

SNA 8: network resilience

Lada Adamic

Outline

- Node vs. edge percolation
- Resilience of randomly vs. preferentially grown networks
- Resilience in real-world networks

network resilience

- Q: If a given fraction of nodes or edges are removed...
 - how large are the connected components?
 - what is the average distance between nodes in the components

Related to percolation (previously studied on lattices):

edge percolation

Edge removal

- bond percolation: each edge is removed with probability (1-p)
 - corresponds to random failure of links
- targeted attack: causing the most damage to the network with the removal of the fewest edges
 - strategies: remove edges that are most likely to break apart the network or lengthen the average shortest path
 - e.g. usually edges with high betweenness

reminder: percolation in ER graphs

average degree

- As the average degree increases to z = 1, a giant component suddenly appears
- Edge removal is the opposite process – at some point the average degree drops below 1 and the network becomes disconnected

Quiz Q:

In this network each node has average degree 4.64, if you removed 25% of the edges, by how much would you reduce the giant component?

edge percolation

50 nodes, 116 edges, average degree 4.64 after 25 % edge removal 76 edges, average degree 3.04 – still well above percolation threshold

node removal and site percolation

Ordinary Site Percolation on Lattices: Fill in each site (site percolation) with probability p

- Iow p: small islands
- p critical: giant component forms, occupying finite fraction of infinite lattice.

p above critical value: giant component occupies an increasingly larger portion of the graph

http://www.ladamic.com/netlearn/NetLogo501/LatticePercolation.html

Percolation on networks

- Percolation can be extended to networks of arbitrary topology.
- We say the network percolates when a giant component forms.

Random attack on scale-free networks

Example: gnutella filesharing network, 20% of nodes removed at random

Targeted attacks on power-law networks

- Power-law networks are vulnerable to targeted attack
- Example: same gnutella network, 22 most connected nodes removed (2.8% of the nodes)

574 nodes in giant component

301 nodes in giant component

Quiz Q:

Why is removing high-degree nodes more effective?
it removes more nodes
it removes more edges
it targets the periphery of the network

random failures vs. attacks

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási. Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.html

effect on path length

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási. Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.html

applied to empirical networks

Source: Error and attack tolerance of complex networks. Réka Albert, Hawoong Jeong and Albert-László Barabási. Nature 406, 378-382(27 July 2000); http://www.nature.com/nature/journal/v406/n6794/abs/406378A0.html

Assortativity

Social networks are assortative:

- the gregarious people associate with other gregarious people
- the loners associate with other loners
- The Internet is disassortative:

Assortative: hubs connect to hubs

Random

periphery

Correlation profile of a network

- Detects preferences in linking of nodes to each other based on their connectivity
- Measure N(k₀,k₁) the number of edges between nodes with connectivities k₀ and k₁
- Compare it to N_r(k₀,k₁) the same property in a properly randomized network
- Very noise-tolerant with respect to both false positives and negatives

Degree correlation profiles: 2D

source: Sergei Maslov

Average degree of neighbors

Pastor-Satorras and Vespignani: 2D plot

Single number

cor(deg(i),deg(j)) over all edges {ij}

$$\rho_{internet}$$
 = -0.189

The Pearson correlation coefficient of nodes on each side on an edge

assortative mixing more generally

- Assortativity is not limited to degree-degree correlations other attributes
 - social networks: race, income, gender, age
 - food webs: herbivores, carnivores
 - internet: high level connectivity providers, ISPs, consumers

Tendency of like individuals to associate = 'homophily'

Quiz Q:

will a network with positive or negative degree assortativity be more resilient to attack?

Assortativity and resilience

assortative

disassortative

Is it really that simple?

□ Internet?

terrorist/criminal networks?

Power grid

- Electric power flows simultaneously through multiple paths in the network.
- For visualization of the power grid, check out NPR's interactive visualization: <u>http://www.npr.org/templates/story/story.php?</u> <u>storyId=110997398</u>

Cascading failures

- Each node has a load and a capacity that says how much load it can tolerate.
- When a node is removed from the network its load is redistributed to the remaining nodes.
- If the load of a node exceeds its capacity, then the node fails

Case study: US power grid

Modeling cascading failures in the North American power grid R. Kinney, P. Crucitti, R. Albert, and V. Latora, Eur. Phys. B, 2005

- Nodes: generators, transmission substations, distribution substations
- Edges: high-voltage transmission lines
- 14099 substations:
 - \square N_G 1633 generators,
 - \square N_D 2179 distribution substations
 - \square N_T the rest transmission substations
- □ 19,657 edges

Degree distribution is exponential

 $P(k > K) \approx \exp(-0.5K)$

Efficiency of a path

efficiency e [0,1], 0 if no electricity flows between two endpoints, 1 if the transmission lines are working perfectly

harmonic composition for a path

$$e_{path} = \left[\sum_{edges} \frac{1}{e_{edge}}\right]^{-1}$$

path A, 2 edges, each with e=0.5, e_{path} = 1/4
 path B, 3 edges, each with e=0.5 e_{path} = 1/6
 path C, 2 edges, one with e=0 the other with e=1, e_{path} = 0
 simplifying assumption: electricity flows along most efficient path

Efficiency of the network

Efficiency of the network:

average over the most efficient paths from each generator to each distribution station

$$E = \frac{1}{N_G N_D} \sum_{i \in G_G} \sum_{j \in G_D} \epsilon_{ij}$$

 ε_{ii} is the efficiency of the most efficient path between *i* and *j*

capacity and node failure

Assume capacity of each node is proportional to initial load

$$C_i = \alpha L_i(0) \quad i = 1, 2..N$$

L represents the weighted betweenness of a node

Each neighbor of a node is impacted as follows

$$e_{ij}(t+1) = \begin{cases} e_{ij}(0) / \frac{L_i(t)}{C_i} \text{ if } L_i(t) > C_i \\ e_{ij}(0) \text{ if } L_i(t) \le C_i \end{cases} \text{ load exceeds capacity}$$

- Load is distributed to other nodes/edges
- The greater a (reserve capacity), the less susceptible the network to cascading failures due to node failure

power grid structural resilience

efficiency is impacted the most if the node removed is the one with the highest load

highest load generator/transmission station removed

Source: Modeling cascading failures in the North American power grid; R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur. Phys. B, 2005

Quiz Q:

Approx. how much higher would the capacity of a node need to be relative to the initial load in order for the network to be efficient? (remember capacity C = α * L(0), the initial load).

power grid structural resilience

efficiency is impacted the most if the node removed is the one with the highest load

highest load generator/transmission station removed

Source: Modeling cascading failures in the North American power grid; R. Kinney, P. Crucitti, R. Albert, V. Latora, Eur. Phys. B, 2005

recap: network resilience

resilience depends on topology

also depends on what happens when a node fails

• e.g. in power grid load is redistributed