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Abstract. Wildland and cropland fires, which differ considerably in fire regime characteristics, have often been
evaluated jointly to estimate regional or global fire regimes using satellite-based fire activity data. We hypothesised that
excluding cropland fires will change the output of the models regarding the drivers of natural fire activity. We modelled

MODIS fire activity data of western and southern Turkey for the years 2000–2015 using binomial generalised linear
models in which many climatic, anthropogenic and geographic factors were included as predictor variables. For
modelling, we used different datasets created by the exclusion of various cropland and vegetation land cover classes.
More fire activity was observed as the number of cropland-dominated cells increased in a dataset. The explained deviance

(%) of the binomial GLM differed substantially in the separate datasets for most of the variables. Moreover, excluding
croplands gradually from the overall dataset resulted in a substantial decrease in the explained deviance (%) in the models
for all variables. The results suggest that cropland fires have a significant effect on the output of fire regime models.

Therefore, a clear distinction should be drawn between wildland and cropland fires in such models for a better
understanding of natural fire activity.
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Introduction

Croplands constitute 11% of Earth’s terrestrial surface, corre-
sponding to nearly 40% of the Earth’s surface suitable for crop

production (Bruinsma 2003). The increasing demand for food
supply is expected to impose an increase in crop production in
the near future (Godfray et al. 2010; Tilman et al. 2011). Fire has

beenwidely used in agricultural management during harvesting,
post-harvesting or pre-planting periods since the Neolithic
Revolution (Turner et al. 2010). Such agricultural fires are
widespread, comprising,10% of total fires on Earth (Korontzi

et al. 2006), and are among the principal causes of wildland fires
(Leone et al. 2009; Ganteaume et al. 2013). Despite increasing
research on fire ecology and fire regimes during the last two

decades, the patterns of agricultural fires have remained unclear
(Tulbure et al. 2011). Themost studied properties of agricultural
fires are their contribution to air pollution (Stohl et al. 2006;

Li et al. 2010) and atmospheric gas emissions (Andreae and
Merlet 2001; van der Werf et al. 2010; McCarty 2011; McCarty
et al. 2012).

Owing to development in satellite fire detection (Justice et al.
2002; Giglio et al. 2003), we have been able to observe fires
anywhere on Earth since 2000. Using this technology, we have
been able to document and understand fire regimes on a regional

and global scale (Chuvieco et al. 2008; Archibald et al. 2013;
Murphy et al. 2013; Pausas and Ribeiro 2013). Accordingly, a
large number of cropland fires documented by satellite data have

also been acknowledged in many regions (Korontzi et al. 2006;
Chuvieco et al. 2008).

However, cropland fires have often been ignored in studies

determining the drivers of fire activity and regimes on a regional
or global basis, especially if satellite fire activity data are used
(Murphy et al. 2013; Pausas and Ribeiro 2013; Curt et al. 2015).
Consequently, in most cases, cropland and wildland fires have

been evaluated jointly. However, wildland and cropland fires
clearly differ in fire regime characteristics, such as season,
frequency and severity of fire (Le Page et al. 2010; Amraoui

et al. 2013; Benali et al. 2017).Wildland fires are mostly related
to the weather and climatic factors, and have a relatively shorter
fire season, whereas cropland fires are set by humans and have

mostly longer fire season, depending on the type of the agricul-
ture (Chuvieco et al. 2008). Since such differences exist inmany
regions, lack of differentiation between cropland and wildland

fires in models of fire regimes may lead to an under-estimation
or over-estimation of natural fire regimes. This drawback would
also create a problem in predicting future fire regimes under
different climate change scenarios.
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To date, several approaches have been used to detect crop-
land fires from satellite fire activity data. One approach con-
siders the characteristics of fires or fire regimes, such as the

frequency of fires, the duration of individual fires, the length of
fire season and inter-annual variability in fire seasons. This
approach has been used to define fire activity dominated by

cropland fires (Chuvieco et al. 2008; Archibald et al. 2013) or to
classify individual fires as cropland fires (Amraoui et al. 2013).
Using this approach, for example, Chuvieco et al. (2008) were

able to reveal the relative importance of cropland fires in
different biomes and ecoregions. It is also possible to monitor
and detect cropland fires by coupling satellite fire activity data

and a land cover dataset (Korontzi et al. 2006; Le Page et al.

2010; van der Werf et al. 2010; Tulbure et al. 2011; Magi et al.
2012; Murphy et al. 2013; Curt et al. 2015; Rabin et al. 2015;
Hall et al. 2016;Xie et al. 2016). The latter approach allows us to

detect cropland fires from satellite data by considering fire
activity on croplands. Korontzi et al. (2006) showed that global
agricultural fire activity data revealed with this methodology is

consistent with regional agricultural practices and crop produc-
tion data, and therefore, is reliable.

The aim of our study is to understand the effect of consider-

ing cropland fires on the results of modelling of drivers of
natural fire activity using satellite fire data. Considering the
difference of cropland fires in frequency and season in compari-
son with wildland fires, we hypothesised that excluding crop-

land fires will change model output significantly. To test this
hypothesis, we selected a region comprising various fire
regimes, including wildland and cropland fires in the Mediter-

ranean Basin, and used a modelling approach based on the
exclusion of various vegetation and cropland land cover classes.

Methods

Study area

The study area is located in western and southern regions of
Turkey and covers 199 935 km2 in the eastern Mediterranean

Basin (between 35.8 and 40.48N and 26.2 and 36.88E). The
climate is typical Mediterranean, with dry summers and mild
winters. Moreover, it shows substantial variability in tempera-

ture and precipitation within the study area (Bekar 2016).
Mediterranean Turkey includes various vegetation types, such
as sclerophyllous shrublands, coniferous forests (Pinus brutia,

P. nigra, Cedrus libani, Abies cilicica) and sub-alpine grass-
lands (Atalay 1994). Moreover, the study area has been sub-
jected to intense human activity for millennia, resulting in a

significant impact on the landscape (Kaniewski et al. 2007;
S-ekercioğlu et al. 2011), including human-induced fires for
transforming naturally vegetated areas to pastures and croplands

(Kaniewski et al. 2008).

Data

We used an 8-day summary of fire activity data for cells,1 km2

in size (MOD14A2) obtained fromModerate Resolution Imaging
Spectroradiometer (MODIS) instruments on the Terra satellite

for the years 2000–2015 (Fig. 1). MODIS fire activity data have
been proved a good proxy of active fires on Earth (Csiszar et al.
2006; Pausas and Ribeiro 2013).

We used several variables to explain the distribution of fire
activity data throughout the study area, including climatic,
anthropogenic and topographic variables (Table 1; Fig. 2). We

obtained the agricultural land area size, livestock population
size and human population size from the Turkish Statistical
Institute at the district level (minimum, mean, and maximum

district sizes were 5524, 11761, and 20177 km2) for the year
2015 (see http://www.tuik.gov.tr/, accessed 31 July 2016), and
OpenStreetMap road network data for 2016 (Haklay andWeber
2008), as indicators of the human impact. To transform district-

level data into GIS layers, data were first imported into ArcGIS
(ver. 10.3.1, ESRI, Redlands, CA, USA). Subsequently, an
interpolation technique was applied using the Inverse Distance

Weighting tool in ArcGIS. GlobCover land cover data was
transformed into ,1 km2 (30 arc seconds) using ArcGIS

Fire activity

0
1
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Fig. 1. Distribution and frequency of fire activity in the study area (based on Moderate Resolution Imaging Spectro-

radiometer (MODIS) fire activity data for years 2000–2015).
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resample tool. For climate data, we used 19 bioclimatic vari-
ables from the WorldClim database (BIOCLIM; Hijmans et al.

2005), and monthly potential evapotranspiration (PET) vari-
ables from the Global Aridity and PET databases (Consortium
for Spatial Information 2016) for the period between 1960 and

1990. The Normalized Difference Vegetation Index (NDVI)
dataset for 2015 (MOD13A3; National Aeronautics and Space
Administration 2016) was used as a proxy of productivity and

vegetation cover. Geographical variables, such as elevation,
slope, solar radiation and terrain ruggedness index, were derived
from the digital elevationmodel from theConsortium for Spatial

Information database (Jarvis et al. 2008).
GlobCover land cover data (Bontemps et al. 2011) were used

to create separate datasets by including or excluding cells
(pixels) dominated by croplands or vegetation (based on United

Nations Land Cover Classification System; Fig. 3). We used a
simple exclusion method to create datasets, similar to the
common technique of excluding cloud pixels from remotely

sensed data (e.g. Zhu andWoodcock 2012). To create dataset 2,
for example, 1 � 1-km cells classified as ‘cropland’ and
‘vegetation–cropland mosaic’ were excluded from dataset 1,

which is the dataset that includes all cells in the study area. The
same procedure was applied for creating the other datasets
(Table 2). Dataset 2 and dataset 3 were created by excluding

cropland-dominated cells in dataset 1, whereas dataset 4 and
dataset 5were created by excluding vegetation-dominated cells.
As a consequence of the exclusion process, we obtained five
datasets that differ in the land cover type that was included

(Table 2). That is, the overall dataset (dataset 1), vegetation-
dominated datasets (dataset 2 and dataset 3) and cropland-
dominated datasets (dataset 4 and dataset 5).

Modelling

We modelled the contribution of anthropogenic, climatic, geo-
graphic factors and productivity to explain fire activity in the
study area for each dataset. We considered two types of fire

activity variables: the number of fires (count data with discrete
structure) and the presence of fire (presence and absence data

with binary structure) in the entire study period (years between
2000 and 2015). We used generalised linear models (GLMs) to
elucidate the relative contribution of different variables in

explaining fire activity in the study area. GLMs have many
advantages over standard linear models or regression approa-
ches; in particular, they are more flexible by assuming various

families of probability distributions (Guisan et al. 2002; O’Hara
and Kotze 2010). As the fire activity data had excess zeros, we
used a zero-inflated negative binomial generalised linear model

(ZINB-GLM) to handle zeros and over-dispersion in the count
data (Zeileis et al. 2008; Brown et al. 2015). For presence and
absence data, we used a binomial GLM.However, as preliminary
analyses showed that ZINB-GLMs and binomial GLMs yielded

similar results (Bekar 2016), we presented and interpreted only
the results of the binomialGLM, as a simplermodelling approach
(ZINB-GLM results are also given in Table S1). We considered

the percentage of the explained deviance as the main model
output when comparing different datasets for each variable,
because allmodels yielded significant results (P, 0.0001 inmost

cases), even though the effect size is small due to the very large
number of cells in the datasets.

Using the exclusion procedure summarised above, we com-

pared model outputs for each variable in different datasets to
reveal the effect of cropland fires on model results and the
relative contribution of each variable to fire activity. All analy-
ses were conducted using the R statistical software (ver. 3.2.0; R

Foundation for Statistical Computing, Vienna, Austria, see
https://www.R-project.org/, accessed 31 July 2016), and
ZINB-GLMs were performed using the pscl package in R

(Jackman et al. 2015).

Results

In the study area, fire activity was observed in 7.4% of the cells
(based on dataset 1). The percentage of cells inwhich fire activity

Table 1. Variables used in the models

All data were transformed to GIS layers at ,1 km2 pixel resolution using ArcGIS. BIOCLIM, bioclimatic variables from the WorldClim database; PET,

potential evapotranspiration; NDVI, Normalised Difference Vegetation Index

Variable Description Original resolution Format

Climatic variables

BIOCLIM Includes 19 bioclimatic variables (8C for temperature, mm for precipitation) 1� 1 km Raster

PET Includes 12 monthly PET variables (mm) 1� 1 km Raster

Anthropogenic variables

Human population size Number of inhabitants District Excel

Livestock population size Total number of sheep, goats, and cattle District Excel

Agricultural area size Agricultural area (decare) District Excel

Road network Total length of roads (km) – Polyline

Geographic variables

Slope Slope (8) 90m Raster

Aspect Aspect relative to north 90m Raster

Elevation Altitude from sea level (m) 1� 1 km Raster

Ruggedness Index Terrain Ruggedness Index (m) 90m Raster

Solar radiation Annual insolation (Whm�2) 90m Raster

Productivity and vegetation variables

NDVI Includes 12 monthly NDVI variables 1� 1 km Raster

GlobCover Categorical land cover data 300m Raster
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was recorded decreased dramatically both in dataset 2 (3.6%) and
dataset 3 (3.7%),whereas it increased slightly in dataset 4 (8.8%)
andmarkedly in dataset 5 (12.0%) (Table 3). Consequently, both

cropland and wildland fires were present in the study area;
however, relativelymore fire activitywas observed as the number
of cropland-dominated cells increased in a dataset.

The explained deviance (%) of the binomial GLM substan-
tially differed in different datasets for most of the variables
(Table 3). In dataset 2 and dataset 3, mean temperature of the
wettest quarter (BIO 8) and the annual mean temperature (BIO

1) were the most explanatory climatic variables, whereas in
dataset 4 and dataset 5, the most explanatory variables were

mean temperature of the driest quarter (BIO 9) and mean
temperature of the warmest quarter (BIO 10). The mean tem-
perature of the coldest quarter (BIO 11) also explained a

significant proportion of deviance in many datasets. The
explained deviance (%) of the model of the human population
size was twice as high in dataset 4 as in dataset 2 and dataset 3.

Similarly, the explained deviance of the slope variable was also
twice as high in dataset 4 and dataset 5 as in dataset 2 and
dataset 3. In all datasets, the most explanatory productivity
variable was the NDVI of December. NDVI values of December

in dataset4 and dataset5 were comparable with those in data-

set1; however, NDVI values of July in the same datasets were

BIO 1
High: 19.8

Low: �0.5

Elevation
High: 3351

Low: �42

(a)

(b)

December NDVI
High: 9726

Low: �2000

(c)

(d )

Population size
High: 787 015

Low: 1455

Fig. 2. Distribution of some of the explanatory variables representing climatic, anthropogenic, and topographic variables. (a) Annual mean temperature

(BIO 1; 8C), (b) elevation (m), (c) human population size, and (d) the Normalized Difference Vegetation Index (NDVI) of December.

Cropland

Vegetation–cropland mosaic
Vegetation
Other (water, cities)

Cropland–vegetation mosaic

Fig. 3. Distribution of land cover classes (based on GlobCover land cover data).
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remarkably higher than those in dataset1. Moreover, the
explained deviance (%) values of NDVI variables clearly

differed between cropland-dominated and vegetation-dominated
datasets (Table 3). Elevation was among the variables that have
the most explained deviance (%) in all datasets except dataset5,

as croplands are concentrated at lower elevations (Pekin 2016),
and fire activity in natural vegetation is related to elevation
(Bekar 2016) in the study region.

Excluding croplands gradually from the overall dataset

resulted in a substantial decrease of the explained deviance
(%) in the models for all variables. The decrease reached up to
8% in the mean temperature of the driest quarter (BIO9) and the

mean temperature of the warmest quarter (BIO10), and 7% in
the annual mean temperature (BIO1) and slope. On the contrary,

excluding vegetation-dominated cells resulted in an increase of
the explained deviance (%) in most variables in dataset 4.

However, dataset 5, which includes only croplands, had com-
parable or lower explained deviance (%) values than dataset 1.

Discussion

Our study showed that the explanatory power of predictor
variables of fire activity data vary to a considerable extent in
different datasets. The most apparent differences were between

datasets including vegetation-dominated and cropland-dominated
cells. This implies that cropland fires substantially affect the
output of models including satellite fire activity data.

The possible problems that can be created by human-induced
cropland fires in fire-regime modelling have already been

Table 2. GlobCover land cover classes included in different datasets

‘Cropland’ refers to the cells (1 km2) classified as irrigated or rain-fed cropland (without any vegetation), and ‘vegetation’ indicates the cells that

are composed completely of vegetation and do not include any cropland. ‘Cropland–vegetationmosaic’ includes 50–70%cropland and 20–50%

vegetation. ‘Vegetation–cropland mosaic’ includes 50–70% vegetation and 20–50% cropland. ‘þ’ and ‘–’ indicate that a land cover class in a

dataset was included or excluded

Land cover class

Cropland Cropland–vegetation

mosaic

Vegetation–cropland

mosaic

Vegetation

The overall dataset

Dataset 1 þ þ þ þ
Vegetation-dominated datasets

Dataset 2 � � þ þ
Dataset 3 � � � þ

Cropland-dominated datasets

Dataset 4 þ þ þ �
Dataset 5 þ � � �

Table 3. Explaineddeviance (%) values (based on binomial generalised linearmodels, GLMs) for the best predictors of fire activity for each variable

group in the study area for each dataset

Tmean refers to themean temperature. Allmodels are statistically significant (P, 0.0001 except forNDVI-July in dataset2, whereP¼ 0.001). Total fire activity

is the number of cells where fire activity was observed for years 2000–2015. Number of cells is the total number of cells within the study area in the

corresponding dataset

Overall dataset Vegetation-dominated datasets Cropland-dominated datasets

Variables Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Climatic variables

Tmean – annual (BIO 1) 19.23 13.55 12.34 21.38 11.05

Tmean – wettest quarter (BIO 8) 15.81 14.42 13.62 16.44 6.99

Tmean – driest quarter (BIO 9) 19.35 12.83 11.32 21.62 12.35

Tmean – warmest quarter (BIO 10) 19.38 12.69 11.43 21.54 12.4

Tmean – coldest quarter (BIO 11) 15.37 11.39 10.67 17.17 8.02

Anthropogenic variables

Human population size 8.76 5.26 4.00 10.48 4.48

Livestock population size 1.35 0.98 0.94 1.80 2.92

Geographic variables

Elevation 14.81 11.81 11.56 15.28 8.69

Slope 11.70 5.27 4.55 14.54 9.07

Productivity variables

NDVI-July 0.46 0.02 0.09 3.45 4.62

NDVI-December 5.15 1.38 2.15 4.98 4.47

Total fire activity 17168 5148 3234 12566 3157

Number of cells 231985 142093 88232 142209 26246
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acknowledged (Archibald et al. 2013). However, the exclusion of
agricultural fires in large-scale studies is problematic for fire
modelling studies, because it is difficult to identify every agricul-

tural practice on Earth by means of characteristics of fires.
Characteristics of agricultural fires, such as season and duration,
vary regionally, and a great deal of effort is required to distinguish

agricultural fires from wildland fires globally using this method-
ology. Even though agricultural fires can be easily excluded from
analyses when official fire statistics from national inventories are

used, such a procedure cannot be applied in all cases, especially
with fire activity data obtained from remote sensing. For exam-
ple, Giglio et al. (2006) found that low fire radiative power is
associated not only with areas of extensive croplands but also

with heavily forested areas in some parts of the world.
Using land cover maps obtained from satellites presents a

good solution to this problem. Recently, the increasing reliabil-

ity of land cover databases has made them available for
differentiating agricultural fires from wildland fires (Tulbure
et al. 2011; Amraoui et al. 2013; Knorr et al. 2014). Similar

approaches have successfully been used to estimate the percent-
age of burned areas in land cover classes (van der Werf et al.
2010) and to estimate post-fire regeneration of natural land-

scapes using satellite remote sensing data (Abdul Malak et al.

2015). Another approach may be the inclusion of agricultural
areas within vegetation variables as a separate land cover class
in order to understand the fire regimes of anthropogenic and

natural origin in a region (e.g. Curt et al. 2015). However, such
an approach will leave unanswered the question of what the
drivers of natural fire regimes are, because this cannot be

inferred from models including both agricultural lands and
vegetation-covered areas. The issue of cropland fires may also
affect the conclusions of future studies on fire regimes in

relation to climate change, even if these studies are conducted
at a lower resolution (e.g. Krawchuk et al. 2009). Since wildland
and agricultural fires clearly differ in fire regime characteristics,
such as intensity and season (Korontzi et al. 2006; Le Page et al.

2010; Benali et al. 2017), the differentiation of wildland and
cropland fires in the evaluation of the drivers of fire regimes
has the potential to improve fire regime models. Our study

proved that land cover databases could be used for the purpose
of differentiating agricultural fires from wildland fires when
satellite-based fire activity data are used. The observed differ-

ences in the explained deviances of predictor variables in our
models dominated by different land cover classes suggest that
drivers of natural and agricultural fire activity can be distin-

guished by incorporating land cover.
In conclusion, our results suggest that cropland fires have a

significant effect on the output of fire regimemodels. Therefore,
a clear distinction should be drawn between wildland and

cropland fires in such models for a better understanding of
natural fire activity.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

We thank Alper Ertürk and Çağas-an Karacaoğlu for their advice on data
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