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O Node vs. edge percolation

O Resilience of randomly vs. preferentially
grown networks

O Resilience in real-world networks



network resilience

O Q: If a given fraction of nodes or edges are removed...
O how large are the connected components?
O what is the average distance between nodes in the components

O Related to percolation (previously studied on lattices):




edge percolation

O Edge removal

O bond percolation: each edge is removed with probability
(1-p)
O corresponds to random failure of links

O targeted attack: causing the most damage to the network
with the removal of the fewest edges

O strategies: remove edges that are most likely to break apart the
network or lengthen the average shortest path

O e.g. usually edges with high betweenness



reminder: percolation in ER graphs

* As the average degree increases to
z =1, a giant component suddenly
appears

« Edge removal is the opposite
process — at some point the
average degree drops below 1 and
the network becomes disconnected
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In this network each node has average degree 4.64, if you removed 25% of the
edges, by how much would you reduce the giant component?



edge percolation

50 nodes, 116 edges, average degree 4.64

after 25 % edge removal

76 edges, average degree 3.04 — still well above
percolation threshold



node removal and site percolation

Ordinary Site Percolation on Lattices:
Fill in each site (site percolation) with probability p

® low p: small islands

m p critical: giant component forms, occupying finite fraction of infinite
latfice.

p above critical value: giant component occupies an increasingly larger
portion of the graph

http://www.ladamic.com/netlearn/NetLogob501/LatticePercolation.html



Percolation on networks
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O Percolation can be extended to networks ot arbitrary
topology.

O We say the network percolates when a giant
component forms.



Random attack on scale-free networks

O Example: gnutella filesharing network, 20%
of nodes removed at random
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Targeted attacks on power-law networks

O Power-law networks are vulnerable to targeted attack

O Example: same gnutella network, 22 most connected nodes
removed (2.8% of the nodes)
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OWhy is removing high-degree nodes
more effectivee¢
O it removes more nodes
O it removes more edges
O it targets the periphery of the network



random failures vs. altacks

O O
) Attack © O ') o o
Exponential s o) OO O O O o
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Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-Ldszl6 Barabdsi.
Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.himl



effect on path length
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applied to empirical networks
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Assortativity

O Social networks are assortative:

O the gregarious people associate with other
gregarious people

O the loners associate with other loners

O The Internet is disassortative:

Disassortative:
hubs are in the
periphery

Assortative:
hubs connect to hubs Random



Correlation profile of a network

O Detects preferences in linking of nodes to
each other based on their connectivity

O Measure N(k,,k ) — the number of edges
between nodes with connectivities k, and k;

O Compare it to N, (kj,k,) — the same property
In a properly randomized network

O \Very noise-tolerant with respect to both false
positives and negatives



Degree correlation profiles: 2D
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source: Sergei Maslov



Average degree of neighbors

O Pastor-Satorras and Vespignani: 2D plot
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Single number

O cor(deg(i),deg(j)) over all edges {ij}

=-0.189

pinternet

The Pearson correlation coefficient of nodes on each
side on an edge



assortative mixing more generally

O Assortativity is not limited to degree-degree
correlations other attributes
O social networks: race, income, gender, age
O food webs: herbivores, carnivores

O internet: high level connectivity providers, ISPs,
consumers

O Tendency of like individuals to associate =
‘homophily’



will a network with positive or negative degree assortativity
be more resilient to attack?

assortative disassortative



Assortativity and resilience

assortative disassortative




Is it really that simple?

O Internet?

O terrorist/criminal networks?



O Electric power flows simultaneously through multiple paths in
the network.

O For visualization of the power grid, check out NPR'’s interactive
visualization:
http://www.npr.org/templates/story/story.php?
storyld=110997398




Cascading failures

O Each node has a load and a capacity that
says how much load it can tolerate.

O \When a node is removed from the network
its load is redistributed to the remaining
nodes.

O If the load of a node exceeds its capacity,
then the node fails



Case study: US power grid

Modeling cascading failures in the North American power grid
R. Kinney, P. Crucitti, R. Albert, and V. Latorq, Eur. Phys. B, 2005

O Nodes: generators, transmission substations,
distribution substations

O Edges: high-voltage transmission lines

014099 substations:
O N; 1633 generators,
O N, 2179 distribution substations
O N the rest transmission substations

019,657 edges



Degree distribution is exponential
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Efficiency of a path

O efficiency e [0,1], O if no electricity flows between two
endpoints, 1 if the transmission lines are working
perfectly

O harmonic composition for a path

~—1

1
epath = Z
eages eedge

m path A, 2 edges, each with €=0.5, ey, = 1/4

m path B, 3 edges, each with e=0.5 e, = 1/6

m path C, 2 edges, one with e=0 the other with e=1, e, =0
® simplifying assumption: electricity flows along most

efficient path




Efficiency of the network

O Efficiency of the network:

O average over the most efficient paths from each
generator to each distribution station

S I NGND Z Z €i;

1€Ga jEGpD

g; Is the efficiency of the most efficient path between i and |



capacity and node failure

O Assume capacity of each node is proportional to initial load
C;i=al;(0) i=1,2.N
®m L represents the weighted betweenness of a node

® Each neighbor of a node is impacted as follows

ei;i(t+1) = €ij (0)/uﬂ if L;(t) > C; '0ad exceeds capacity
7 ei; (0) if L;(t) < C;
® Load is distributed to other nodes/edges

®m The greater a (reserve capacity), the less suscepftible the
network to cascading failures due to node failure



power grid structural resilience

O efficiency is impacted the most if the node removed is the one
with the highest load

Source: Modeling cascading failures in the North American power grid; R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur.

Phys. B, 2005
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0 Approx. how much higher would the
capacity of a node need to be relative
to the initial load in order for the network
to be efficiente (remember capacity C =
o * L(0), the initial load).



power grid structural resilience

O efficiency is impacted the most if the node removed is the one
with the highest load

Source: Modeling cascading failures in the North American power grid; R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur.

Phys. B, 2005
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recap: network resilience

Oresilience depends on topology

O also depends on what happens when a node
fails
O e.g. in power grid load is redistributed



