
List of Symbols
≤ submodule

≤e essential submodule

Mn(R) the ring of n× n matrices over the ring R

assS associated subset {r ∈ R : sr = 0 for some s ∈ S} of the m.c. subset S

ζ(R) the right singular ideal of R

r. ann(a) the right annihlator of a

l. ann(a) the left annihlator of a

a.c.c. ascending chain condition

Or(I) the right order of fractional ideal I

Ol(I) the left order of fractional ideal I

RS the right quotient ring with respect to S

HomR(M,N) the group of R–homomorphisms from M to N

CR(0) the set of all regular elements of R

Q(R) the right quotient ring of R

SpecR the prime spectrum of R

assM S the associated submodule of M w. r. t. S

m−1N the right ideal {r ∈ R : mr ∈ N}

u. dimM uniform dimension of the module M
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1 Quotient Rings and Goldie’s
Theorem

1.1 Quotient Rings
It is well–known in Commutative Ring Theory that, for a given nontrivial commutative ring
R and a multiplicatively closed subset S of R (i.e. a subset S of R which contains 1 and is
closed under products), we can form a ring, say Q, with a ring homomorphism ϕ : R→ Q,
which satisfies the following properties:

QR1 ϕ(s) is unit in Q for every s ∈ S;

QR2 if a ∈ kerϕ, then there exists s ∈ S such that sa = 0;

QR3 for every element x ∈ Q, there exist r, s ∈ R with s ∈ S such that x = ϕ(r)ϕ(s)−1.

Q is called a ring of fractions of R. The properties QR1-QR3 determine Q uniquely up to
isomorphism. One concrete way of constructing the ring of fractions of a commutative ring
R (with respect to a multiplicatively closed subset S) is to consider an equivalence relation
on the Cartesian product set R× S defined by

(a, s) ∼ (b, t) if and only if there exists s′ ∈ S such that s′(at− bs) = 0.

Equivalence class of an element (a, s) ∈ R × S is usually denoted by a/s, a formal fraction
with numerator a and denominator s. The set of all equivalence classes a/s, denoted by
S−1R, can be made into a commutative ring by putting addition and multiplication in a
similar way as we do for constructing the field of rational numbers. Now the ring S−1R
satisfies the conditions QR1-QR3 and any ring satisfiying these conditions is isomorphic to
S−1R. The idea of ring of fractions has been proved crucial in the study of commutative
rings since it was first thought by H. Grell [Gr] in 1926 . As a special case, one can consider
the set complement of a prime ideal, which is clearly a multiplicatively closed subset, and
form a in of fractions with respect to it, which is called the localization of the ring at that
prime ideal. This idea, mainly based on inverting the elements that lie outside a prime ideal,
gives rise to a local ring (a commutative ring with unique maximal ideal). There are some
properties of rings and modules which can be detected from local rings. These properties
are called local properties. For example flatness is a local property but being a free module
is not. After Krull’s introduction of fundamental notions, localization has become one of
the most significant tools in commutative algebra and has been used effectively in this area.
Although prime ideals are still important for non-commutative rings, the idea of localization
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4 1.1. Quotient Rings Chapter 1. Goldie’s Theorem

is not always available, contrary to the case of commutative rings. A part of this note is
devoted to give an account of localizations in the case of non-commutative rings. But before,
we need to develop a theory for rings of fractions of non-commutative rings (which are called
quotient rings in this particular setting).
Quotient rings of non-commutative rings were first thought after van der Waerden’s ques-

tion in his famous book [V]. He asked if every non-commutative domain is a subring of a
division ring. The answer is no as the counter-example given by A. I. Malcev shows. Then
O. Ore gave in 1931 a necessary and sufficient condition under which a non-commutative
domain R could be embedded in a division ring Q (see [O]). Ore’s approach gives a division
ring which is, under an additional hypothesis, a quotient ring (indeed, the total quotient ring)
of R. Now it is time to give a formal definition of a quotient ring of any non-commutative
ring.
Let R be an associative ring with unity (as always will be). Let S be a multiplicatively

closed (abbreviated as m.c.) subset of R. A right quotient ring of R with respect to S
is a ring Q together with a homomorphism ϕ : R→ Q such that the conditions QR1-QR3
are satisfied. Left quotient rings are defined analogously. Notice that if rs = 0 for some
s ∈ S, then ϕ(r) = ϕ(rs)ϕ(s)−1 = 0, and so

kerϕ = {r ∈ R : rs = 0 for some s ∈ S}.

We denote this set by assS. Note that if assS = 0, then R can be embedded into Q (by
means of ϕ), in which case we identify R as its image under ϕ, and write elements of Q
in the form rs−1 where r ∈ R and s ∈ S. Although the definition of quotient rings of
non-commutative rings is given in exactly the same way as the one given for commutative
rings, unlike the commutative case, the existence of Q is not guaranteed.

Proposition 1.1. Suppose that there exists a right quotient ring Q of R with respect to a
m.c. subset S together with the defining homomorphism ϕ. Then given a ring homomorphism
µ : R → R′ with the property that g(S) consists of units of R′, there exists a unique
homomorphism ν : Q→ R′ such that νϕ = µ, i.e., the following diagram is commutative

R

ϕ
��

µ // R′

Q

ν

??

This proposition immediately yields the following

Corollary 1.2. If there exists a right quotient ring Q of R with respect to a m.c. subset S,
then it is unique up to isomorphism. Additionally, if R has also a left quotient ring Q′ with
respect to S, then Q ∼= Q′. In this case, we have

assS = {r ∈ R : sr = 0 for some s ∈ S}.

Multiplicative Theory of Ideals in Non-commutative Rings
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Chapter 1. Goldie’s Theorem 1.1. Quotient Rings 5

Following the uniqueness statement in Corolary 1.2, it is now reasonable to use the notation
RS for the right quotient ring Q of R with respect to S. This ring is also called the right
localization of R at S.

Example 1.3. There are some circumstances in which the existence of a right quotient ring
is immediate. For example if R is the first Weyl algebra A1(k) over a field k, which can
be viewed as a skew polynomial ring k[X][Y ; ∂/∂X], where X and Y are indeterminates
(regarding the coefficients on the right), and S is taken to be the set minus k[X]\{0}, then
RS exists and is equal to the ring k(X)[Y ; ∂/∂Y ], denoted by B1(k), with ϕ the natural
embedding A1(k) ↪→ B1(k).
Similarly, if R = A[X;σ] for some ring A and automorphism σ on A, and S = {xn : n ≥

0}, then RS exists and is equal to the ring A[X,X−1;σ] of skew Laurent polynomials over
k, and ϕ is the natural embeding.

Theorem 1.4 ((Ore’s Theorem)). Let S be a m.c. subset of the ring R. Then RS exists if
and only if the following conditions holds:

(i) If r ∈ R and s ∈ S, then there exist r′ ∈ R and s′ ∈ S such that rs′ = sr′.

(ii) If r ∈ R and s ∈ S with sr = 0, then there exists t ∈ S such that rt = 0.

Proof. Assume that RS exists. Then there exists a homomorphism ϕ : R → RS satisfying
the consitions QR1-QR3. By QR3, there exist r1 ∈ R and s1 ∈ S such that

ϕ(s)−1ϕ(r) = ϕ(r1)ϕ(s1)−1.

Thus ϕ(r)ϕ(s1) = ϕ(s)ϕ(r1), and so rs1 − sr1 ∈ kerϕ = assS. This gives that (rs1 −
sr1)s2 = 0 for some s2 ∈ S. If we write s′ = s1s2 and r′ = r1s2, (i) follows. If sr = 0 for
some r ∈ R and s ∈ S, then since ϕ(s) is unit in RS by QR2, we have r ∈ kerϕ, which
establishes part (ii).
Suppose now that the conditions (i) and (ii) hold. To construct the quotient ring RS,

consider the set
F = {I : I is a right ideal of R with I ∩ S 6= ∅}.

It is readly checked that (i) implies that if I1, I2 ∈ F and α : I1 → R is a homomorhism of
R–modules, then

(a) I1 ∩ I2 ∈ F ,and

(b) α−1(I2) ∈ F .

Now let R = R/ assS and consider the set⋃
{HomR(I, R) : I ∈ F}

together with the equivalence relation given by α1 ∼ α2 if and only if α1 and α2 coincide on
some J , where J ∈ F , J ⊆ I1 ∩ I2, for αi ∈ HomR(Ii, R) (i = 1, 2). We define addition
and multiplication on the equivalence classes [αi], for αi ∈ HomR(Ii, R), as follows:

Multiplicative Theory of Ideals in Non-commutative Rings
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6 1.1. Quotient Rings Chapter 1. Goldie’s Theorem

[α1] + [α2] = [β], where β is the sum of the restrictions of α1 and α2 to I1 ∩ I2.
[α1][α2] = [γ], where γ is the composition

α−1
2 (I1) α2 // I1

α1 // R .

It is easy to check that these operations are well-defined and make the set of equivalence
classes into a ring. We denote this ring by RS. Let ϕ : R → RS be a function defined by
ϕ(r) = [λr], where λr : R → R is the homomorphism of R–modules defined by x 7→ rx
for all x ∈ R (here we put bars over elements to denote the cosets in R). It is clear that
ϕ is a ring homomorphism. Let s ∈ S and define α : sR → R such that α(sx) = x. It
is immediate that α is an R–homomorphism with ϕ(s)[α] = [α]ϕ(s) = [1]. This gives that
ϕ(s) is unit in RS with inverse [α]. On the other hand, if α ∈ HomR(I, R) for some I ∈ F ,
then [α] = ϕ(r)ϕ(s)−1 where s ∈ I ∩ S and r = α(s). Moreover, if ϕ(a) = [0] for some
a ∈ R, then λa(I) = {0}. Since I ∩ S 6= ∅, there exists s ∈ S such that as ∈ assS. But in
this case a ∈ assS. This establishes the theorem.

The condition (i) in Theorem 1.4 is called the right Ore condition. One can easily define
the left Ore condition by symmetry. A m.c. subset S of R is called a right denominator
set if it satisfies both conditions (i) and (ii) of Theorem 1.4.

Lemma 1.5. Let S be a m.c. subset of the ring R which satisfy the right Ore condition.
Then given r1, . . . , rn ∈ R and s1, . . . , sn ∈ S, there exist r′1, . . . , r′n ∈ R and s′ ∈ S such
that ris′ = sir

′
i for each i = 1, . . . , n.

Proof. We use induction on n. Let n = 2. Since S satisfies the right Ore condition there
exist r∗1, r∗2 ∈ R, s∗1, s∗2 ∈ S such that r1s

∗
1 = s1r

∗
1 and r2s

∗
2 = s2r

∗
2. Again applying the

right Ore condition to s∗1 and s∗2, we get s∗1t1 = s∗2t2 for some t1 ∈ S, t2 ∈ R. Since S is
multiplicatively closed, we have s = s∗1t1 = s∗2t2 ∈ S. Also we have

ris = ris
∗
i ti = sir

∗
i ti

for i = 1, 2. Setting r′i = r∗i ti completes the proof when n = 2. Now assume that n > 2 and
the assertion is true for positive integers less than n. By induction hypothesis, there exist
r′′1 , . . . , r

′′
n ∈ R and s′′ ∈ S such that ris′′ = sir

′′
i for each i = 1, . . . , n − 1. Applying the

right Ore condition to rns′′ and sn, we obtain rns′′t = snr
′
n for some t ∈ S and r′n ∈ R.

Setting r′i = r′′i t for i = 1, . . . , n− 1 completes the inductive step.

An element a ∈ R is called right regular if there are no nonzero elements b ∈ R such
that ab = 0. In other words, if a is a right regular element of R and ab = 0 for some b ∈ R,
then b = 0. Left regular elements are defined analogously. A regular element of R is an
element which is both right and left regular. The set of regular elements of R is denoted by
CR(0) and is a multiplicatively closed set of particular importance.
We simply call the right quotient ring of the ring R with respect to CR(0), if it exists,

the right quotient ring of R, and denote it by Q(R). An integral domain R is called a
right Ore domain if CR(0) is a right Ore set. Notice that if R is an Ore domain, then
since ass CR(0) = 0, R can be embedded into the division ring Q(R) by Theorem 1.4, which
establishes one part of the following
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Chapter 1. Goldie’s Theorem 1.1. Quotient Rings 7

Corollary 1.6. An integral domain has a right quotient ring if and only if it is a right Ore
domain.

The following theorem says that there are plenty of Ore domains.

Theorem 1.7. If R is a right Noetherian domain, then it is an Ore domain.

Proof. We need to check if CR(0) satisifies the Ore condition. Let a, b ∈ R \ {0}. We aim
to show that there exists nonzero elements a′ and b′ such that ab′ = ba′ 6= 0. Assume the
contrary. Suppose that there exist a positive integer n and elements a0, a1, . . . , ak of R such
that

bnar0 + bn+1ar1 + · · · bn+kark = 0 and bnar0 6= 0.

Since R is an integral domain, we have

0 6= ar0 = b(−ar1 − · · · − bk−1ark),

a contradiction. It follows that the sum ∑
n≥1 b

naR is direct. But this contradicts the fact
that R is right Noetherian, completing the proof.

It is now appropriate to make some convensions on rings of quotients. Let R be a ring,
S a right denominator set, and Q = RS. First, although the canonical homomophism
ϕ : R → RS need not be an embedding, we write the elements of Q in the form rs−1 (or
r/s in some circumstances) where r ∈ R and s ∈ S instead of ϕ(r)ϕ(s)−1 as given in the
definition. We do this just for the sake of simplicity and does not mean that R is considered
as a subring of Q.

Proposition 1.8. Let S be a right denominator set in the ring R, and let Q = RS. Then
the folloiwng statements hold:

(i) If q1, . . . , qn ∈ Q, then there exist r1, . . . , rn ∈ R and s ∈ S such that qi = ris
−1 for

each i = 1, . . . , n. In other words, any finite subset of Q has a common denominator.

(ii) Q is a flat left R–module.

Proof. (i) Let qi = ais
−1
i for each i = 1, . . . , n. Applying Lemma 1.5 by taking r1 = . . . =

rn = 1, we get sibi = s for some bi ∈ R (1 ≤ i ≤ n) and s ∈ S. Set ri = aibi for each
i = 1, . . . , n. In Q, we can wirite s−1

i = bis
−1, and so qi = ais

−1
i = aibis

−1 = ris
−1, as

desired.
(ii) To see that RQ is a flat module, it is enough to check that if I is a right ideal of R,

then the natural map κ : I ⊗R Q → Q is injective. Suppose κ(z) = 0 where z ∈ I ⊗R Q.
Then z is a finite sum of simple tensors in I ⊗R Q. Let z = ∑

ai ⊗ qi for some ai ∈ I and
qi ∈ Q. By (i) above, there exist ri ∈ R (1 ≤ i ≤ n) and s ∈ S such that qi = ris

−1. Then
we have z = a⊗ s−1, where a = ∑

airi ∈ I. It follows that 0 = κ(z) = as−1, which means
that ϕ(a) = 0, or in other words, a ∈ kerϕ = assS. Then at = 0 for some t ∈ S, and so
z = at⊗ t−1s−1 = 0. This completes the proof of part (ii).

Multiplicative Theory of Ideals in Non-commutative Rings
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8 1.1. Quotient Rings Chapter 1. Goldie’s Theorem

Remark 1.9. In view of the proof of Proposition (i), we have a useful fact to check if a
given pair of elements of a quotient ring Q are equal. Namely, for elements a1s

−1
1 and a2s

−1
2

of Q, a1s
−1
1 = a2s

−1
2 if and only if there exist b1, b2 ∈ R such that s1b1 = s2b2 ∈ S and

a1b1 = a2b2. This shows that we can describe Q as R × S modulo the equivalence relation
given by the latter condition.
For any subset A of Q, we denote the set {r ∈ R : r/1 ∈ A} by A ∩ R, not meaning the
set theoretical intersection. Of course if ϕ is an embedding and R is regarded as its image
under ϕ, then A∩R coincides with the ordinary intersection. If B ⊆ R, then the right ideal
of Q generated by ϕ(B) = {b/1 : b ∈ B} is denoted by BQ.

Proposition 1.10. Let S be a right denominor set in the ring R, and let Q = RS. Then
the following statements hold:

(i) If B is a right ideal of Q, then B ∩R is a right ideal of R and B = (B ∩Q)Q.

(ii) If A is a right ideal of R, the AQ is a right ideal of Q, AQ = {as−1 : a ∈ A, s ∈ S},
and AQ ∩R = {r ∈ R : rs ∈ A for some s ∈ S}.

(iii) If A1, A2 are right ideals of R with A1 ∩ A2 = 0, then A1Q ∩ A2Q = 0.

(iv) If I is an ideal of R and Q is right Noetherian, then IQ is an ideal of Q.

(v) If R is Noetherian, then there is a one-to-one correspodence between {P ∈ SpecR :
P ∩ S = ∅} and SpecQ defined by

SpecR 3 P 7−→ PQ, SpecQ 3 P ′ 7−→ P ′ ∩R.

Proof. (i), (ii), (iii) These are straightforward.
(iv) It is enough to show that given s ∈ S, then s−1IQ ⊆ IQ. Since sI ⊆ I, we have

I ⊆ s−1I in Q. This yields an ascending chain

s−1I ⊆ s−2I ⊆ . . . ⊆ s−nI ⊆ . . .

of right ideals of Q, which mus,t by our Noetherian hypothesis, must stop. Thus s−(n+1)I =
s−nI for some positive integer n. Hence s−1IQ = IQ, as desired, since s is unit in Q.
(v) Let P be a prime ideal of R with P ∩ S = ∅. Let P ′ = PQ ∩ R. Since R is

Noetherian, P ′ is finitely generated as a left ideal of R, and so by (ii), there exists s ∈ S
such that P ′s ⊆ P . By primeness of P together with the property thet P ∩ S = ∅, we have
P = P ′ = PQ ∩R. In particular, this implies that PQ 6= Q. Our next step is to show that
PQ is a prime ideal of Q. To see this, let A and B be ideals of Q with AB ⊆ PQ. Then

(A ∩R)(B ∩R) ⊆ AB ∩R ⊆ PQ ∩R ⊆ P.

Again by primeness of P , we have either A ∩ R ⊆ P or B ∩ R ⊆ P . Assume, without loss
of generality, that A ∩R ⊆ P . Then by (i) above

A = (A ∩R)Q ⊆ PQ.

Multiplicative Theory of Ideals in Non-commutative Rings
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Chapter 1. Goldie’s Theorem 1.1. Quotient Rings 9

This gives that PQ ∈ SpecQ. Finally, we need to see that P ′ ∩ R is a prime ideal of R
which does not meet S, for each prime ideal P ′ of Q. It is easy to see, using (i), that Q is
right Noetherian. By (i), P ′ ∩R 6= R. Let IJ ⊆ P ′ ∩R. Then by (i) and (iv), we hve

(IQ)(JQ) = I(QJQ) = IJQ ⊆ (P ′ ∩R)Q = P ′.

This implies that one of the IQ or JQ, say for instance IQ, lies in P ′. Then I ⊆ IQ∩R ⊆
P ′ ∩R. It follows that P ′ ∩R is a prime ideal of R. Moreover, if P ′ ∩R meets S, then P ′
contains a unit element of Q, contradicting the fact that P ′ is a proper ideal of Q as being
prime. This completes the proof.

Given a right denominator set and a right R–module M , it is also possible to construct a
modue of quotients MS in a similar way as we do for RS. To construct MS, first define

assM S = {m ∈M : ms = 0 for some s ∈ S},

which is clearly a submodule of M (called the torsion submodule with respect to S).
Note also that we call M a torsion module with respect to S if M = assM S. Next,
let M = M/ assM S and consider {HomR(I,M) : I ∈ F}, where we again put bars over
the ideals or elements of R to denote their images under the natural map R → R/ assS.
If we put the same equivalence relation and operations on this set as in the contruction of
RS, we obtain an RS–module, that we denote by MS. Observe that each element of MShas
the form ms−1 for some m ∈ M and s ∈ S. Also, M is a torsion module with respect
to S if and only if MS = 0. One can easily check that the map ϕM : M → MS defined
by ϕ(m) = m is an R–homomorphism with kernel assM S and has the following universal
property.

Proposition 1.11. Let S be a right denominator set in the ring R and let M be an R–
module. If L is a RS–module and f : M → L is an R–homomorphism then there exists a
unique RS–homomorphism g : MS → L such that the following diagram is commutative:

M

f
��

ϕM //MS

g
}}

L

One natural way to produce an RS–module from an R–module is to consider tensor
products. Given an R–module M , the tensor product M ⊗R RS is also a right RS–module.
The following proposition says that this is nothing but the module of quotients MS of M
with respect to S.

Proposition 1.12. Let S be a right denominator set and let M be an R–module. Then

(i) M ⊗R RS
∼= MS.

(ii) The torsion submodule of M with respect to S is the kernel of the natural homomor-
phism M →M ⊗R RS.
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10 1.2. Uniform (Goldie) Dimension Chapter 1. Goldie’s Theorem

(iii) M is a torsion module with respect to S if and only if M ⊗R RS = 0.

Proof. (i) The universal property ofMS gives a homorphismMS →M⊗RRS whose inverse
can be given by te universal property of ⊗.
(ii) (iii) These follow immediately from (i) and explanation given before Prosition 1.11

above.

1.2 Uniform (Goldie) Dimension
Let M be a module over the ring R and let N be a submodule of M . If every nonzero
submodule L of M meets N nontrivially (i.e., L ∩ N 6= 0), then we say that N is an
essential submodule of M . In this case, we use the notation N ≤e M .
If a right ideal I of R is an essential submodule of RR, then I is called an essential

right ideal of R. Note that in a right Ore domain, every nonzero right ideal is essential.
The following lemma is key to some result in the sequel and will be used without giving a
reference.

Lemma 1.13. If R is a prime ring then every nonzero ideal of R is an essential right ideal
of R.

Proof. Let I be a nonzero ideal of R. If A is a nonzero right ideal of R, then by assumption,
0 6= IA ⊆ I ∩ A. This completes the proof.

The following lemma provides some basic properties about essential submodules.

Lemma 1.14. Let M,M1, . . . ,Mk be modules of the ring R. Then the following hold.

(i) If L ≤e M and N is a submodule of M containing L, then N ≤e M .

(ii) Being essential submodule is transitive, that is, whenever L ≤e N and N ≤e M , then
L ≤e M .

(iii) If N ≤e M and L ≤e M , then N ∩ L ≤e M .

(iv) If N ≤e M and m ∈M , then m−1N ≤e R, where m−1N = {r ∈ R : mr ∈ N}.

(v) If Ni ≤e Mi for each i = 1 . . . , k, then N1 ⊕ · · · ⊕Nk ≤e M1 ⊕ · · · ⊕Mk.

(vi) If N ≤M , then there exists C ≤M such that N ∩ C = 0 and N ⊕ C ≤e M .

(vii) M is a semisimple module if and only if the there are no essential submodules of M
other than itself.

Proof. The proofs are routine and can be found in many graduate texts involving Module
Theory.
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A module U is called uniform if U 6= 0 and every nonzero submodule of U is an essential
submodule. Clearly, U is a uniform module if and only if for any pair m1, m2 of nonzero
elements of M , there exist r1, r2 ∈ R such that m1r1 = m2r2 6= 0. It is now immediate
that if R is an integral domain, then RR is a uniform module if and only if R is a right Ore
domain.
A nonzero module M is said to have finite uniform dimension if it contains no infinite

direct sum of nonzero submodules. Uniform modules and Noetherian modules are clearly of
this type. Note also that nonzero submodules of a module of finite uniform dimension have
finite uniform dimesion too.
Let M be a module of finite uniform dimension. Now, either M is uniform or M contains

a direct sum of two nonzero submodules, say M ⊇M1 ⊕N1. If we apply the same process,
we get that either M1 is uniform of M1 contains a direct sum of nonzero submodules, say
M1 ⊇ M2 ⊕ N2. Continuing in this fashion, we obtain a direct sum N1 ⊕ N2 ⊕ · · · , which
cannot have infinitely many summands. Thus the process must stop and so we must end
up with a uniform submodule of M . Consequently, any module of finite uniform dimension
contains a uniform submodule. An easy application of Zorn’s Lemma shows that there exists
an independent family {Uλ}λ∈Λ of uniform submodules ofM , i.e., the sum ∑

λ∈Λ Uλ is direct
and there is no family of uniform submodules of M strictly containing {Uλ}λ∈Λ whose sum
is direct. We claim that ⊕λ∈Λ Uλ ≤e M . Assume the contrary and let N be a nonzero
submodule of M such that

(⊕
λ∈Λ Uλ

)
∩ N = 0. Since N has finite uniform dimension,

N contains a uniform submodule, U say. This gives that {Uλ}λ∈Λ ∪ {U} is an independent
family of uniform submodules of M strictly containing {Uλ}, a contradiction. Therefore,⊕
λ∈Λ Uλ is an essential submodule of M . Since M has finite uniform dimension Λ must be

finite. Let |Λ| = n and write Λ = {1, . . . , n}.Then we have

U1 ⊕ · · · ⊕ Un ≤e M,

where U1, . . . , Un are uniform submodules ofM . The following theorem says that the number
of Ui’s is independent of the choice of the direct sum decomposition.

Theorem 1.15. Let M be a module of finite uniform dimension and let V = U1⊕ · · · ⊕Un
be a finite direct sum of uniform submodules of M which is essential in M . Then

(i) any direct sum of nonzero submodules of M has at most n summands, and

(ii) a direct sum of uniform submodules ofM is essential inM if and only if it has precisely
n summands.

Proof. (i) Let M1 ⊕ · · · ⊕Mk be a direct sum of nonzero submodules of M . Let N =
M2 ⊕ · · · ⊕Mk. If N ∩ Ui 6= 0for every i = 1, . . . , k, then, Lemma 1.14 (v),

(N ∩ U1)⊕ · · · ⊕ (N ∩ Uk) ≤e U1 ⊕ · · · ⊕ Uk ≤e M,

and so, by (i) of the same lemma, N ≤e M since (N ∩U1)⊕ · · · ⊕ (N ∩Uk) is contained in
N , a contradiction. It follows that N ∩ Ui = 0 for some i = 1, . . . , n, say for i = 1. Then
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we have a direct sum U1⊕M2⊕ · · ·⊕Mk. If we repeat this process k times, we can replace
all the Mi’s by some of the Ui’s, which implies that k ≤ n.
(ii) Let W be a direct sum of uniform submodules of M . If W is not essential, then

there is a nonzero submodule of M which meet W trivially, and which contains a uniform
submodule, say U . Then W ⊕U is again a direct sum of uniform submodules. This process
continues until we end up with an essential direct sum of uniform submodules. Thus if W
has n summands, then W must be essential in M , by (i) above. Conversely, if W ≤e M ,
then applying (i) for both V and W gives that W must have exactly n summands. This
completes the proof of part (ii).

Theorem 1.15 shows that if M is a module of finite uniform dimension, then there is a
maximal nonnegative integer n such that there exists a direct sum of n submodules in M
and there is no direct sum of submodules in M having more than n summands. The number
n is called the uniform dimension (or Goldie dimension) of M , denoted by u. dimM . If
there is direct sums of infinitely many submodules in M , then we write u. dimM = ∞. In
case M = RR, we write u. dimRR.

Corollary 1.16. Let M be a module. Then

(i) u. dimM = 0 if and only if M = 0.

(ii) u. dimM = 1 if and only if M is uniform.

(iii) If N ≤ M and u. dimM = n, then u. dimN ≤ n with equality precisely when
N ≤e M .

(iv) u. dim(M1 ⊕M2) = u. dimM1 + u. dimM2.

Note that if R is an integral domain, then u. dimR = 1 if and only if R is a right Ore
domain, by the remarks after Lemma 1.14. In particular, this applies to any right Noetherian
integral domain.

Example. Let k be a field and let R = k[X, Y ]/ (X, Y )n. It is not difficult to check that
the sum ∑n−1

i=0 X
i
Y
n−1−i

k is a direct sum of uniform submodules of R and is essential in RR

(where is used to denote the homomorphic images in R). Thus u. dimRR = n.

Example 1.17. Another example comes form matrix rings. Let u. dimR = n and let
S = Mt(R), the ring of t× t matrices over R. Let {eij : i, j = 1, . . . , t} be the standard set
of matrix units of S. One can easily check that there is a one-to-one correspondence between
the S–submodules of eijS and right ideals of R which corresponds zero submodule and zero
ideal and which preserves direct sums and intersections. Thus u. dim(eijS)S = u. dimRR.
Since S = ⊕t

i=1 eiiS, we have u. dimSS = t(u. dimRR).

Lemma 1.18. Let S be a right denominator set in the ring R consisting of regular elements
of R and let Q = RS. Let A and B be a right ideals of R and Q, respectively. Then

(i) A ≤e R if and only if AQ ≤e Q;
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(ii) B ≤e Q if and only if B ∩R ≤e R;

(iii) u. dimAR = u. dimAQQ = u. dimAQR;

(iv) u. dimQQ = u. dimRR.

This lemma is not true for a general right denominator set S. For example if R =
k[X, Y ]/ (X2, XY ), P =

(
X
)
, and S = R \ P where k is a field and bars over the

elements of k[X, Y ] are used to indicate homomorphic images in R, then Q = RS = RP is
a commutative local ring with unique nonzero proper ideal PRP (notice that the elements
of P are in the form cX where c ∈ k, which shows that P is a minimal nonzero ideal of R).
Hence u. dimQQ = 1. However, u. dimRR ≥ 2 since XR ∩ Y R = 0.

1.3 Goldie’s Theorem
The main objective of this section is to characterize those rings whose right quotient rings
exist and are semisimple Artinian.
We first introduce the notion of right singular ideal, originated in [J].
Let F (R) denote the set of all essential right ideals of R and define

ζ(R) = {a ∈ R : aE = 0 for some E ∈ F (R)}
= {a ∈ R : r. ann(a) ∈ F (R)}.

Using Lemma 1.14, one can easily deduce that ζ(R) is an ideal of R, known as the right
singular ideal of R. Here we have used the notation r. ann(a) to denote the right ideal
{b ∈ R : ab = 0}, called the right annihilator of a. Similary, one can define the left
annihilator of a, denoted by l. ann(a). In general given a subset X of R, we define the right
annihilator of X, denoted by r. ann(X), to be the subset {b ∈ R : xb = 0 for all x ∈ X} of
R, which is indeed a right ideal of R. We call a right ideal I of R a right annihilator ideal
if there exists a subset X of R such that I = r. ann(X). The left annihilator of a subset X
is defined analogously and is denoted by l. ann(X).
A ring R is called right non-singular when ζ(R) = 0. Our next step is to show that if

R is a semiprime ring (i.e. R contains no nonzero nilpotent ideals) with ascending chain
condition (a.c.c. for short) on right annihilator ideals, then R is right non-singular. But
before we need to give two lemmas.

Lemma 1.19. Let R be a ring with a.c.c. on right annihlator ideals.

(i) For an element b ∈ R, there is an integer m such that, for all n ≥ m, r. ann(bm) =
r. ann(bn); and then r. ann(bn) ∩ bnR = 0.

(ii) If ,aditionally, R has finite right uniform dimension, then r. ann(bn)⊕bnR is an essential
right ideal for all sufficiently large integers n.
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Proof. (i) Notice that given an element b ∈ R, we have an ascending chain

r. ann(b) ⊆ r. ann(b2) ⊆ . . . ⊆ r. ann(bi) ⊆ r. ann(bi+1) . . .

of right annihilator ideals of R, which must stabilize by the assumption on R. It follow that
there exists a positive integer m such that r. ann(bm) = r. ann(bn) for each n ≥ m. The
rest of the part (i) follows easily from this fact.
(ii) By (i) above, for all sufficiently large integers n, r. ann(bn)∩ bnR = 0, and so the sum

is direct. Let I be a right ideal of R such that

I ∩ (r. ann(bn)⊕ bnR) = 0.

Consider the sum ∑t
k=1 b

knI. We want to show that this sum is direct, which clearly com-
pletes the proof. Suppose by induction that this holds for t−1. Since r. ann(bn)∩bnR = 0, us-
ing the induction hypothesis gives that the sum∑t

k=2 b
knI is direct. Let x ∈ bnI∩∑t

k=2 b
knI.

Then x = bni = b2nj with i ∈ I, j ∈ R. Therefore i− bnj ∈ r. ann(bn), and so

i ∈ I ∩ (r. ann(bn)⊕ bnR) = 0.

Thus x = 0, as desired; hence the sum ∑t
k=1 b

knI is direct.

Lemma 1.20. Each nonzero nil left (or right) ideal of R contans a nonzero nilpotent left
(resp. right) ideal.

Proof. It can be readily checked that for a ∈ R, aR is nil (or nilpotent) if and only if Ra
is nil (resp. nilpotent). Thus it is enough to consider only a nil left ideal L, say. Choose
0 6= a ∈ L such that r. ann(a) is maximal among right annihilators of nonzero elements of
L. If x ∈ R, then there exists a positive integer t such that (xa)t = 0 and (xa)t−1 6= 0.
The maximality of r. ann(a) shows that r. ann(xa)t−1 = r. ann(a), hence axa = 0. Thus
aRa = 0, and so Ra is nilpotent.

Now we are ready to prove the aformentioned result on semiprime rings with a.c.c. on
right annihilators.

Theorem 1.21. Let R be a semiprime ring with a.c.c. on anihilator ideals. Then R is a
right non-singular ring.

Proof. We complete the proof by showing that A = ζ(R) is a nilpotent ideal of R. By
assumption, r. ann(An) = r. ann(An+1) for all sufficiently large integers n. Suppose An+1 6=
0. By assumption, we may choose a maximal element of the set

{r. ann(x) : x ∈ A and Anx 6= 0},

say r. ann(y). If b ∈ A, the r. ann(b) ≤e RR, so yR∩r. ann(b) 6= 0. Hence byr = 0 for some
r ∈ R with yr 6= 0. It follows that r. ann(by) ) r. ann(y) = r. ann(Y ), which contradicts
the choice of r. ann(Y ) unless Anby = 0. This shows that An+1y = 0, and so, by the the
choice of n, Any = 0. Hence An+1 = 0.

Multiplicative Theory of Ideals in Non-commutative Rings
4th Workshop on Rings, Modules, and Algebras - Hacettepe University



Chapter 1. Goldie’s Theorem 1.3. Goldie’s Theorem 15

Proposition 1.22. If R is a semiprime right non-singular ring with finite right uniform
dimension, and if c ∈ R is right regular, then c is regular and cR ≤e RR.

Proof. Since cR ∼= R, we have u. dim cR = u. dimRR. Therefore cR ≤e RR, by Corollary
1.16. Since

cR ⊆ r. ann(l. ann(cR))
we have r. ann(l. ann(cR)) ≤e RR. l. ann(cR) ⊆ ζ(R) = 0. Hence l. ann(c) = 0.

Proposition 1.23. Let R be semiprime right non-singular ring of finite right uniform dimen-
sion, and let I be a right ideal of R.

(i) I contains an element c such that r. ann(c) ∩ I = 0.

(ii) I is essential in RR if and only if I contains a regular element of R.

Proof. (i) First consider the case when I is uniform. Since I2 6= 0, cd 6= 0 for some c, d ∈ I.
Let V = r. ann(c) ∩ I and suppose V 6= 0. Since I is uniform, V is an essential submodule
of I. Thus by Lemma 1.14 (iv), we have d−1V is essential in RR. Since cd(d−1V ) = 0, we
obtain cd ∈ ζ(R) = 0, a contradiction. Therefore r. ann(c) ∩ I = 0.
Now consider the general case. Choose a uniform right ideal U1 ⊆ I, and an element

a1 ∈ U1 such that r. ann(a1) ∩ U1 = 0. If r. ann(a1) ∩ I 6= 0, then choose a uniform right
ideal U2 in r. ann(a1) ∩ I, and choose a2 ∈ U2, with r. ann(a2) ∩ U2 = 0. So far, we have
got

a1R⊕ a2R⊕ (r. ann(a1) ∩ r. ann(a2) ∩ I) ⊆ I.

If we continue in this fashion, after a finite step we obtain elements a1, . . . , an of R such
that

a1R⊕ a2R⊕ · · · ⊕ anR⊕ (r. ann(a1) ∩ r. ann(a2) ∩ . . . ∩ r. ann(an) ∩ I) ⊆ I.

Since u. dimRR <∞, this process must terminate– say at this stage. This means that

r. ann(a1) ∩ r. ann(a2) ∩ . . . ∩ r. ann(an) ∩ I = 0.

Let c = a1 + a2 + · · ·+ an ∈ I. Since the sum
∑n
i=1 aiR is direct, it follows that r. ann(c) =⋂n

i=1 r. ann(ai). Therefore r. ann(c) ∩ I = 0.
(ii) If I is essential, then r. ann(c) = 0, and so by Proposition 1.22, c is regular. Conversely,

if c ∈ I is regular, then cR ≤e RR, by Poroposition 1.22. Hence I ≤e RR.

Now we are ready to prove Goldie’s Theorem. As seen below, Goldie’s Theorem describes
those rings whose ring of quotients exist and are semisimple Artinian.

Theorem 1.24 (Goldie’s Theorem). The following statements on a ring R are equivalent:

(i) R is a semiprime ring with finite right uniform dimension which satisfies the a.c.c. on
right annihilator ideals.

(ii) R is a semiprime, right non-singular ring with finite right unifom dimension.
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(iii) R has a right quotient ring Q which is semisimple Artinian.

Moreover; R is prime if and only if Q is simple.

Proof. (i)⇒(ii): By Theorem 1.21.
(ii)⇒(iii): Let r, s ∈ R with s regular. By Proposition 1.22, sR ≤e RR. Then by Lemma

1.14 (iv), r−1(sR) ≤e RR. It follows, from Proposition 1.23 (ii), that r−1(sR) contains a
regular element s′, say. Then rs′ = sr′ for some r′ ∈ R. Sice CR(0) consists of regular
elements of R, by Ore’s Theorem (Theorem 1.4), R has a right quotient ring Q, say.
To see that QQ is a semisimple module, it suffices to show that Q has no essential right

ideal other than itself. Now let J be an essential right ideal of Q. By Lemma 1.18 (ii),
J ∩ R ≤e RR, and so contains a regular element of R, by Proposition 1.23. But then J
contains a unit element of Q since regular elements of R are unit in Q. This gives that
J = Q, as desired.
(iii)⇒(i): Since QQ is Artinian, we have u. dimQQ <∞. Thus by Lemma 1.18 (iv), R has

finite right uniform dimension. On the other hand it is not difficult to see that the property
of a.c.c. on right annihilator ideals in Q is inherited by R. Therefore, it remains to show
that R is semiprime. Suppose that N is a nilpotent ideal of R. Let X be a nonzero right
ideal of R such that X ∩ l. ann(N) = 0. Since N is nilpotent, there exists a non-negative
integer l such that XN l 6= 0 and XN l+1 = 0 (where we assume N0 = R). Thus XN l lies
in X ∩ l. ann(N), a contradicion. It follows that l. ann(N) is an essential right submodule
of RR. Therefore by Lemma 1.18 (i), l. ann(N)Q is an essential right ideal of Q. However,
since Q is semisimple, every right ideal of Q is a direct summand of Q. It follows that
l. ann(N)Q = Q. Hence, by Proposition 1.10 (ii), 1 = ac−1 for some a ∈ l. ann(N) and
c ∈ R with c regular. But then a = c ∈ l. ann(N), so N = 0.
For the last equivalence of the theorem, first assume that Q is simple Aritinian. Let A be

a nonzero ideal of R. Then, by assumption on Q, QAQ = Q, and so, using Lemma 1.8, we
get 1 = ∑

i ric
−1
i aid

−1with ri ∈ R, ai ∈ I and ci, d ∈ CR(0). Therefore, d ∈ QA, and hence
QA = Q. Now, if J is another nonzero ideal of R, since QIJ = QJ = Q, we have IJ 6= 0.
Now let R be a prime ring with finite right uniform dimension which satisfies the a.c.c. on

right annihilator ideals. We have already proved that Q is semisimple Artinian. Let X be
a nonzero ideal of Q. Then X ∩ R is a nonzero ideal of R. By Lemma 1.13 (i), X ∩ R is
essential in RR. Hence, X = Q as before, and so Q is simple.

Any ring R satisfying one of the equivalent conditions of Theorem 1.24 is called a
semiprime right Goldie ring.

Corollary 1.25. Any semiprime right Noetherian is a right Goldie ring, and hence has a
semisimple Artinian right quotient ring.

Corollary 1.26. Let S be a right denominator set in the ring R and assume that RS is right
Noetherian (for example, R could be right Noetherian). If Q is a semiprime ideal of RS,
then the factor ring R/(Q∩R) is a semiprime right Goldie ring, and the right quotient rings
of R/(Q ∩R) and RS/Q are isomorphic.

Proposition 1.27. Let R be a semiprime right Goldie ring with the quotient ring Q.
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(i) An annihilator right ideal of R is of the form J ∩R for J ≤ QQ.

(ii) A right ideal U of R is uniform if and only if UQ is a minimal right ideal of Q.

(iii) If U is a uniform right ideal of R and 0 6= u ∈ U , then

a) u. dim(r. ann(u)) = u. dimRR − 1 and
b) if I is a right ideal of R with r. ann(u) ( I, then I ≤e RR.

Proof. (i) Let I 6= R be an annihilator right ideal of R with I = r. ann(X) for some X ⊆ R.
Let a ∈ IQ ∩R. Then by Proposition 1.10, as ∈ I for some regular element s ∈ R. Hence
Xas = 0, and so Xa = 0 by regularity of s. It follows that I = IQ ∩R, as desired.
(ii) Let U be a uniform right ideal of R. By Lemma 1.18 (iii), UQ is a uniform right ideal

of Q. But Q is semisimple Artinian, which gives that UQ is minimal.
(iii) By (ii), UQ is a minimal right ideal of Q; hence UQ = uQ. It follows that r. annQ(u)

is a maximal right ideal of Q. This gives that u. dim(r. annQ(u)) = u. dimQQ − 1. But
since r. annR(u) = r. annQ(u) ∩R, by Lemma 1.18 (iii) and (iv), we obtain

u. dim(r. annR(u)) = u. dim(r. annQ(u)) = u. dimQQ − 1 = u. dimRR − 1.

Now let I be a right ideal of R with r. ann(u) ( I. Since

u. dimRR − 1 = u. dim(r. ann(u)) ≤ u. dim IR ≤ u. dimRR,

we have either u. dim IR = u. dim(r. ann(u)) or u. dim IR = u. dimRR. In the former case,
we have r. ann(u) ≤e I. This gives a contradiction since

r. annQ(u) = r. annR(u)Q ≤ IQ � Q

together with the maximality of r. annQ(u) implies that r. annR(u) = IQ∩R ⊇ I. Therefore
u. dimRR = u. dim IR, and so I ≤e RR.

Proposition 1.28. Let R be a semiprime right Goldie ring with the quotient ring Q, I a right
ideal of R and b ∈ R. Then there exists d ∈ I such that u. dim(b+ d)R = u. dim(bR+ I).

Proof. If u. dim(bR + I) = u. dim bR, then one can take d = 0. Otherwise there exits
U ⊆ I, a uniform right ideal such that bR∩U = 0. By induction, it is enough to find u ∈ U
such that u. dim(b+ u)R = u. dim(bR⊕ U) = u. dim(bR) + 1.
We first show that r. ann(b) * r. ann(U). Suppose contrarily that r. ann(b) ⊆ r. ann(U) =

A, and let A′ = l. ann(A). Now A is an ideal of R and A′ ∩ A = 0 (since (A′ ∩ A)2 = 0
and R is semiprime). Therefore A′ ∼= bA′ ⊆ A′, and so u. dimA′ = u. dim bA′, which yields
bA′ ≤e A′. However, U ⊆ A′, and so 0 6= bA′ ∩ U ⊆ bR ∩ U , a contradiction.
Therefore there is some u ∈ U such that r. ann(b) * r. ann(u). Then r. ann(b)+r. ann(u)

is an essential right ideal of R, by 1.27 (iii-b), and so contains a regular element c of R. Write
c = x + y, where bx = uy = 0. Note that bc = (b + u)y and uc = (b + u)x. Choose any
element br + us ∈ bR ⊕ uR. The right Ore condition gives elements r′, s′ ∈ R, c′ ∈ CR(0)
such that rc′ = cr′ and sc′ = cs′ (see Lemma 1.5). But then

(br + us)c′ = bcr′ + ucs′ = (b+ u)(yr′ + xs′) ∈ (b+ u)R.
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Hence
u. dim(b+ u)R = u. dim(bR⊕ uR) = u. dim bR + 1.

Proposition 1.29. If Q is a right Artinian ring, then every right regular element of Q is a
unit.

Proof. Let s be a right regular element in Q and consider the descending chain {snQ} of
right ideals. This stabilizes with, say, snQ = sn+1Q. Thus sn = sn+1q for some q ∈ Q.
Since s is right regular, so too is sn, and hence sq = 1. This shows, in particular, that s is
also left regular. Finally,

s(qs− 1) = (sq − 1)s = 0.

Thus sq = qs = 1, as desired.

Lemma 1.30. Let R be a semiprime right Goldie ring with the quotient ring Q.

(i) A right ideal E of R is essential if and only if EQ = Q.

(ii) A principal right ideal cR is essential if and only if c ∈ CR(0).

(iii) If R is also left Goldie, then a right ideal E of R is essential if and only if l. ann(E) = 0.

Proof. (i) This follows from 1.18 since Q is the only essential right ideal of Q.
(ii) If cR ≤e RR, then cQ = Q. Thus using the left analogue of Proposition 1.29, c is a

unit in Q, and hence regular in R. The converse is clear by 1.23 (ii).
(iii) It is clear from (i) that if E is essential, then l. ann(E) = 0. Conversely,

Corollary 1.31. Let R be a semiprime right Goldie ring with the quotient ring Q. Then
each essential right ideal of R is generated by regular elements.

Proof. Let E be an essential right ideal of R. By Proposition 1.23 (ii), there is a regular
element c ∈ E. By Proposition 1.28, given any b ∈ E, there exists d ∈ cR such that

u. dim(b+ d)R = u. dim(bR + cR) = u. dimRR.

Therefore (b + d)R ≤e RR and by Lemma 1.30 b + d ∈ CR(0). Since b ∈ (b + d)R + cR,
the result is proved.
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2 Multiplicative Theory of Ideals

2.1 Orders in Quotient Rings
Corollary 1.26 shows that there are some rings having the same right quotient rings. For
another example, one can consider the pair of rings k[X;σ] and k[X,X−1;σ] where k is a
field and σ is an automorphism on k. In this section we explore this phenomenon and its
relations with earlier results.
A ring Q is called a quotient ring if every regular element of Q is a unit. The following

proposition shows that there is a good supply of quotient rings.

Proposition 2.1. Any right Artinian ring is a quotient ring.

Proof. This is just a restatement of

Given a quotient ring Q, a subring R, not necessarily containing 1, is called a right order
in Q if each q ∈ Q has the form rs−1 for some r, s ∈ R. A left order is defined analously;
and a left and right order is called an order. Since Q has 1, it does not matter to adjoin 1
to R. However, asssuming right orders without 1 is much more useful on occasion.

Proposition 2.2. Let R be a subring (with 1) of a ring Q and let S be the set of all units
of Q that lie in R.

(i) If Q is the right quotient ring of R, then Q is a quotient ring, R is a right order in Q,
and S = CR(0).

(ii) If Q is a quotient ring and R is a right order in Q, then Q = RS. If, further, either
R is also a left order in Q or Q is right Artinian, then S = CR(0) and Q is the right
quotient ring of R.

Proof. (i) If q ∈ Q is regular, with q = rs−1, where r, s ∈ R, s ∈ CR(0), then r = qs ∈
CR(0), and so it is a unit in Q. Hence q is a unit in Q and Q is a quotient ring. The fact
that R is a right order in Q follows from the assumption.
(ii) The first claim is an immediate consequence of the definitions. Notice that by our

asumption, we already have S ⊆ CR(0). Since R is a right order in Q, regular elements
of R are right regular in Q. If R is also a left order in Q (or if Q is right Artinian, by
Proposition 2.1), then regular elements of R are also left regular in Q. In this case, we have
CR(0) ⊆ CQ(0) ∩ R = S, and so CR(0) = S. Therefore Q is the right quotient ring of
R.
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Corollary 2.3. Let Q be a semisimple Artinian ring and let R be a subring (with 1) of Q.
If R is a right order in Q, then R is a semiprime right Goldie ring and Q is the quotient ring
of R.

Proof. Immediate from Proposition 2.2.

Corollary 2.4. R is a semiprime right Goldie ring with quotient ring Q if and only if Mn(R)
is a semiprime right Goldie ring with right quotient ring Mn(Q).
Proof. Let R be a semiprime right Goldie ring with right quotient ring Q. Since Q is
semisimple Artinian, so too is Mn(Q). We will show that Mn(R) is a right order in Mn(Q).
Let x ∈ Mn(Q). Taking common denominator, by Proposition 1.8, we can write x in the
form (aijc−1), where aij, c ∈ R. Using the natural embedding of Q into Mn(Q), this means
that x = ac−1 with a, c ∈ Mn(R). Thus Mn(R) is a right order in Mn(Q). By Colollary
2.3, Mn(R) is a semiprime right Goldie ring.
The converse is easy to prove.

Proposition 2.5. Let R be a right order in a quotient ring Q and let S be a subring of Q
(not necessarily with 1).

(i) If there are units a, b of Q such that aRb ⊆ S, then S is also a right order in Q. In
particular, if R ⊆ S ⊆ Q, then S is also a right order in Q.

(ii) If R is a prime right Goldie ring, A is a nonzero ideal of R such that A ⊆ S ⊆ R, then
S is a prime right Goldie ring, and has the same right quotient ring as R.

Proof. (i) Given q ∈ Q, consider the element a−1qa. Since R is a right order in Q, by
definition, we have a−1qa = rt−1 for some r, t ∈ R. But then

q = art−1a−1 = arb(atb)−1,

so S is a right order in Q. The remainder follows by taking a = b = 1.
(ii) Since R is a prime ring, we have A ≤e RR, and therefore, by Proposition 1.23 (ii), A

contains a regular element, c say. Then c is a unit in Q, and cR ⊆ S. Now the result follows
from (i) above.

Proposition 2.5 leads us to the ideal of equivalent orders as follows. Let R1 and R2 be
right orders in a quotient ring Q. Define a relation

R1 ∼ R2 ⇔ there exist units a1, a2, b1, b2 ∈ Q such that a1R1b1 ⊆ R2 and a2R2b2 ⊆ R1.

It is routine to check that this is an equivalence relation. The right orders R1 and R2 which
lie in the same equivalence class is termed equivalent right orders.
For examples, we can give the matrix ring M2(Z) and its subring[

Z 2Z
Z Z

]
;

and the first Weyl algebra A1(k) and its subring k +XA1(k).
The following lemma is very useful when dealing with extensions of rings which are equiv-

alent orders in a quotient ring.
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Lemma 2.6. Suppose R, S are equivalent right orders in Q with R ⊆ S. Then there are
equivalent right orders T , T ′ in Q with

R ⊆ T ⊆ S, R ⊆ T ′ ⊆ S,

and units r1, r2 of Q contained in R such that

r1S ⊆ T, Tr2 ⊆ R, and Sr2 ⊆ T ′, r1T
′ ⊆ R.

In particular, r1Sr2 ⊆ R.

Proof. By definition, aSb ⊆ R for some units a, b of Q. Say a = r1s
−1
1 , b = r2s

−1
2 , with

ri, si ∈ R. Then
r1Sr2 ⊆ r1s

−1
1 Sr2 ⊆ Rs2 ⊆ R.

Now if we set
T = R + r1S +Rr1S and T ′ = R + Sr2 + Sr2R,

then we are done.

2.2 Fractional Ideals
It is now appropriate to introduce the notion of fractional R-ideals by which we can produce
right and left orders equivalent to R.
Let R be a right (or left) order in a quotient ring Q. A non-zero additive subgroup I of

Q is a fractional right R–ideal provided (i) IR ⊆ I, (ii) I contains a unit of Q, and (iii)
there exists a unit b ∈ Q such that bI ⊆ R. If, further, I ⊆ R, then I is an integral right
R–ideal. In the same way, one defines fractional left R–ideals and fractional (two-sided)
R–ideals. In what follows we usually drop the term “fractional” and call these ideals simply
(right, left, or two-sided) R–ideals. Let S be another right (or left) order in Q. If I is a
right R–ideal and left S–ideal, then we often indicate this situation by saying that I is an
(S,R)–ideal.
Remark 2.7. Let R be a semiprime right Goldie ring with quotient ring Q. Since any essential
right ideal of R contains a regular element by 1.23, essential right ideals of R become integral
R–ideals. Moreover, if I is any right R–ideal, then I is isomorphic to an integral right R–
ideal. To see this let a and b be units of Q such that a ∈ I and bI ⊆ R. Then bI is an
integral right R–ideal since b is unit and ba ∈ CR(0) ∩ bI.
For a concrete example of fractional ideals, one can consider the ring

R =
[
Z 2Z
Z Z

]
.

Then M2(Z) is an R–ideal.
Given a right R–ideal I, the right order and the left order of I are defined respectively

to be the subrings of Q
Or(I) = {q ∈ Q : Iq ⊆ I},
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and
Ol(I) = {q ∈ Q : qI ⊆ I}.

For example if

I =
[
2Z 2Z
Z Z

]
⊂ Q = M2(Q),

then
Or(I) = M2(Z) and Ol(I) =

[
Z 2Z
1
2Z Z

]
.

Now we give the basic facts about right and left orders of I in the following

Lemma 2.8. Let R be a right order in a quotient ring Q and let I be a right or left R–ideal.
Then:

(i) Or(I) and Ol(I) are right orders in Q and are equivalent to R, and

(ii) I is a (Ol(I),Or(I))–ideal.

Proof. We may assume that I is a right R–ideal since the alterative can be dealt with
symmetrically.
(i) Let a and b be units of Q such that a ∈ I and bI ⊆ R. Then

baOr(I) ⊆ R ⊆ Or(I)

and
bOl(I)a ⊆ bOl(I)I ⊆ bI ⊆ R.

Also, since aRbI ⊆ aR ⊆ I, we have aRb ⊆ Ol(I). This establishes (i).
(ii) Obvious.

We define the inverse of a right (or left) R–ideal I to be the set

I−1 = {q ∈ Q : IqI ⊆ I}.

Let I ≤ QR. One can define the mapping I × Q → IQ by (a, rs−1) 7→ ars−1, which is
clearly bilinear. This gives a homomorphism I ⊗R Q → IQ, which we shall denote by ηI .
It is easy to see that any element of the right ideal IQ of Q has form as−1 for a ∈ I and
s ∈ S. Now define a map IQ→ I ⊗R Q by as−1 7→ a⊗ s−1 for all a ∈ I, s ∈ S. This is a
well-defined mapping. To see that choose a, b ∈ R and s, t ∈ S such that as−1 = bt−1. Since
Q = RS , S is an Ore set. It follows that there exist s1 ∈ S and c ∈ R such that ss1 = tc.
Then as1 = as−1tc = bt−1tc = bc, and so a ⊗ s−1 = a ⊗ s1s

−1
1 s−1 = as1 ⊗ s−1

1 s−1 =
bc⊗ s−1

1 s−1 = b⊗ cs−1
1 s−1 = b⊗ t−1. Therefore we have two unambigious maps one from

I ⊗R Q into IQ and one from IQ into I ⊗R Q, whose composition is the identity map in
either order. In summary, we have obtained that ηI : I ⊗R Q → IQ is an isomorphism of
right Q–modules. Let J be another right R–submodule of Q. Then we have an isomorphism

HomQ(I ⊗R Q, J ⊗R Q) −→ HomQ(IQ, JQ)
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given by γ 7→ ηJγη
−1
I . Thus, we can define a homomorphism

HomR(I, J) −→ HomQ(IQ, JQ)
α 7−→ α̃

of abelian groups, where α̃ : IQ → JQ is defined by α̃(as−1) = α(a)s−1. This is clearly
an embedding. Under this embedding HomR(I, J) ∼= {β ∈ HomQ(IQ, JQ) : βI ⊆ J}.
Assume, further, that I is a right R–ideal. Then IQ = Q, and so HomR(I, J) ∼= {β ∈
HomQ(Q, JQ) : βI ⊆ J}. If β : Q→ JQ is an R–homomorphism with β(1) = q, then for
any q′ = rs−1 ∈ Q, we have β(rs−1)s = qr, which implies that β(q′) = qq′. It follows that
any R–homomorphism from Q into JQ is a left multiplication by an element of Q. This
shows that HomQ(Q, JQ) = HomR(Q, JQ), and also that

HomR(I, J) ∼= {q ∈ Q : qI ⊆ J}

where the abelian group on the right is denoted by (J : I)l. Moreover, if α ∈ HomR(I, J)
and qα is the corresponding elements of Q in (J : I)l, then α and qα act on I in exactly the
same way, i.e., for any a ∈ I, α(a) = qα(a).
One can also prove that if I is a right R–ideal of, then there is an isomorphism EndR(I) ∼=
Ol(I) of rings. Note that if J is a (two-sided) R–ideal and I is a right R–ideal, then (J : I)l
is a left R–ideal. Alternatively, one can consider the subgroup (J : I)r = {q ∈ Q : Iq ⊆ J}
for which an analogous isomorphism can be given just as above under the hypothesis that
R is a left order in Q and I is a left R–ideal. In the particular case when J = R above, we
write (R : I)l = I∗ and (R : I)r = I+. It follows, from what we have just observed, that if I
is a fractional right R–ideal, then I∗ is a left R–ideal and I∗ ∼= HomR(I, R), as R–modules.
Moreover, we may write I∗I is an ideal of R equal to the ideal Hom(IR, R)I. Similarly, if R
is a left order in Q and I is a left R–ideal, then I+ ∼= Hom(RI, R) and II+ is an ideal of R
equal to the ideal I Hom(RI, R). To sum up, we can conclude that the following statements
hold for a right R–ideal I:

(1) I is an (Ol(I),Ol(I))–ideal while I−1 is an (Or(I),Ol(I))–ideal;
(2) (Or(I) : I)l = I−1 = (Ol(I) : I)r;
(3) I∗ ⊆ I−1 (for a left R–ideal J , J+ ⊆ J−1);
(4) I∗ is an (R,Ol(I))–ideal, so that I∗I is an ideal of R and II∗, II−1 are both ideals

of Ol(I) such that II∗ ⊆ II−1 ⊆ Ol(I);
(4) II+ is a right ideal of R and I+I is an ideal of R; if, further, I is a left R–ideal, then

I+is an (Or(I), R)–ideal, and II+ is an ideal of R.
Let I be an R–ideal. We say that I is invertible if there exists an R–ideal J with IJ =

JI = R. If I is an invertible R–ideal, then it is easy to see that Or(I) = R = Ol(I) and
I∗ = I+ = I−1; in this case, we have I−1I = II−1 = R.
Now let I be a right R–ideal. Then I is also a right Or(I)–ideal. Since Or(I) is a right

order in Q, every element of Q has the form ab−1 for elements a, b ∈ Or(I). Also, IQ = Q,
and so each element of Q has the form ac−1, a ∈ I, c ∈ Or(I). Let I be projective over
Or(I). Then there exist families {aj} and {βj}, where aj ∈ I, βj ∈ HomR(I,Or(I)), such
that for every a ∈ I, βj(a) = 0 for all but a finite number of j and a = ∑

j aj
(
βj(a)

)
. We
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know, by above remarks, that HomR(I,Or(I)) ∼= (Or(I) : I)l = I−1. Let βj 7→ qj under
this isomorphism. Then for any a ∈ I, qja = βja = 0 for all but a finite number of j.
Choosing a to be reqular gives that qj = 0 for all but a finite number of j, and

a =
∑
j

aj
(
βj(a)

)
=
∑
j

aj(qja) =
(∑

j

ajqj

)
a,

which implies that 1 = ∑
j ajqj ∈ II−1. It follows that II−1 = Ol(I). It is also immediate

that IR is finitely generated (by the set {aj : qj 6= 0}).
Converely, if II−1 = Ol(I) for a right R–ideal I, then it is easy to see that I is a projective

right Or(I)–ideal. Thus we have partialy proved the following

Proposition 2.9. (i) Let I be a right R–ideal. Then Ol(I) = II−1 if and only if I is a
projective right Or(I)–ideal; and then I is a finitely generated right Or(I)–ideal.

(ii) If J is a left R–ideal such that J−1J = Or(J), then J is a finitely generated projective
left Ol(J)–ideal.
Proof. (i) It remains only to show that if Ol(I) = II−1, then I is a projective right Or(I)–
ideal. By ssumption 1 = ∑n

i=1 aiqi for some ai ∈ I and qi ∈ I−1. Define a map fi : I →
Or(I) by fi(a) = qia. Then, clearly, fi ∈ HomR(I,Or(I)), and for any a ∈ I,

a =
( n∑
i=1

aiqi

)
a =

n∑
i=1

ai(qia) =
n∑
i=1

ai
(
fi(a)

)
.

This gives that I is projective as a right Or(I)–module.
(ii) The proof of (i) above can be slightly modified to give (ii).

Note that a similar proposition can be given for a left R–ideal if we take R to be a left
order in Q. This observation will be used in the proof of Corollary 2.11.

Corollary 2.10. Let I be a right R–ideal. Then I is a projective right R–ideal if and only
if and II∗ = Ol(I); and in this case I is a finitely generated right R–ideal.

Proof. In view of the proof of above proposition, we obtain that IR is projective if and only
if 1 ∈ II∗, and that I is finitely generated as a right R–module.

Corollary 2.11. Let I be an R–ideal. If I is an invertible R–ideal, then Or(I) = R = Ol(I)
and RI, IR are (finitely generated) projective.
Moreover, if R is also a left order in Q, then the converse is true.

Proof. Assume first that I is an invertible R–ideal. We already know that Or(I) = Ol(I) =
R and I−1I = II−1 = R. By Proposition 2.9 (i) and (ii) we obtain that I is a finitely
generated projective right and left R–module.
Now assume that R is a two-sided order in Q. Let I be an R–ideal such that Or(I) =

R = Ol(I), and that I is projective as a right and left R–module. Then by Proposition 2.9
(i), II−1 = R. On the other hand, if we apply the same proposition for I as a left R-ideal
with R being a left order, we also conclude that I−1I = R.

Notice that the above corollary shows that, for a general ring R, projectivity may not
always lead to invertibility, in contrast with the commutative case.
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2.3 Maximal Orders
Let R be a right (or left) order in a quotient ring Q. If R is not contained in any equivalent
right order, then R is called a maximal right order. Maximal left orders and maximal
(two-sided) orders are defined analogously. Let R be a maximal right or left order. If I is
a right (resp. left) R–ideal, then, clearly, Or(I) = R (resp. Ol(I) = R). Moreover, for a
two-sided R–ideal, we have I∗ = I+ = I−1.

Proposition 2.12. The following conditions on R are equivalent:
(1) R is a maximal right order.
(2) Or(I) = Ol(I) = R for all R–ideals.
(3) Or(I) = Ol(I) = R for all integral R–ideals.

Proof. (1)⇒ (2): This part has been given before the proposition.
(2)⇒ (3): Trivial.
(3) ⇒ (1): Let S be a right order in Q equivalent to R such that S ⊇ R. By [?,

Lemma 3.1.10], we may choose a right order T and unit elements r1 and r2 in Q such that
R ⊆ T ⊆ S, r1S ⊆ T and Tr2 ⊆ R. Set I = {r ∈ R : Tr ⊆ R}. Then I is evidently
an integral right R–ideal and T ⊆ Ol(I). Therefore T = R. By symmetry, we also have
S = R. This completes the proof.

It is reasonable to ask what kind of commutative rings can be maximal orders. The
following theorem answers this question.

Theorem 2.13. commutative rings which are maximal orders

Theorem 2.14. Let R be a maximal right order in a quotient ring Q. Then the following
hold:

(i) Let I be a right R–ideal. Then I is a projective right R–ideal if and only if II−1 =
Ol(I).

(ii) Let T be a (two-sided) R–ideal. Then T is a projective right R–ideal if and only if
TT−1 = R; and then T is a finitely generated right R–ideal.

Let R be any ring and MR a right R–module. Let M∗ = HomR(M,R), the dual of
M . MR is said to be torsionless if given any 0 6= m ∈ M , there exists α ∈ M∗ such
that α(m) 6= 0. It is easy to see that this is equivalent to saying that M embeds in some
direct product of copes of R. Note that for any module MR, RM

∗ is torsionless since if
0 6= α ∈ M∗ and m ∈ M is such that α(m) 6= 0, then the map M∗ → R by β 7→ β(m) is
a required.
We now define M∗∗ = HomR(M∗, R). There is an obvious homomorrphism M → M∗∗

this being an embedding if and only ifM is torsionless. When this is the case, it is convenient
to indentify M with its image in M∗∗. The module MR is called reflexive if M is torsionless
and M = M∗∗. It is routine to check that a finite direct sum of reflexive modules is again
reflexive, and that any direct summand of a reflexive module is again reflexive. This shows,
in particular, that every finitely generated projective module is reflexive.
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We continue to assume R is a right order in a quotient ring Q. Let I be a right R–ideal.
Then I is a torsionless right R–module since if b is a unit of Q such that bI ⊆ R, then the
mapping I → R defined by x 7→ bx is an injective R–homomorphism. (Similarly every left
R–ideal is a torsionless left R–module.) We say that I is a reflexive right R–ideal if it is
reflexive as a right R–module. Similarly reflexive left R–ideals are defined. A (two-sided)
R–ideal is called a reflexive R–ideal if it is reflexive as both left and right R–module.

Proposition 2.15. Let R be a right order in a quotient ring Q, and let I be a right R–ideal.
If I is a reflexive right R–ideal, then I = I∗+.
Moreover, if R is a two-sided order in Q, then the converse is also true.

Proof. We already know that I ⊆ I∗+. For the reverse inclusion, let q ∈ I∗+. Recall that
I∗ ∼= HomR(I, R). Let qf denote the element of I∗ corresponding to f ∈ HomR(I, R) under
this isomorphism. Define

q̂ : HomR(I, R) −→ R

f 7−→ qf · q.

Clearly, q̂ is an R–homomorphism. Since IR is reflexive, there exists a ∈ I such that
q̂(f) = f(a) for all f ∈ HomR(I, R). But we know that f(a) = qfa; so that qfa = qfq for
every f ∈ HomR(I, R). Since I∗ is a left R–ideal, we may choose qf to be regular; so that
q = a ∈ I. This establishes the first statement.
Now let R be a two-sided order in Q, and let I be a right R–ideal such that I = I∗+. Let

ϕ : HomR(I, R) → R be a homomorphism of left R–modules. There is an R–isomorphism
HomR(I, R) → I∗ which maps every f ∈ HomR(I, R) to an element in I∗, denoted by
qf , and whose inverse is given by y 7→ ŷ, where ŷ : I → R is defined by a 7→ ya.
Define ϕ′ : I∗ → R by ϕ′(y) = ϕ(ŷ) for all y ∈ I∗. Then ϕ′ is an R–homomorphism
of left R–modules. Since R is also a left order in Q and I∗ is a left R–ideal, we have
HomR(I∗, R) ∼= I∗+ = I. Let a be the element of I corresponding to ϕ′ under this
isomorphism. It follows that for every f ∈ HomR(I, R)

ϕ(f) = ϕ(q̂f ) = ϕ′(qf ) = qfa = f(a),

which completes the proof.

For a right R–ideal I, we always have I∗ = I∗+∗; so I∗ is always a reflexive left R–ideal
when R is a two-sided order in Q. Similarly, if J is a left R–ideal, then J+ is a reflexive right
R–ideal under the same assumption.
A right order R in Q whose R–ideals form a group under multiplication is called an

Asano right order. Thus an Asano right order is precisely a right order whose R–ideals are
all invertible.

Theorem 2.16. Let R be a right order in a quotient ring Q. Then the following conditions
on R are equivalent:

(1) R is an Asano right order.
(2) R is a maximal right order and every integral R–ideal is a projective right R–ideal.
(3) The R–ideals form an abelian group under multiplication.
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Proof. (1)⇒ (2): Let I be an R–ideal. Since, by assumption, I is invertible, we must have
Or(I) = Ol(I) = R. Since I is arbitrary, Proposition 2.12 shows that R is a maximal right
order. Also by Corollary 2.11, I is a projective right R–ideal.

(2) ⇒ (3): Since the integral R–ideals are all finitely generated (by Theorem 2.14) R
satisfies the ascending chain condition for integral R–ideals. Let M be a maximal proper
integral R–ideal. Notice that M is a maximal ideal of R. Then by Theorem 2.14, MM−1 =
R. LetM−1M = M . Multiplying both sides from right byM−1 givesM−1 = M−1MM−1 =
MM−1 = R. But this implies that R = MM−1 = MR = M , a contradiction. It follows
that M−1M 6= M . But R ⊇M−1M ⊃M , and M is maximal. Hence R = M−1M .
Next, let I be any integral R–ideal. By the maximal condition on proper integral R–ideals,

there exists a maximal proper integral R–idealM1 such that I ⊆M1. Then I ⊆M−1
1 I ⊆ R.

If I = M−1
1 I, then R = II−1 = M−1

1 II−1 = M−1
1 R = M−1

1 , a contradiction. Thus
I ⊂ M−1

1 I. If M−1
1 I 6= R, then M−1

1 I ⊆ M2 for some maximal integral R–ideal M2, and
M−1

1 I ⊂ M−1
2 M−1

1 I. Using the ascending chain condition, it follows that, for some integer
n, M−1

n . . .M−1
2 M−1

1 I = R, where the Mi are maximal. Hence I = M1M2 . . .Mn.
We have showed that each proper integral R–ideal is a product of maximal proper integral

R–ideals. Let M1, M2 be two maximal proper integral R–ideals. If we prove that M1M2 =
M2M1, then it follows that multiplication of integral R–ideals is commutative. It M1 = M2,
then there is nothing to prove. Thus assume that M1 6= M2. Since M1 ∩M2 ⊆ M1 and
M−1

1 M1 = R, we have M−1
1 (M1 ∩M2) ⊆ R. Since M2 is a prime ideal of R such that

M1 *M2, andM1
[
M−1

1 (M1∩M2)
]

= M1∩M2 ⊆M2, we must haveM−1
1 (M1∩M2) ⊆M2.

It follows that M1 ∩M2 = M1M2. By symmetry, we have M1M2 = M2M1.
Now let T be any R–ideal, and let J = {r ∈ R : rT ⊆ R}. There exists a unit element

q of Q such that qT ⊆ R. Let q = ab−1 for a, b ∈ R. As q is unit in Q, a is a regular
element of R. Also bT ⊆ T implies that T ⊆ b−1T , which leads to aT ⊆ ab−1T ⊆ R,
proving that J is an integral R–ideal. It follows that JT is also an integral R–ideal. Say
J = Q1 . . . Qm and ST = P1 . . . Pn,where the Pi, Qi are maximal integral R–ideals. Then
T = Q−1

m . . . Q−1
1 P1 . . . Pn. Thus multiplication of R–ideals is commutative.

The proof is now complete since the part (3)⇒ (1) is trivial.

Remark. If R is a two-sided order in Q, then R is an Asano right order if and only if it is
Asano left order, if and only if R is a maximal order whose R–ideals are projective as either
right or left R–module.

Corollary 2.17. Let R be a prime Goldie ring with quotient ring Q. Then the following
conditions are equivalent:

(1) R is an Asano order in Q.
(2) R is a maximal order in Q such that each non-zero two-sided ideal I of R is a projective

left and projective right R–module.
(3) R is a maximal right order and every two-sided ideal of R is reflexive.
(3)′ R is a maximal right order and every R–ideal is reflexive.
(4) Each non-zero two-sided ideal of R is invertible.

Proof. (1) ⇒ (2) follows directly from Theorem 2.16 (1) ⇒ (2) together with the above
remark.
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(2) ⇒ (3): This is clear since every projective right R–module is reflexive. Since R is a
maximal right order, the reflexivity of an R–ideal as a right R–module leads to its reflexivity
as a left R–module as well.

(3)⇒ (4): Let I be an ideal of R, and let J = I∗I. By assumption, J∗∗ = J . Let q ∈ Q
be such that qJ ⊆ R. Then qI∗ ⊆ I∗, and so q ∈ Ol(I∗) = R. It follows that J∗ = R.
This gives that J = J∗∗ = R∗ = R. It can also be poved that II∗ = R. Therefore I is an
invertible R–ideal.

(4) ⇒ (1): Let T be any R–ideal and set J = {r ∈ R : rT ⊆ R}. As in the proof of
(2) ⇒ (3) in Theorem 2.16, both J and JT are integral R–ideals. Then by assumption, J
and JT are invertible. It follows that

[(JT )−1J ]T = R.

On the other hand since JT (JT )−1J = J , we have

T [(JT )−1J ] = R.

This gives that T is invertible.

Theorem 2.18. Let R be an Asano right order. Then the following statements hold:
(i)R satisfies the accending chain condition on integral R–ideals.
(ii) Prime integral R–ideals are maximal.
(iii) Every integral R–ideal is a unique product of primes.
(iv) There are only a finite number of integral R-ideals containing a fixed integral R–ideal.
(v) For each R–ideal T , TT−1 = T−1T = R.
(vi) Every R–ideal is finitely generated and projective both as a right ideal and as a left

ideal.

Proof. Only part (iv) needs to be proved since the other statements are easily obtained from
the proof of Theorem 2.16. Let I be a fixed proper integral R–ideal. By (ii) and (iii),
there exist distict maximal ideals M1, . . . ,Mn of R and positive integers t1, . . . , tn such that
I = Mt1

1 . . .M
tn
n . Let J be a proper integral R–ideal containing I. Let J = Qs1

1 . . .Qsm
m

for some distinct maximal ideals Q1, . . . ,Qm of R and positive integers s1, . . . , sm. Since
for every i = 1, . . . ,m, Qi ⊇ J ⊇ I = Mt1

1 . . .M
tn
n and Qi is a prime ideal of R, we have

Qi = Mj for some j = 1, . . . , n. It follows that {Q1, . . . ,Qm} ⊆ {M1, . . . ,Mn}. Without
loss of generality, assume that Q1 = M1. If s1 > t1, then Qs1−t1

1 Qs2
2 . . .Qsm

m ⊇Mt2
2 . . .M

tn
n ,

a contradiction since s1 − t1 6= 0 and Q1 /∈ {M2, . . . ,Mn}. Therefore s1 ≤ t1. Similarly, if
Qi = Mj, we must have si ≤ tj. This means that there is only a finite number of choices
to make up an integral R–ideal containing I.

Let R be an Asano right order, and let I be a projective right R–ideal with Ol(I) = S.
Then by Theorem 2.14, II−1 = S. Now let T = I−1I. Then T is an integral R–ideal, and
so T−1T = R. Thus T−1I−1I = R. This implies that T−1I−1 ⊆ I−1, or in other words,
T−1 ⊆ Ol(I−1) = R. But we also have R ⊆ T−1, which gives that T−1 = R; so that
I−1I = R. Now define maps

T1 7→ IT1I
−1; T2 7→ I−1T2I
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from R–ideals into S–ideals and from S–ideals into R–ideals, respectively. It is easy to check
that these maps are inverses of each other, giving a one-to-one correspondence between R–
ideals and S–ideals.

Proposition 2.19. Let R be an Asano right order, and let I be a projective right R–ideal.
Then Ol(I) is also an Asano right order.

Proof. Since correspondence given before the proposition clearly preserves products and in-
verses, the S–ideals form a group isomorphic to the group of R–ideals. Therefore S is an
Asano right order.

A ring R is called right (resp. left) hereditary if each right (resp. left) ideal of R is a
projective right (resp. left) R–module. We say that R is hereditary if it is both right and
left hereditary. If R is a hereditary Noetherian prime ring with the right (and hence left)
quotient ring Q which is a maximal order in Q, then R is called a Dedekind prime ring. Thus,
it follows, from Corollary 2.17, that a ring R is a Dedekind prime ring if and only if R is a
hereditary Noetherian prime ring which is an Asano order in its quotient ring.
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