomposition of a fixed decomposable submodule!

Theorem 3.32 (The Second Uniqueness Theorem For Primary Decompositions).
Let M be a nonzero module over a commutative ring R, and let N be a decomposable
submodule of M . Suppose that

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for all i = 1, . . . , n

and
N = Q′1 ∩ . . . ∩Q′m with

√
(Q′i : M) = P i for all i = 1, . . . , n

are two minimal primary decompositions of N in M . Then for each i with 1 ≤ i ≤ n
for which Pi is a minimal prime ideal of N , we have Qi = Q′i.

Proof. The case when n = 1 is clear. Thus we assume that n > 1. Suppose that
Pj is a minimal prime ideal of N . If we had

n⋂
i=1
i 6=j

Pi ⊆ Pj,

then there would exist 1 ≤ i ≤ n with i 6= j such that Pj ⊇ Pi, which would contradict
with the fact that Pj is a minimal member of the set {P1, . . . , Pn}. Thus there exists

a ∈
(

n⋂
i=1
i 6=j

Pi

)
\ Pj.

It follows that for each i (1 ≤ i ≤ n, and i 6= j) there exists a positive integer ti such
that atiM ⊆ Qi. Set t = max{ti : 1 ≤ i ≤ n, i 6= j}. Then for each i with 1 ≤ i ≤ n
and i 6= j, atM ⊆ Qi. This gives that M = (Qi :M at) for each i with 1 ≤ i ≤ n and
i 6= j. On the other hand, if m ∈ (Qj :M at), then atm ∈ Qj. But since a /∈ Pj and Pj
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is a prime ideal of R, we have at /∈ Pj. Since Qj is a Pj–primary submodule of M , we
must have m ∈ Qj. Thus we have (Qj :M at) = Qj. Finally, using 1.61, we get

(N :M at) =
( n⋂
i=1
Qi :M at

)
=

n⋂
i=1

(Qi :M at) = (Qj :M at) = Qj.

In exactly the same way, we can also see that (N :M at) = Q′j. Therefore, we have
Qj = Q′j. �

If we apply the above theorem for a decomposable ideal I of a commutative ring
R, then we see that the primary terms in any minimal primary decomposition of I
that correspond to minimal prime ideals of I remain fixed; they always appear in all
minimal primary decompositions.

After uniqueness theorems given above, we shall now focus on the existence of
primary decompositions. Unfortunately, not every ideal does necessarily have a primary
decomposition, as the following example shows.

Example 3.33. The zero ideal of the commutative ring C[0, 1] of all continuous
real valued fucntions on the closed interval [0, 1] is not decomposable, i.e. it has no
primary decomposition in C[0, 1] at all. Assume that contrary. That is, assume that
0 has a primary decomposition in C[0, 1]. Let P ∈ assC[0,1] 0. By Lemma 3.19, there
exists f ∈ C[0, 1] such that

√
(0 : f) = P . Indeed, we have (0 : f) = P . We already

know that
(0 : f) ⊆

√
(0 : f) = P.

Now let p ∈ P . Then pnf = 0 for some n ∈ N. Assume that pf 6= 0. Then we must
have n > 1. Also we have pf(a) = p(a)f(a) 6= 0 for some a ∈ [0, 1]. It follows that
p(a) 6= 0, which implies that pn−1(a) 6= 0. However, this is impossible since we also
have

[pn−1(pf)](a) = 0 and pf(a) 6= 0.
This contradiction yields pf = 0, and so (0 : f) = P . Since P 6= R, f 6= 0. It
therefore follows that there exists b ∈ [0, 1] such that f(b) 6= 0. Choose a real number
ε such that 0 < ε < |f(b)|. Since f is continuous, there exists δ > 0 such that
f(x) ∈ (f(b) − ε, f(b) + ε) for all x ∈ (b − δ, b + δ), which, in particular, gives that
f(x) 6= 0 for all x ∈ (b− δ, b+ δ). Now define

g(x) =

0 if x ≤ b

x− b if x > b

and

h(x) =

0 if x > b

−x+ b if x ≤ b
.

It is easy to check that g, h ∈ C[0, 1] with gh = 0. Thus gh ∈ P . However, gf 6= 0
since g(x) 6= 0 for all x ∈ (b, b+ δ), and hf 6= 0 since h(x) 6= 0 for all x ∈ (b− δ, b). In
other words, we have g /∈ (0 : f) = P and h /∈ (0 : f) = P , a contradiction. Therefore
0 is not decomposable in C[0, 1].
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Although we see that there are commutative rings (or modules) containing ideals (or
submodules) which are not decomposable, we still have a large supply of commutative
rings (or modules) all of whose proper ideals (or proper submodules) are decomposable.
To prove this, we first need to introduce the notion of irreducible submodules.

Definition 3.34. Let M be a module over a commutative ring R, and let G be a
submodule of M . We say that G is an irreducible submodule of M if

(i) G ⊂M , and
(ii) whenever G = G1 ∩G2 for some submodules G1 and G2 of M , then G = G1 or

G = G2.
Proposition 3.35. Let M be a Noetherian module over a commutative ring R.

Then every proper submodule of M can be written as an intersection of finitely many
irreducible submodules of M .

Proof. Let Ω denote the set of all proper submodules of M which cannot be
written as intersections of finitely many irreducible submodules of M . We shall show
that Ω = ∅. Assume the contrary. Since M is Noetherian, Ω contains a maximal
member, say G. Since we can write G = G ∩G, G cannot be irreducible and so there
exist submodules G1 and G2 of M such that G = G1 ∩ G2, G ⊂ G1 and G ⊂ G2.
In this case, both G1 and G2 are proper submodules of M strictly containing G. It
follows that G1, G2 /∈ Ω. It follows that G1 and G2 are intersections of finitely many
irreducible submodules of M . But then G = G1 ∩ G2 inherits the same property, a
contradiction. Therefore Ω = ∅. �

Proposition 3.36. Let M be a Noetherian module over a commutative ring R,
and let Q be an irreducible submodule of M . Then Q is a primary submodule of M .

Proof. By definition we have Q ⊂ M . Let r ∈ R and m ∈ M be such that
rm ∈ Q. Consider the ascending chain

(Q :M r) ⊆ (Q :M r2) ⊆ . . . ⊆ (Q :M ri) ⊆ . . .

of submodules of M . Since M is Noetherian, there exists n ∈ N such that (Q :M rn) =
(Q :M rn+i) for all i ≥ 0. We shall show that
(*) Q = (Q+ rnM) ∩ (Q+Rm).
It is enough to show that (Q+rnM)∩ (Q+Rm) ⊆ G. Let q ∈ (Q+rnM)∩ (Q+Rm).
Then there exist r′ ∈ R, m′ ∈M , and q′, q′′ ∈ Q such that

q = q′ + rnm′ = q′′ + r′m.

Since rq = rq′ + rn+1m′ = rq′′ + rr′m and rm ∈ Q we have
rn+1m′ = rq′′ + r′(rm)− rq′ ∈ Q.

This gives that m′ ∈ (Q :M rn+1) = (Q :M rn). Thus rnm′ ∈ Q, and hence q ∈ Q. It
follows that the equation (∗) holds. Since Q is irreducible, we have either Q = Q+rnM
(or, equivalently r ∈

√
(Q : M)) or Q = Q + Rm (or, equivalently m ∈ Q). This

completes the proof. �

Corollary 3.37. LetM be a Noetherian module over a commutative ring R. Then
every proper submodule of M is decomposable.



58 3.3. Associated Prime Ideals Ch. 3 : Primary Decomposition Theory

Proof. Follows directly from Propositions 3.35 and 3.36. �

3.3. Associated Prime Ideals of Modules over Noetherian Rings

Lemma 3.38. Let I be an ideal of a commutative ring R. If
√
I is a finitely generated

ideal of R, then there exists n ∈ N such that
(√

I
)n
⊆ I.

Proof. Let
√
I be generated by a1, . . . , ak. Then for each i = 1, . . . , k, there exists

ni ∈ N such that anii ∈ I. Set n = 1 + ∑k
i=1(ni − 1). Now,

(√
I
)n

is the ideal of R
generated by

A := {at11 . . . a
tk
k : t1, . . . , tk ∈ N0,

k∑
i=1

ti = n}.

Notice that if t1, . . . , tk are non-negative integers which sum to n, then we must have
tj ≥ nj for some 1 ≤ j ≤ k. So,

at11 . . . a
tk
k ∈ I

since atjj ∈ I. This shows that A ⊆ I, and hence
(√

I
)n

= RA ⊆ I. �

Proposition 3.39. Let I be a proper ideal of a commutative Noetherian ring R,
and let P ∈ Spec(R). Then P ∈ ass(I) if and only if there exists λ ∈ R/I such that
(0 :R λ) = annR(λ) = P .

Proof. (⇐) This part easly follows from Lemma 3.19.
(⇒) Let

I = Q1 ∩ . . . ∩Qn with
√
Qi = Pi for 1 ≤ i ≤ n

be a minimal primary decomposition of I. Let j be a positive integer with 1 ≤ j ≤ n,
and set

Ij =
n⋂
i=1
i 6=j

Qi.

So, I ⊂ Ij * Qj by the minimality of the above primary decomposition. By Lemma
3.38, there exists t ∈ N such that P t

j ⊆ Qj. This gives that

P t
j Ij ⊆ QjIj ⊆ Qj ∩ Ij = I.

Let s be the least positive integer t such that P t
j Ij ⊆ I. Thus P s

j Ij ⊆ I and P s−1
j Ij * I

(even if u = 1 since Ij * I). Then we may choose an element a ∈ P s−1
j Ij \ I. Since, at

the same time, a ∈ Ij \ I, we have a /∈ Ij \Qj, and so

(I : a) =
(

n⋂
i=1

Qi : a
)

=
n⋂
i=1

(Qi : a) = (Qj : a),

which is a Pj–primary ideal of R by Lemma 3.18 (ii). But, since aPj ⊆ P s
j Ij ⊆ I, we

have
Pj ⊆ (I : a) ⊆ Pj,

and so Pj = (I : a). If we set λ := a + I ∈ R/I, then we obtain that (0 :R λ) =
annR(λ) = (I : a) = Pj. This completes the proof. �
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Exercise 3.40. Let M be a Noetherian module over a commutative ring R, and
let N be a proper submodule of M . Suppose that

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for 1 ≤ i ≤ n

is a minimal primary decomposition of N inM . Then prove that P is one of P1, . . . , Pn
if and only if there exists λ ∈M/N such that (0 :R λ) = annR(λ) = P .

It should be noted that the conclusion of above exercise apply to a proper submodule
N of a finitely generated moduleM over a commutative Noetherian ring R by Corollary
2.9. Now, 3.39 and 3.40 lead us to define the concept of associated prime ideal of a
module over a commutative Noetherian ring.

Definition 3.41. Let M be a module over a commutative Noetherian ring R, and
let P ∈ Spec(R). We call P an associated prime ideal of M if there exists m ∈M with
(0 : m) = ann(m) = P . The set of associated prime ideals of M is denoted by Ass(M)
(or AssR(M) if we are in need of emphasizing the underliying ring).

Remarks 3.42. (i) Isomorphic modules have the same set of associated prime
ideals, i.e., if M and M ′ are isomorphic modules over a Noetherian ring R, then
AssR(M) = AssR(M ′).

(ii) Suppose that I is a proper ideal of a commutative Noetherian ring R. Then I is
decomposable by Corollary 3.37, and so we can form the finite set ass(I) of associated
prime ideals of I. Observe that if P ∈ Spec(R), then we have

P ∈ ass(I) ⇐⇒ P ∈ Ass(R/I).

This means that the associated prime ideals of I are precisely the associated prime
ideals of the R–module R/I. Note that when there is a danger of confusing an associ-
ated prime ideal P of the R–module I (i.e., an element P ∈ AssR(I)) with an element
of ass(I), we shall say that “P is an associated prime ideal of I as an R–module”.

(iii) Let M be a finitely generated module over a commutative Noetherian ring R,
and let N be a proper submodule of M . Again by Corollary 3.37, N is a decomposable
submodule of M , and so, it has a minimal primary decomposition

N = Q1 ∩ . . . ∩Qn with
√

(Qi : M) = Pi for 1 ≤ i ≤ n.

Also, by 3.40, we have

P ∈ {P1, . . . , Pn} ⇐⇒ P ∈ AssR(M/N).

In particular, we have that P ∈ Ass(M) if and only if P is one of the prime ideals
which occur in each minimal primary decomposition of the zero submoudule in M .

(iv) Notice that we have not assumed that M is a finitely generated module in
Definition 3.41, contrary to 3.40. Indeed, as we shall see below, there is an extensive
theory of associated prime ideals of arbitrary modules over a commutative Noetherian
ring.

Exercise 3.43. Let M be a module over a commutative Noetherian ring R, and
let P ∈ Spec(R). Prove that P ∈ Ass(M) if and only ifM has a submodule isomorphic
to R/P .
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Lemma 3.44. Let M be a non-zero module over a commutative Noetherian ring R.
Then each maximal member of the non-empty set

Ω := {ann(m) : m ∈M and m 6= 0}
of ideals of R is prime, and so belongs to Ass(M).

Proof. Since R is Noetherian, we have Ω 6= ∅. Suppose P = (0 : m), where
m ∈ M and m 6= 0, is a maximal member of Ω. Since m 6= 0, we have P ⊂ R.
Let a, b ∈ P be such that ab ∈ P and b /∈ P . Then b(am) = (ab)m = 0. Since
ann(m) ⊆ ann(am) and b ∈ ann(am) \ ann(m), we must have am = 0 by maximality
of ann(m). This shows that P ∈ Spec(R). �

Corollary 3.45. LetM be a module over a commutative Noetherian ring R. Then
Ass(M) 6= ∅ if and only if M 6= 0.

Proof. This is immediate from definition and the preceding lemma. �

For a module M over a commutative ring R, we define the set of elements of r
which are annihilated by a non-zero element of M to be the set of zero-divisors of
M , denoted Zdv(M) (or, ZdvR(M) if it is necessary to indicate the underlying ring
concerned). That is,

Zdv(M) = {r ∈ R : rm = for some non-zero m ∈M}.
The following corollory provides a nice description of the set of zero-divisors of a module
over a commutative Noetherian ring in terms of its associated prime ideals.

Corollary 3.46. LetM be a module over a commutative Noetherian ring R. Then
Zdv(M) =

⋃
P∈Ass(M)

P.

Proof. Let P ∈ Ass(M). Then there exists m ∈ M with (0 : m) = P . Since
m 6= 0, it is clear that P consists of zero-divisors of M .

On the other hand, consider r ∈ Zdv(M), so that there exists a non-zero m′ ∈ M
such that rm′ = 0. Hence

Ω′ := {ann(m) : m ∈M, m 6= 0 and r ∈ ann(m)}
is a non-empty subset of the set Ω of 3.44. Since R is Noetherian, Ω′ will have at least
one maximal member, say P ′, which will also be a maximal member of the set Ω. Then
P ′ ∈ Ass(M), and since r ∈ P ′, we have proved that Zdv(M) ⊆ ⋃P∈Ass(M) P . �

Exercise 3.47. Let M be a module over a commutative Noetherian ring R, and
let Q be submodule of M .

(i) Prove that if Q is an irreducible submodule of M , then
|AssR(M/Q)| = 1.

(ii) Prove that if Q is a P–primary submodule of M , then
AssR(M/Q) = {P}.



CHAPTER 4

Modules and Rings of Fractions

4.1. Modules of Fractions

Let M be a module over a commutative ring R, and let S be a multiplicatively
closed subset of R. Then the relation on M × S defined by

(m1, s1) ∼ (m2, s) ⇐⇒ s(s2m1 − s1m2) = 0 for some s ∈ S
for all (m1, s1), (m2, s2) ∈M × S can be easily seen to be an equivalence relation. The
equivalence class of any (m, s) ∈ M × S with respect to the relation ∼ is denoted by
m/s (or sometimes by m

s
). Then for m1,m2 ∈M and s1, s2 ∈ S, we have

m1

s1
= m2

s2
⇐⇒ s(s2m1 − s1m2) = 0 for some s ∈ S.

Note that if 0 ∈ S then all the equivalence classes are equal, which yields trivial cases
in our purposes; hence we always assume 0 /∈ S.

Note that if m ∈ M and s ∈ S, then for all s′ ∈ S, we have 0 = s′(sm − sm) =
s′sm− ss′m, and so we may write

m

s
= s′m

s′s
.

Now letm1,m2,m
′
1,m

′
2 ∈M and s1, s2, s

′
1, s
′
2 ∈ S, and letm1/s1 = m′1/s

′
1 andm2/s1 =

m′2/s
′
2. Then there exist s, t ∈ S such that s(s′1m1−s1m

′
1) = 0 and t(s′2m2−s2m

′
2) = 0.

This gives that
sts′1s

′
2(s2m1 + s1m2) = ts2s

′
2(ss′1m1) + ss1s

′
1(ts′2m2)

= ts2s
′
2(ss1m

′
1) + ss′1(ts2m

′
2)

= sts1s2(s′2m′1 + s′1m
′
2).

It follows that
s2m1 + s1m2

s1s2
= s′2m

′
1 + s′1m

′
2

s′1s
′
2

.

This shows that we may define a well–defined addition operation between the equiava-
lence classes m1/s1 and m2/s2 by

m1

s1
+ m2

s2
= s2m1 + s1m2

s1s2
.

Observe that the addition defined as above is commutative and associative. Moreover,
the identity of addition is 0/1; in fact, if m ∈ M and s ∈ S are such that m/s = 0/1,
then there exists t ∈ S such that tm = 0, and vice versa. Also for every m ∈M , s ∈ S,
we may write −(m/s) = (−m)/s. If we denote the set of all equivalence classes m/s,
where m ∈ M and s ∈ S, by S−1M , then S−1M becomes an additive abelian group.
On the other hand, if r ∈ R and m/s,m′/s′ ∈ S−1M are such that m/s = m′/s′, then
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clearly rm/s = rm′/s′. It follows that we can define a scaler multiplication of elements
of R by

r
m

s
= rm

s
,

which turns the additive abelian group S−1M into anR–module. This module structure
of S−1M will be called the natural R–module structure of S−1M .

Let m,m′ ∈M and r ∈ R. Since
m

1 + m′

1 = m+m′

1
and

r
m

1 = rm

1 ,

the map
χM : M −→ S−1M

m 7−→ m

1 ,

which is called the canonical map from M to S−1M , is an R–homomorphism. It is
easy to see that the kernel of χM is equal to the set

{m ∈M : sm = 0 for some s ∈ S}.

4.2. Rings of Fractions

Let R be a commutative ring and let S be a multiplicatively closed subset of R. By
considering R as a module over itself, we can form the R–module of fractions of the
form r/s, where r ∈ R and s ∈ S, namely S−1R. With the following proposition, we
make S−1R into a ring as well.

Proposition 4.1. Let R be a commutative ring, and let S be a multiplicatively
closed subset of R. Then the additive abelian group S−1R (defined as in the preceding
section) is a commutative ring with the multiplication defined by

a

s

b

t
= sb

st
for all a, b ∈ R and s, t ∈ S.

Proof. Let a1/s1 = a′1/s
′
1 and a2/s2 = a2/s

′
2 for some a1, a2, a

′
1, a
′
2 ∈ R and

s1, s
′
1, s2, s

′
2 ∈ S. Then there exist s, t ∈ S such that ss′1a1 = ss1a

′
1 and ts′2a2 = ts2a

′
2.

This gives that sts′1s′2a1a2 = sts1s2a
′
1a
′
2, and so

a1a2

s1s2
= a′1a

′
2

s′1s
′
2
.

It follows that the multiplication defined in the proposition is well-defined. Since the
multiplication of R is commutative and associative, the multiplication of S−1R defined
above is also commutative and associative. On the other hand, since

r

s

1
1 = r

s

for all r/s ∈ S−1R, 1/1 is the identity element of S−1R. The distribution law is easily
seen to hold. This completes the proof. �
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Definition 4.2. Let R be a commutative ring, and let S be a multiplicatively
closed subset of R. Then the ring S−1R in the preceding proposition is said to be the
ring of fractions of R with respect to (the multiplicatively closed subset) S.

Remark 4.3. Let R be a commutative ring, and let S be a multiplicatively closed
subset of R. Then the following hold:

(i) 0S−1R = 0/1 = 0/s for all s ∈ S.
(ii) For a ∈ R and s ∈ S, a/s = 0S−1R if and only if t(1a− s0) = 0 for some t ∈ S

if and only if ta = 0 for some t ∈ S.
(iii) S−1R is trivial if and only if 0 ∈ S.
(iv) We can alter the denominator of a given element r/s of S−1R by multipliying

both numerator and denominator by an element t of S, i.e.,
r

s
= rt

st
.

This enables us to put any finite number of fractions in S−1R on a common denomi-
nator.

(v) If we think of R as a module over itself, then the ring S−1R is an R–module,
and hence the map

χ : R −→ S−1R,

which was defined in the previous section, is a homomorphism of R–modules. Also,
since we have

χ(rr′) = rr′

1 = r

1
r′

1 = χ(r)χ(r′)

for all r, r′ ∈ R, χ is also a homomorphism of rings. We call this homomorphism the
natural homomorphism (from R to S−1R). Throughout this chapter, unless stated
otherwise, we shall use the notations of extension and contraction with reference to the
natural homomorphism R→ S−1R.

(vi) The student should not misled by thinking that the natural homomorphism
χ : R→ S−1R is always injective. Indeed,

kerχ = {a ∈ R : ta = 0 for some t ∈ S},
which may not be zero.

(vii) For each element s ∈ S, the element χ(s) = s/1 is a unit of S−1R, having
inverse 1/s.

(vii) If R is an integral domain and S = R \ {0}, then the ring S−1R of fractions of
R is nothing but the field of fractions of R. In this case, the natural homomorphism
χ : R→ S−1R is injective. It follows that we can embed R into its field of fractions as
a subring.

(viii) Each element a/s of S−1R (where a ∈ R and s ∈ S) can be written as
a/s = χ(a)χ(s)−1, since

a

s
= a

1
1
s

= a

1

(
s

1

)−1
= χ(a)χ(s)−1.

Proposition 4.4. Let S be a multiplicatively closed subset of a commutative ring
R, and let χ : R → S−1R denote the natural ring homomorphism. Let R′ be a second
commutative ring, and let f : R → R′ be a ring homomorphism with the property
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that f(s) is a unit in R′ for all s ∈ S. Then there is a unique ring homomorphism
g : S−1R→ R′ such that g ◦ χ = f , that is, the diagram

R
f //

χ
��

R′

S−1R

g

<<

is commutative.
In fact, g is such that

g(a/s) = f(a)f(s)−1 for all a ∈ R, s ∈ S.
Proof. We first show that the function g : S−1R → R′ defined by g(a/s) =

f(a)f(s)−1 for all a/s ∈ S−1R is well-defined. Suppose that a, a′ ∈ R and s, s′ ∈ S
are such that a/s = a′/s′ in S−1R. Thus there exists t ∈ S such that t(s′a− sa′) = 0.
Apply th ring homomorphism f to this equation to get

f(t)(f(s′)f(a)− f(s)f(a′)) = 0.
But, by hypothesis, each of f(t), f(s), f(s′) is unit in R′. The we obtain that

g
(
a

s

)
= f(a)f(s)−1 = f(a′)f(s′)−1 = g

(
a′

s′

)
.

It follows that the formula that we use to define g is unambiguous. It is now an easy
exercise to check that g is a ring homomorphism. Observe also that g ◦χ = f since for
all a ∈ R, we have (g ◦ χ)(a) = g(a/1) = f(a)f(1)−1 = f(a).

It remains to show that g is the only ring homomorphism with the stated propoer-
ties. So suppose that g′ : S−1R → R′ is a ring homomorphism such that g′ ◦ χ = f .
Then for all a ∈ R, we have g′(a/1) = f(a). In particular, for s ∈ S, we have
g′(s/1) = f(s). Since f(s) is unit in R′, we may write g′(1/s) = f(s)−1. It follows that
for all a ∈ R, s ∈ S, we must have

g′
(
a

s

)
= g′

(
a

1
1
s

)
= g′

(
a

1

)
g′
(1
s

)
= f(a)f(s)−1 = g

(
a

s

)
,

so that there is exactly one ring homomorphism g with the desired properties. �

Exercise 4.5. Let S and T be multiplicatively closed subsets of a commutative
ring R such that S ⊆ T . Show that there is a ring homomorphism h : S−1R → T−1R
for which h(a/s) = a/s ∈ T−1R for all a ∈ R and s ∈ S. Show further that h is an
isomorphism if and only if one of the following equivalent conditions hold:

(i) For each t ∈ T , the element t/1 ∈ S−1R is a unit of S−1R.
(ii) For each t ∈ T , there exists a ∈ R such that st ∈ S.
(iii) Whenever P ∈ Spec(R) is such that P ∩ S = ∅, then P ∩ T = ∅ too.
Let R be an integral domain, and let S be a multiplicatively closed subset of R

such that 0 /∈ S. Let K denote the field of fractions of R . Then, as we remarked,
K = T−1R where T = R \ {0}. Since S ⊆ T , by above exercise, we can define a ring
homomorphism h : S−1R → K for which h(a/s) = a/s for all a ∈ R, s ∈ S. It is
easy to see that h is injective. So, every ring of fractions S−1R of R, where S is a
multiplicatively closed subset of R, can be embedded into the field of fractions of R.
Note that there are two uses of the formal symbol a/s here, one to denote an element of
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S−1R and the other to denote an element of K: the objects concerned are formed using
different equivalence relations and should not be confused. However, we can identify
elements of S−1R as their images in K and write S−1R ⊆ K.

Let S be a multiplicatively closed subset of a commutative ring R. From Remark
4.3, we see that the natural ring homomorphism χ : R → S−1R has the following
properties:

(i) χ(s) is a unit in S−1R for all s ∈ S,
(ii) if a ∈ kerχ, then there exists s ∈ S such that sa = 0, and
(iii) each element of S−1R can be written in the form χ(a)χ(s)−1 for some a ∈ R

and s ∈ S.
With the following proposition, we deduce that these properties uniquely determine

S−1R, up to isomorphism, as an R–algebra (with the structural ring homomorphism
χ).

Proposition 4.6. Let S be a multiplicatively closed subset of a commutative ring
R. Suppose that R′ is a commutative R–algebra with structural ring homomorphism
f : R→ R′, and assume that

(i) f(s) is a unit of R′ for all s ∈ S;
(ii) if a ∈ ker f , then there exists s ∈ S such that sa = 0;
(iii) each element of R′ can be written in the form f(a)f(s)−1 for some a ∈ R and

s ∈ S.
Then there exists a unique isomorphism of R–algebras g : S−1R → R′; in other

words, there is a unique ring isomorphism g : S−1R→ R′ such that g ◦ χ = f .

Proof. By Proposition 4.4, there is a unique ring homomorphism g : S−1R→ R′

such that g ◦ χ = f , and, moreover, g is given by

g
(
a

s

)
= f(a)f(s)−1 for all a ∈ R, s ∈ S.

Therefore, it remains only to show that g is bijective.
It is clear from condition (iii) of the hypotheses that g is surjective. Suppose that

a ∈ R, s ∈ S are such that a/s ∈ ker g. Then f(a)f(s)−1 = 0, so that f(a) = 0 and
a ∈ ker f . Hence by condition (ii) of the hypotheses, there exists t ∈ S such that
ta = 0,so that a/s = 0 in s−1R. Hence g is injective too. �

Examples 4.7. Let R be a commutative ring.
(i) For a fixed t ∈ R, the set S := {tn : n ∈ N0} is a multiplicatively closed subset

of R. In this case the ring of fractions S−1R is often denoted by Rt. Note that Rt is
trivial if and only if 0 ∈ S, that is, if and only if t is nilpotent.

(ii) Let J be an ideal of R. Then the set 1+J = {1+c : c ∈ J} is a multiplicattively
closed subset of R. Now, (1 + J)−1R is trivial if and only if 0 ∈ 1 + J , and it is easy
to see that this occurs if and only if J = R.

(iii) One of the most important examples of a ring of fractions of a commutative
ring R is given when the multiplicatively closed subset is taken to be R \ P for some
prime ideal P of R. We denote the ring S−1R, where S = R \ P , by RP , and call it
the localization of R at P . The reason why we call this ring the localization is best
understood by the following lemma: RP is a quasi-local ring.
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Lemma 4.8. Let R be a commutative ring and let P ∈ Spec(R). Then the ring RP

(the localization of R at P ) is a quasi-local ring with the unique maximal ideal

{α ∈ RP : α = r

s
for some r ∈ P, s ∈ R \ P}.

Proof. Let
I = {α ∈ RP : α = r

s
for some r ∈ P, s ∈ R \ P}.

By Theorem 1.34, it is enough to show that I is an ideal of R and it is the set of all
non-units of R. It is easy to see that I is an ideal of RP since it is, in fact, the extension
of P to RP (under the natural homomorphism, as we shall always assume for extension
and contraction notation in this chapter). Let α ∈ RP \ I. Then α = a/s for some
a ∈ R and s ∈ S. We must have a /∈ P , so that α is a unit of RP . On the other hand,
if β is a unit of RP , and β = b/t for some b ∈ R, t ∈ S, then there exist c ∈ R, v ∈ S
such that

b

t

c

v
= 1

1
in RP . Therefore, there exits w ∈ S such that w(bc−tv) = 0,so that wbc = wtv ∈ R\P .
Hence b /∈ P , and since this applies to every representation β = b/t, with b ∈ R, t ∈ S,
of α as a formal fraction, it follows that α /∈ I.

We have now proved that the ideal I of RP is equal to the set of non-units of RP ,
and so the proof is complete. �

Example 4.9. Let p be a prime number. Then pZ ∈ Spec(Z), and the localization
ZpZ can be identified with

{λ ∈ Q : λ = m

n
for some m,n ∈ Z with n 6= 0 and p - n}.

Exercise 4.10. Let K be a field and let a1, . . . , an ∈ K. Let F denote the field
of fractions of the domain K[X1, . . . , Xn], where X1, . . . , Xn are indeterminates. Show
that

R = {γ ∈ F : γ = f

g
with f, g ∈ K[X1, . . . , Xn] and g(a1, . . . , an) 6= 0}

is a subring of F which is isomorphic to a ring of fractions of K[X1, . . . , Xn]. Is R
quasi-local? If so, what can you say about its residue field? Justify your responses.

4.3. Modules of Fractions (continued)

Now let M be module over a commutative ring R, and let S be a multiplicatively
closed subset of R. In Section 4.1, we defined S−1M to be the set of formal fractions
of the form m/s with m ∈ M and s ∈ S, and made it an R–module. In fact, S−1M
can be made into an S−1R–module by extending scalars from R to S−1R as follows:
Let r/s ∈ S−1R (r ∈ R, s ∈ S) and m/t ∈ S−1M (m ∈ M , t ∈ S). Define the scalar
multiplication by

r

s
· m
t

= rm

st
.

It is an easy matter to check that this is an unambiguous operation satisfying all
necessary conditions to make S−1M an S−1R–module. Notice that the R–module
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structure of S−1M defined earlier can now be obtained by restriction of scalar from
S−1R to R via the natural ring homomorphism R→ S−1R.

Let f : M ′ → M be a homomorphism of modules over a commutative ring R, and
let S be a multiplicatively closed subset of R. Then f induces a map

S−1f : S−1M ′ −→ S−1M

m′

s
7−→ f(m′)

s
.

Also, the diagram

M ′

χM
��

f // M

χM′
��

S−1M ′
S−1f

// S−1M

is commutative.

Theorem 4.11. Let S be a multiplicatively closed subset of a commutative ring R,
and let f, g : M ′ −→M , h : M −→M ′′ be homomorphisms of R–modules. Then

(i) if i : M → M is the identity map on M , then S−1i : S−1M → S−1M is the
identity map on S−1M ,

(ii) if z : M ′ → M denotes the zero homomorphism, then S−1z is the zero homo-
morphism from S−1M ′ into S−1M ,

(iii) S−1(hf) = (S−1h)(S−1f),
(iv) S−1(f + g) = S−1f + S−1g, and
(v) if f is an isomorphism of R–modules, then S−1f is an isomorphism of S−1R–

modules.

Proof. Immediate. �

For the reader who are familiar with “Homological Algebra”, we remark that the
preceding theorem just means that passing to fractions module with respect to a fixed
multiplicatively closed subset S defines an additive (covariant) functor from the cate-
gory of R–modules to the category of S−1R–modules.

Theorem 4.12. Let R be a commutative ring, and let S be a multiplicatively closed
subset of R. Suppose that we have a short exact sequence

0 // M ′ f // M
g // M ′′ // 0

of R–modules and R–homomorphisms. Then

0 // S−1M ′ S
−1f // S−1M

S−1g // S−1M ′′ // 0
is a short exact sequence of S−1R–modules and S−1R–homomorphisms.

Proof. It follows, from definition, that S−1g is surjective.
Suppose that S−1f(m′/s) = 0 for some m′ ∈ M ′ and s ∈ S. Then f(m′)/s = 0 in

S−1M , and so tf(m′) = 0 for some t ∈ S. Since f is injective, we have tm′ = 0. This
gives that m′/s = 0S−1M ′ , so that S−1f is injective.
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Now we shall show that ImS−1f = kerS−1g. Since (S−1g)(S−1f) = S−1(gf) =
S−10 = 0, we have ImS−1g ⊆ kerS−1f . On the other hand, if m/s ∈ kerS−1g, then
g(m)/s = 0, and so s′g(m) = 0 for some s′ ∈ S. Then s′m ∈ ker g = Im f . It follows
that s′m = f(m′) for some m′ ∈M ′. Thus

= m

s
= s′m

s′s
= f(m′)

s′s
= S−1f

(
m′

ss′

)
∈ ImS−1f,

which completes the proof since then we get kerS−1g ⊆ ImS−1f . �
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finitely generated, 21
length of –, 40
Noetherian, 33

75



76 Ch. 4 : CHAPTER 4. INDEX

simple–, 38
submodule of a–, 20

module(s)
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Noetherian module, 33
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primary decomposition, 49
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primary submodule, 45
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