

Germination Response of Three Smoke- and Karrikinolide-Responsive Species to Gibberellic Acid and Reactive Oxygen Species

Authors: Çatav, Şükrü Serter, Akbaş, Kenan, Tavşanoğlu, Çağatay, and Küçükakyüz, Köksal

Source: Annales Botanici Fennici, 61(1): 31-40

Published By: Finnish Zoological and Botanical Publishing Board

URL: https://doi.org/10.5735/085.061.0106

BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at <u>www.bioone.org/terms-of-use</u>.

Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Germination response of three smoke- and karrikinolideresponsive species to gibberellic acid and reactive oxygen species

Şükrü Serter Çatav^{1,*}, Kenan Akbaş², Çağatay Tavşanoğlu³ & Köksal Küçükakyüz¹

- ¹⁾ Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, TR-48000 Kötekli, Muğla, Turkey (*corresponding author's e-mail: sertercatav@mu.edu.tr)
- ²⁾ Department of Herbal and Animal Production, Köyceğiz Vocational School, Muğla Sıtkı Koçman University, TR-48800 Köyceğiz, Muğla, Turkey
- ³⁾ Division of Ecology, Department of Biology, Hacettepe University, TR-06800 Beytepe, Ankara, Turkey

Received 7 Nov. 2023, final version received 11 Jan. 2024, accepted 12 Jan. 2024

Çatav S.S., Akbaş K., Tavşanoğlu C. & Küçükakyüz K. 2024: Germination response of three smoke- and karrikinolide-responsive species to gibberellic acid and reactive oxygen species. — *Ann. Bot. Fennici* 61: 31–40.

There is a growing interest in understanding the mechanisms involved in seed germination stimulated by smoke and smoke-derived compounds. In this study, we aimed to determine the possible role of gibberellins (GAs) and reactive oxygen species (ROS) in the seed germination of three smoke-responsive and fire-adapted species, viz. Onopordum caricum (Asteraceae), Sarcopoterium spinosum (Rosaceae), and Stachys cretica (Lamiaceae). We conducted four germination experiments using smoke water, karrikinolide (KAR₁), cyanohydrin mandelonitrile, gibberellic acid (GA₁), paclobutrazol, hydrogen peroxide, and several agents generating ROS at different concentrations. The three species had a positive germination response to KAR, Sarcopoterium spinosum seeds were also sensitive to mandelonitrile. Exogenous GA, promoted the germination of all KAR, responsive species in a concentration-specific way. Furthermore, GA biosynthesis was found to be required for the induction of germination by smoke water and KAR, Finally, ROS treatments stimulated the germination of KAR, - and cyanohydrinsensitive S. spinosum seeds, but not only KAR,-sensitive O. caricum and S. cretica seeds. In conclusion, we showed that smoke-promoted germination is far more complex than previously believed and that future studies should be carried out using species with different sensitivities to smoke chemicals.

Introduction

Burning of vegetation releases a broad range of compounds affecting numerous physiological and developmental processes in plants, including seed germination and root growth (Wang *et al.* 2017, Cao *et al.* 2021, Pausas & Lamont 2022). Cell-wall derived karrikins (KARs) and a cyanide-containing compound glyceronitrile are recognized as major smoke chemicals that promote seed germination in many species (Flematti et al. 2015). The interplay among these chemicals can also produce synergistic effects on the germination of fire-adapted plants (Catav et al. 2018, Çatav & Akbaş 2021). Moreover, lignin-derived compounds, such as syringaldehyde, benzaldehyde, and hydroquinone present in smoke have been suggested to be involved in germination enhancement in several plant species (Cao et al. 2023). Smoke also contains many other compounds from phenols, butenolides, and organic acids (e.g., resorcinol, 3,4,5-trimethylfuran-2(5H)-one, and 4-proposybenzoic acid) that may inhibit germination or be antagonistic against karrikinolide (KAR,) at certain concentrations (Baldwin et al. 1994, Burger et al. 2018). Taken together, the germination response to smoke is a multifaceted process, marked by the presence and interaction of various stimulatory and inhibitory chemicals.

The positive response to KARs of seed germination and seedling photomorphogenesis in some Arabidopsis thaliana ecotypes led to the discovery of the karrikin signalling pathway (Waters & Nelson 2023). The perception of KARs in *Arabidopsis* is achieved through an α/β hydrolase receptor protein (KARRIKIN INSEN-SITIVE2, KAI2), an F-box protein (MORE AXILLARY GROWTH2, MAX2), and repressor proteins, such as SMAX1 (SUPPRESSOR OF MAX2 1) and SMXL2 (SMAX1-LIKE2) (Yao & Waters 2020). The KAI2 gene present in streptophytes is thought to be acquired from proteobacteria via horizontal gene transfer about 1000 million years ago (Wang et al. 2022). Considering that the earliest evidence of fire has been dated to 425 million years ago (Wellman et al. 2003) and that KARs are related to burning plant material, KAI2 is assumed to be a receptor for an unidentified molecule (Kamran et al. 2023). Thus, KARs or their metabolites are suggested to mimic this molecule, also referred to as the KAI2 ligand (Yao et al. 2021).

There is a growing interest in understanding physiological and molecular changes in seeds in response to smoke during the germination process. It is postulated that KARs-mediated poly-ubiquitination and degradation of SMAX1 and SMXL2 proteins contribute to enhanced germination in *Arabidopsis* (Khosla *et al.* 2020).

Nelson et al. (2009) further revealed that both gibberellin (GA) biosynthesis and light are essential for KAR₁-stimulated germination in A. thaliana. In addition, endogenous levels of phytohormones (e.g., abscisic acid, ethylene, and GAs) associated with germination and dormancy were found to be changed in KAR,-treated seeds of several species (Schwachtje & Baldwin 2004, Ruduś et al. 2019, Sami et al. 2021). Furthermore, KAR, and smoke were shown to enhance dehydrogenase, α -amylase and β -amylase activities in Avena fatua and Lactuca sativa seeds (Kępczyński et al. 2013, Gupta et al. 2019). Compared with KARs, almost no information is available on glyceronitrile-related biochemical changes in seeds. However, cyanide has been identified as the active compound responsible for cyanohydrin-promoted germination (Flematti et al. 2011). In this regard, reactive oxygen species (ROS) are assumed to play a role in the dormancy release caused by cyanide-containing glyceronitrile (Nelson et al. 2012, Yu et al. 2022).

Although existing research has provided insights into how smoke-related chemicals affect seed germination, a complete understanding is still lacking. In particular, there are gaps in knowledge about how different species respond and the exact changes triggered by specific compounds. These gaps need to be addressed to fully comprehend the mechanisms underlying smokeinduced germination. For instance, most of the studies mentioned above utilized seeds from a few species only (e.g., Arabidopsis thaliana, Avena fatua and Lactuca sativa). In addition, A. thaliana and A. fatua seeds are known to be sensitive to both KAR, and cyanide, and this makes the assessment of the physiological basis of KAR,-triggered germination more complicated (Tilsner & Upadhyaya 1987, Bethke et al. 2006, Nelson et al. 2009, Rudus et al. 2019). Moreover, our understanding of the germination response of fire-adapted species to GAs and ROS, believed to contribute to smoke-enhanced germination, remains limited. To partly fill these gaps, we studied the effects of GA₂, paclobutrazol, H₂O₂, and several ROS-generating compounds on the seed germination of three fireadapted species (KAR₁-sensitive: Onopordum caricum and Stachys cretica; both KAR₁- and cyanohydrin-sensitive: Sarcopoterium spino*sum*). We hypothesized that (i) KAR_1 -sensitive seeds have positive germination responses to exogenous GA₃ treatments, (ii) GA biosynthesis might be a prerequisite for the stimulatory effect of KAR₁ on germination, and (iii) H₂O₂ and ROS-generating compounds improve the germination of cyanohydrin-sensitive species.

Material and methods

Study species, study area, and seed collection

Onopordum caricum (Asteraceae), Stachys cretica subsp. smyrnaea (Lamiaceae) and Sarcopoterium spinosum (Rosaceae) were selected for this study as different populations of these species have shown a positive germination response to plant-derived smoke in our earlier works (Catav et al. 2012, 2014, 2015, 2018). Fruits were harvested from at least 12 healthy individuals growing in their natural environment in Muğla Province, Turkey, in July and August 2018. The study site has a Mediterranean climate, with an average annual total precipitation of 1208.3 mm and annual mean temperature of 15.1 °C (data from the Turkish State Meteorological Service). Seeds were removed from intact fruits and stored in moisture-free bags at room temperature until the germination assays began in September 2018. The mean (\pm SE) seed masses of the studied species (O. caricum = 10.54 ± 0.25 mg, S. spinosum = 2.40 ± 0.04 mg, S. cretica = $2.76 \pm$ 0.07 mg) were evaluated by weighing four samples of 100 seeds and dividing the results by 100.

Preparation of smoke-water and test solutions

Smoke water (hereafter, SW) was prepared using wheat straw as plant material, following the procedure outlined in Çatav *et al.* (2018). After filtration through a Whatman grade 42 filter paper, SW (pH 4.27) was stored at 4 °C until required. The compounds used in this work are listed in Table 1. The stock solution of each compound was prepared using an appropriate solvent (dH₂O, ethanol, and dimethyl sulfoxide) and diluted just before use.

Germination protocol

Four germination experiments were carried out to examine the mechanisms underlying smokeinduced seed germination more closely (for details, see below). Seeds of the studied species were placed in Petri dishes (Ø 90 mm) containing two Whatman grade 1 round (\emptyset 85 mm) filter papers with 10 ml of dH₂O or test solutions unless stated otherwise. Three samples of 25 seeds were used per treatment group. Petri dishes were wrapped with parafilm to avoid water loss and transferred to an incubator adjusted at 20 °C in darkness. Germination counts were conducted weekly throughout a 35-day experimental period in dim-light conditions. A seed was considered germinated when the radicle protruded more than 2 mm from the testa. After completing the experiments, the viability of ungerminated seeds was assessed using the cut test.

Table 1. C	compounds used	in this study;	CAS no. r	efers to the	registration	number	of a ch	nemical	substance	in the
Chemical /	Abstracts Service	(https://www	.cas.org/),	ROS = read	tive oxygen	species.				

Compound	Abbreviation	CAS no.	Туре
Karrikinolide Mandelonitrile Menadione Methyl viologen Hydrogen peroxide 3-amino-1,2,4-triazole Gibberellic acid	KAR, MAN MD MV H ₂ O ₂ AT GA ₃	857054-02-5 532-28-5 58-27-5 75365-73-0 7722-84-1 61-82-5 77-06-5 70720-00-0	smoke-derived compound cyanohydrin compound generating ROS compound generating ROS reactive oxygen species inhibitor of catalase phytohormone
Paclobutrazol	PAC	/6/38-62-0	inhibitor of gibberellin biosynthesi

Experiments

In the first experiment, we aimed to verify whether O. caricum, S. cretica and S. spinosum seeds respond to smoke and, if so, ascertain the smoke-derived compounds responsible for the stimulation of germination. To do this, seeds were subjected to various concentrations of SW (2.5% and 5%), KAR₁ $(0.01 \text{ and } 0.1 \mu M)$, and MAN (10 and 50 µM). In the second experiment, our goal was to determine whether GA₂ would trigger germination in KAR, -responsive species. To accomplish this, we used four concentrations of GA₃ (10⁻⁶, 10⁻⁵, 10⁻⁴ and 10⁻³ M). In the third experiment, we aimed to clarify ROS involvement in KAR₁-stimulated germination. For this, seeds of KAR₁-responsive species were exposed to various concentrations of 3-amino-1,2,4triazole (AT; 0.5 and 1 mM), H₂O₂ (0.1, 0.5, 1 and 5 mM), menadione (MD; 1 mM), and methyl viologen (MV; 0.1 mM). In the MD and MV treatments, seeds were pre-incubated in these solutions for 3 or 6 h and then transferred into Petri dishes containing dH₂O. In the fourth experiment, our goal was to evaluate whether gibberellin biosynthesis is necessary for KAR₁induced germination. To this end, O. caricum and S. cretica seeds were treated with SW and KAR, in the presence and absence of paclobutrazol (PAC) (10⁻⁴ and 3 \times 10⁻⁴ M; PAC₁ and PAC₂, respectively). The final concentrations of the tested compounds were selected based on previous studies (Gardner et al. 2001, Schwachtje & Baldwin 2004, Oracz et al. 2009, Cembrowska-Lech et al. 2015, Catav et al. 2018) and preliminary data.

Data analyses

Prior to statistical analyses, germination percentages were converted to values between 0 and 1 and subjected to arcsine-square-root transformation (Downes *et al.* 2013). Bartlett's test was used for the evaluation of homogeneity of variance. Finally, one-way ANOVA followed by Tukey's post-hoc test were used to identify differences between treatment groups.

Results

The smoke water (SW) treatments markedly increased the germination percentages of the three studied species as compared with those of the control (Table 2). For instance, application of 2.5% SW increased the germination percentage of non-smoke-treated S. cretica seeds from 1.3% to 72.0%. Germination of the seeds of all three species was enhanced by both KAR, treatments. Germination percentages of 0.1 µM KAR₁-exposed seeds of O. caricum and S. spinosum were 3.27- and 3.59-fold higher than those of the respective controls. In addition, S. spinosum seeds were responsive not only to KAR, but also to MAN; however, MAN treatments did not substantially affect the germination of the other two species. None of the smoke-related treatments negatively influenced the seed germination of any of the three species.

Exogenous GA_3 caused a marked increase in the germination percentage of KAR₁-responsive species relative to control conditions (Table 3). Its effect on germination was also concentration dependent. For instance, while the highest con-

Table 2. Germination response (%) of Onopordum caricum,	Stachys cretica and Sarcopoterium spinosum to smoke
and smoke-derived compounds. Germination percentages	are presented as means ± SE of three determinations.
Values in the same column marked with different superscrip	t letters differ at $p < 0.05$ (Tukey's post-hoc test).

Treatment	O. caricum	S. cretica	S. spinosum	
Control	28.6 ± 3.2°	1.3 ± 1.3 ^b	24.5 ± 2.5 ^b	
SW (2.5%)	77.1 ± 3.8 ^b	$72.0 \pm 6.1^{\circ}$	83.7 ± 0.9^{a}	
SW (5%)	82.5 ± 2.7^{ab}	59.7 ± 9.8^{a}	84.0 ± 3.1ª	
KAR, (0.01 μM)	83.2 ± 1.8^{ab}	85.2 ± 2.6^{a}	75.0 ± 8.7^{a}	
KAR, $(0.1 \mu\text{M})$	93.5 ± 4.2^{a}	85.3 ± 5.8^{a}	88.0 ± 0.5^{a}	
MAN $(10 \mu M)$	34.7 ± 1.6°	6.7 ± 3.5 ^b	87.4 ± 8.4^{a}	
MAN (50 μM)	$39.3 \pm 3.0^{\circ}$	2.7 ± 1.3^{b}	91.0 ± 5.9^{a}	

centration of GA₃ (10^{-3} M) stimulated the germination of *O. caricum*, it inhibited the germination of *S. spinosum*. Additionally, 10^{-5} M GA₃ treatment did not markedly alter the germination percentage of *O. caricum* and *S. cretica* but elevated that of *S. spinosum*. Overall, positive or negative effects of GA₃ on the germination were observed in a concentration range between 10^{-5} and 10^{-3} M.

As we had limited numbers of seeds of S. cretica and S. spinosum, AT and ROS-generating compounds were applied solely to O. caricum. However, seeds of all three species were exposed to H₂O₂. None of the AT, H₂O₂, MD or MV treatments caused a significant change in the germination percentage of O. caricum (Fig. 1A and B). In addition, H₂O₂ treatments did not affect the germination percentage of the S. cretica seeds (Fig. 1C). In contrast, the highest concentration of H₂O₂ markedly increased the germination of S. spinosum (Fig. 1D). These results unequivocally indicate that the germination of only KAR₁-sensitive species, such as O. caricum and S. cretica, was not triggered by ROS. On the other hand, ROS enhanced the germination in both KAR,- and cyanide-responsive seeds of S. spinosum, indicating that ROS seem to be involved in cyanide-stimulated seed germination.

In *O. caricum*, the 10^{-4} M PAC treatment reduced the germination percentage compared with that in the control conditions (Fig. 2). The application of PAC also resulted in a considerable reduction in the germination capability of *O. caricum* seeds subjected to smoke (Fig. 2). However, PAC-induced inhibition of germination in the seeds treated and not treated with SW was reversed by exogenous GA₃. The germination assay results of *S. cretica* demonstrate that both PAC treatments (10^{-4} and 3×10^{-4} M) suppress KAR₁-induced germination stimulation. Similar to the findings in *O. caricum*, the application of exogenous GA₃ (10^{-4} M) reversed the germination inhibition caused by PAC in KAR₁-exposed *S. cretica* seeds (Fig. 3). Overall, these results emphasize the requirement for GA biosynthesis in KAR₁-mediated promotion, showing that PAC hinders the positive effects of smoke or KAR₁ on the germination of *O. caricum* and *S. cretica*.

Discussion

Combustion of woody biomass leads to the release of various promoter and inhibitor compounds that regulate different stages of plant growth and development (Burger et al. 2018, Waters & Nelson 2023). Plant-derived smoke containing such compounds can exert positive, negative, or no effect on seed germination, depending on dormancy type and exposure concentration (Moreira & Pausas 2018, Gupta et al. 2020). The positive effect of smoke on seed germination is mainly attributed to a group of compounds known as KARs and cyanide-containing glyceronitrile (Ma et al. 2020). We examined the effects of smoke water (SW), KAR, and mandelonitrile (MAN) on seed germination of three species (O. caricum, S. cretica, and S. spi*nosum*), which have previously been reported as smoke-sensitive (Catav et al. 2012, 2014, 2015, 2018). Our results indicate that both SW and KAR, stimulate germination of all three species. Moreover, S. spinosum was shown to respond to cyanohydrin mandelonitrile. By integrating current and previous data, we conclude that germination in these species is strongly dependent on smoke and its components.

Table 3. Germination response (%) of *Onopordum caricum, Stachys cretica* and *Sarcopoterium spinosum* to gibberellic acid (GA₃). Germination percentages are presented as means \pm SE of three determinations. Values in the same column marked with different superscript letters differ at *p* < 0.05 (Tukey's post-hoc test).

Treatment	O. caricum	S. cretica	S. spinosum	
Control	29.9 ± 2.8 ^b	2.7 ± 1.3°	15.8 ± 2.4 ^b	
GA ₂ (10 ⁻⁶ M)	30.6 ± 7.8 ^b	0 ^c	15.9 ± 2.6 ^b	
GA (10⁻⁵ M)	25.7 ± 3.7 ^b	5.2 ± 2.6°	70.8 ± 6.4^{a}	
GA (10 ⁻⁴ M)	83.4 ± 4.3^{a}	75.6 ± 4.2^{a}	17.8 ± 1.1 ^b	
GA ₃ (10 ⁻³ M)	93.1 ± 3.5^{a}	48.0 ± 4.0^{b}	0 ^c	

Fig. 1. Germination response of *Onopordum caricum* (**A** and **B**), *Stachys cretica* (**C**), and *Sarcopoterium. spinosum* (**D**) to reactive oxygen species (ROS) generating compounds and H_2O_2 ; data are presented as mean \pm SE (n = 3). Different letters above the error bars indicate differences at p < 0.05 (Tukey's post-hoc test) among treatment groups. The concentrations of methyl viologen (MV) and menadione (MD) were 0.1 mM and 1 mM, respectively.

Phytohormones, such as abscisic acid (ABA), ethylene, and GAs play critical roles in seed dormancy and germination. For instance, it is widely recognized that increased sensitivity of seeds to ABA induces dormancy (Tuan et al. 2018, Yan & Chen 2020). Previous studies demonstrated that smoke and KARs can modify the endogenous levels of ABA and GAs in seeds. The ABA content in Avena fatua, Brassica oleracea and Nicotiana attenuata seeds decreased following exposure to KAR₁ or smoke (Schwachtje & Baldwin 2004, Sami et al. 2019, Kępczyński et al. 2021). However, there were mixed results for GAs levels in seeds treated with KAR₁ and smoke. Endogenous GA₁, GA₃, and GA₄ concentrations in seeds of various plants were found to

increase, decrease or remain constant with KAR, or smoke application throughout the different phases of germination (Schwachtje & Baldwin 2004, Nelson et al. 2009, Sami et al. 2019). Moreover, the studies on the effect of exogenous GA₃ on seed germination of smoke- and KAR₁sensitive species also produced mixed findings (for more details see Çatav et al. 2018). In our study, the application of GA₃ promoted the germination of all KAR₁-responsive species and our results suggest that GAs may play a role in KAR₁-induced germination. However, the effect of GA₃ on germination seems to be dependent on the concentration used. It should be also noted that seeds of some GA₃-sensitive species germinate in response to smoke or KAR₁ after

100 $F_{6.14} = 122.7, p < 0.0001$ 90 ab 80 ab 70 60 50 40 30 20 10 0 4AR GP Control Treatment

Germination (%)

Fig. 2. Germination response of *Onopordum caricum* to paclobutrazol (PAC, 10^{-4} M), smoke water (SW, 5%), and gibberellic acid (GA₃, 10^{-4} M) treatments; data are presented as mean \pm SE (*n* = 3). Different letters above the error bars indicate differences at *p* < 0.05 (Tukey's post-hoc test) among treatment groups.

other dormancy-alleviating treatments, such as soil burial, dry after-ripening, and warm stratification (Commander *et al.* 2008). Therefore, the contradictory results from previous works may be linked to the applied concentration(s) of GA₃ and/or seed dormancy levels. In view of our results and available literature, we suggest that the germination response of fire-adapted species should be tested for GA₃ concentrations between 10^{-5} and 10^{-3} M.

Several researchers studied whether the biosynthesis of ethylene and GAs are essential for smoke- and KAR,-stimulated seed germination, using inhibitor compounds that affect the biosynthesis and action of these phytohormones. While inhibitors of ethylene perception, such as 2,5-norbornadiene and methylcyclopropene have been reported to hinder the positive effect of KAR, on germination (Kepczyński & van Staden 2012, Sami et al. 2021), ethylene biosynthesis inhibitors, such as α -aminoisobutyric acid and aminoethoxyvinylglycine had minimal or no effect on the germination of KAR₁-treated seeds (Ruduś et al. 2019). On the other hand, GA biosynthesis inhibitors, such as paclobutrazol, ancymidol, and AMO 1618 counteracted the induction effects of smoke or KAR₁ (Gardner et

Fig. 3. Germination response of *Stachys cretica* to paclobutrazol (PAC₁, 10⁻⁴ M; PAC₂, 3 × 10⁻⁴ M), karrikinolide (KAR₁; 0.1 μ M), and gibberellic acid (GA₃, 10⁻⁴ M) treatments. Data are presented as mean ± SE (*n* = 3). Different letters above the error bars indicate differences at *p* < 0.05 (Tukey's post-hoc test) among treatment groups.

al. 2001, Kępczyński *et al.* 2013, Cembrowska-Lech & Kępczyński 2017, Rudus *et al.* 2019). We explored the effect of paclobutrazol treatments on the germination of *O. caricum* and *S. cretica* seeds exposed to smoke and KAR₁, respectively. Our findings align with those of the above-cited works, emphasizing the necessity of GA biosynthesis in KAR₁-triggered seed germination. Overall, we conclude that the perception or biosynthesis of several phytohormones plays a part in the regulation of seed responses to KARs.

Reactive oxygen species (ROS) are multifunctional molecules implicated in the regulation of seed dormancy and germination within a concentration range defined as the oxidative window. They participate in various processes during seed germination, including protein carbonylation, mRNA oxidation, and cell wall loosening (Bailly & Merendino 2021, Li *et al.* 2022). ROS have also been associated with dormancy release caused by cyanide (Gniazdowska *et al.* 2010, Yu *et al.* 2022). For instance, Gniazdowska *et al.* (2010) demonstrated that HCN treatment led to a transient increase in the H_2O_2 content of apple embryos, and this, in turn, enhanced the emission of ethylene, a positive regulator

Fig. 4. Mechanisms for KAR₁- and glyceronitrile-induced seed germination. – **A**: KAR₁ perception and signalling are mediated by an α/β -hydrolase (KAI2), an F-box protein (SCF^{MAX2}), and the repressor proteins SMAX1 and SMXL2 (Waters & Nelson 2023). Proteasomal degradation of repressor proteins is involved in dormancy release and germination promotion by modulating ABA catabolism and GA biosynthesis (Brun *et al.* 2018, Lamont & Pausas 2023). – **B**: Cyanide is released from cyanohydrin glyceronitrile in the presence of water (Flematti *et al.* 2015). Cyanide has been shown to elevate ROS levels, which in turn leads to increased ethylene emission and subsequent dormancy release (Gniazdowska *et al.* 2010).

of dormancy release. Cembrowska-Lech et al. (2015) reported that KAR₁-promoted seed germination in Avena fatua was mediated by ROS. Here, we examined the germination response of three fire-adapted species to H2O2, AT, and ROS-generating compounds MD and MV. Our ROS-related treatments failed to induce germination of KAR₁-only responsive species. On the other hand, 5 mM H₂O₂ markedly increased the germination of S. spinosum, a both KAR₁- and cyanohydrin-responsive species. Our findings imply that a positive germination response to ROS is more likely to be associated with cyanide sensitivity rather than KAR, sensitivity, and are incompatible with the results of Cembrowska-Lech et al. (2015). In their study, similar ROS treatments triggered the germination of KAR₁and GA3-responsive A. fatua caryopses. In addition, KAR, was found to cause a remarkable increase in H₂O₂ and superoxide anion levels of A. fatua embryos during the germination period. However, previous studies also revealed that A. fatua seeds were sensitive to other environmental signals, including cyanide and strigol (Tilsner & Upadhyaya 1987, Bradow et al. 1990). In addition, a rise in the ROS content of KAR₁treated A. fatua caryopses might be related to increased metabolic activity due to higher germination rates (Bailly 2019). Taken together, more studies are required to clarify the role of ROS in KAR₁- and cyanohydrin-stimulated germination.

In this study we showed that smoke and several smoke components play an indispensable role in releasing dormancy in O. caricum, S. cretica, and S. spinosum. In addition, exogenous GA, was found to induce the germination of all KAR₁-sensitive species in a concentrationspecific way. A dramatic decrease in germination of KAR₁-treated seeds in the presence of PAC suggests that KAR, likely stimulates GA biosynthesis. Finally, ROS-related treatments triggered germination in cyanide-responsive seeds, but not in KAR₁-responsive seeds. Our results support the mechanisms proposed in earliest studies (Fig. 4) and highlight the need for modeof-action research using species with different sensitivities to KAR₁ and cyanide.

Acknowledgements

This study was financially supported by the Muğla Sıtkı Koçman University (grant BAP-16/106).

References

- Bailly C. 2019: The signalling role of ROS in the regulation of seed germination and dormancy. — *Biochemical Journal* 476: 3019–3032.
- Bailly C. & Merendino L. 2021: Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication.

- Biochemical Journal 478: 1977-1984.

- Baldwin I.T., Staszak-Kozinski L. & Davidson R. 1994: Up in smoke: I. Smoke-derived germination cues for postfire annual, *Nicotiana attenuata* torr. Ex. Watson. — *Journal of Chemical Ecology* 20: 2345–2371.
- Bethke P.C., Libourel I.G., Reinöhl V. & Jones R.L. 2006: Sodium nitroprusside, cyanide, nitrite, and nitrate break *Arabidopsis* seed dormancy in a nitric oxide-dependent manner. — *Planta* 223: 805–812.
- Bradow J.M., Connick W.J., Pepperman A.B. & Wartelle L.H. 1990: Germination stimulation in wild oats (Avena fatua L.) by synthetic strigol analogs and gibberellic acid. — Journal of Plant Growth Regulation 9: 35–41.
- Brun G., Braem L., Thoiron S., Gevaert K., Goormachtig S. & Delavault P. 2018: Seed germination in parasitic plants: what insights can we expect from strigolactone research? — *Journal of Experimental Botany* 69: 2265–2280.
- Burger B.V., Pošta M., Light M.E., Kulkarni M.G., Viviers M.Z. & van Staden J. 2018: More butenolides from plant-derived smoke with germination inhibitory activity against karrikinolide. — South African Journal of Botany 115: 256–263.
- Cao D., Baskin J.M., Baskin C.C. & Li D.-Z. 2023: Burning lignin: overlooked cues for post-fire seed germination. — Trends in Plant Science 28: 386–389.
- Cao D., Schöttner M., Halitschke R., Li D., Baldwin G., Rocha C. & Baldwin I.T. 2021: Syringaldehyde is a novel smoke-derived germination cue for the native firechasing tobacco, *Nicotiana attenuata*. — *Seed Science Research* 31: 292–299.
- Çatav Ş.S. & Akbaş K. 2021: Yedi Akdeniz Lamiaceae türünün duman ve duman kökenli bileşiklere olan çimlenme tepkisi. — Journal of Advanced Research in Natural and Applied Sciences 7: 478–485.
- Çatav Ş.S., Bekar I., Ateş B.S., Ergan G., Oymak F., Ülker E.D. & Tavşanoğlu Ç. 2012: Germination response of five eastern Mediterranean woody species to smoke solutions derived from various plants. — *Turkish Journal of Botany* 36: 480–487.
- Çatav Ş.S., Küçükakyüz K., Akbaş K. & Tavşanoğlu Ç. 2014: Smoke-enhanced seed germination in Mediterranean Lamiaceae. — Seed Science Research 24: 257–264.
- Çatav Ş.S., Küçükakyüz K., Tavşanoğlu Ç. & Akbaş K. 2015: Effects of aqueous smoke and nitrate treatments on germination of 12 eastern Mediterranean Basin plants. — Annales Botanici Fennici 52: 93–100.
- Çatav Ş.S., Küçükakyüz K., Tavşanoğlu Ç. & Pausas J.G. 2018: Effect of fire-derived chemicals on germination and seedling growth in Mediterranean plant species. — *Basic and Applied Ecology* 30: 65–75.
- Cembrowska-Lech D. & Kępczyński J. 2017: Plant-derived smoke induced activity of amylases, DNA replication and β-tubulin accumulation before radicle protrusion of dormant Avena fatua L. caryopses. — Acta Physiologiae Plantarum 39, 39, https://doi.org/10.1007/s11738-016-2329-x.
- Cembrowska-Lech D., Koprowski M. & Kępczyński J. 2015: Germination induction of dormant Avena fatua caryopses by KAR₁ and GA₃ involving the control of reac-

tive oxygen species (H_2O_2 and O_2^-) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. — *Journal of Plant Physiology* 176: 169–179.

- Commander L.E., Merritt D.J., Rokich D.P., Flematti G.R. & Dixon K.W. 2008: Seed germination of *Solanum* spp. (Solanaceae) for use in rehabilitation and commercial industries. — *Australian Journal of Botany* 56: 333–341.
- Downes K.S., Light M.E., Pošta M., Kohout L. & van Staden J. 2013: Comparison of germination responses of Anigozanthos flavidus (Haemodoraceae), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-water and the smoke-derived compounds karrikinolide (KAR₁) and glyceronitrile. — Annals of Botany 111: 489–497.
- Flematti G.R., Merritt D.J., Piggott M.J., Trengove R.D., Smith S.M., Dixon K.W. & Ghisalberti E.L. 2011: Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. — *Nature Communication* 2, 360, https://doi.org/10.1038/ncomms1356.
- Flematti G.R., Dixon K.W. & Smith S.M. 2015: What are karrikins and how were they 'discovered'by plants? — *BMC Biology* 13, 108, https://doi.org/10.1186/s12915-015-0219-0.
- Gardner M.J., Dalling K.J., Light M.E., Jäger A.K. & van Staden J. 2001: Does smoke substitute for red light in the germination of light-sensitive lettuce seeds by affecting gibberellin metabolism? — South African Journal of Botany 67: 636–640.
- Gniazdowska A., Krasuska U. & Bogatek R. 2010: Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. — *Planta* 232: 1397–1407.
- Gupta S., Plačková L., Kulkarni M.G., Doležal K. & van Staden J. 2019: Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of *Lactuca sativa*. — *Plant Physiology* 181: 458–470.
- Gupta S., Hrdlička J., Ngoroyemoto N., Nemahunguni N.K., Gucký T., Novák O., Kulkarni M.G., Doležal K. & van Staden J. 2020: Preparation and standardisation of smoke-water for seed germination and plant growth stimulation. — Journal of Plant Growth Regulation 39: 338–345.
- Kamran M., Melville K.T. & Waters M.T. 2023: Karrikin signalling: impacts on plant development and abiotic stress tolerance. — *Journal of Experimental Botany*, erad476, https://doi.org/10.1093/jxb/erad476.
- Kępczyński J. & van Staden J. 2012: Interaction of karrikinolide and ethylene in controlling germination of dormant Avena fatua L. caryopses. — Plant Growth Regulation 67: 185–190.
- Kępczyński J., Cembrowska-Lech D. & van Staden J. 2013: Necessity of gibberellin for stimulatory effect of KAR₁ on germination of dormant Avena fatua L. caryopses. — Acta Physiologiae Plantarum 35: 379–387.
- Kępczyński J., Wójcik A. & Dziurka M. 2021: Avena fatua caryopsis dormancy release is associated with changes in KAR₁ and ABA sensitivity as well as with ABA reduction in coleorhiza and radicle. — Planta 253, 52,

https://doi.org/10.1007/s00425-020-03562-4.

- Khosla A., Morffy N., Li Q., Faure L., Chang S.H., Yao J., Zheng J., Cai M.L., Stanga J., Flematti G.R., Waters M.T. & Nelson D.C. 2020: Structure-function analysis of SMAX1 reveals domains that mediate its karrikininduced proteolysis and interaction with the receptor KAI2. — *Plant Cell* 32: 2639–2659.
- Lamont B.B. & Pausas J.G. 2023: Seed dormancy revisited: dormancy-release pathways and environmental interactions. — *Functional Ecology* 37: 1106–1125.
- Li W., Niu Y., Zheng Y. & Wang Z. 2022: Advances in the understanding of reactive oxygen species-dependent regulation on seed dormancy, germination, and deterioration in crops. — *Frontiers in Plant Science* 13, 826809, https://doi.org/10.3389/fpls.2022.826809.
- Ma H., Erickson T.E., Walck J.L. & Merritt D.J. 2020: Interpopulation variation in germination response to firerelated cues and after-ripening in seeds of the evergreen perennial Anigozanthos flavidus (Haemodoraceae). — International Journal of Wildland Fire 29: 950–960.
- Moreira B. & Pausas J.G. 2018: Shedding light through the smoke on the germination of Mediterranean Basin flora. — South African Journal of Botany 115: 244–250.
- Nelson D.C., Flematti G.R., Ghisalberti E.L., Dixon K.W. & Smith S.M. 2012: Regulation of seed germination and seedling growth by chemical signals from burning vegetation. — Annual Review of Plant Biology 63: 107–130.
- Nelson D.C., Riseborough J.-A., Flematti G.R., Stevens J., Ghisalberti E.L., Dixon K.W. & Smith S.M. 2009: Karrikins discovered in smoke trigger *Arabidopsis* seed germination by a mechanism requiring gibberellic acid synthesis and light. — *Plant Physiology* 149: 863–873.
- Oracz K., El-Maarouf-Bouteau H., Kranner I., Bogatek R., Corbineau F. & Bailly C. 2009: The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. — *Plant Physiology* 150: 494–505.
- Pausas J.G. & Lamont B.B. 2022: Fire-released seed dormancy — a global synthesis. — *Biological Reviews* 97: 1612–1639.
- Ruduś I., Cembrowska-Lech D., Jaworska A. & Kępczyński J. 2019: Involvement of ethylene biosynthesis and perception during germination of dormant *Avena fatua* L. caryopses induced by KAR₁ or GA₃. — *Planta* 249: 719–738.
- Sami A., Rehman S., Tanvir M.A., Zhou X.Y., Zhu Z.H. & Zhou K. 2021: Assessment of the germination potential of *Brassica oleracea* seeds treated with karrikin 1

and cyanide, which modify the ethylene biosynthetic pathway. — *Journal of Plant Growth Regulation* 40: 1257–1269.

- Sami A., Riaz M.W., Zhou X., Zhu Z. & Zhou K. 2019: Alleviating dormancy in *Brassica oleracea* seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. — *BMC Plant Biol*ogy 19, 577, https://doi.org/10.1186/s12870-019-2118-y.
- Schwachtje J. & Baldwin I.T. 2004: Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, *Nicotiana attenuata*. — *Seed Science Research* 14: 51–60.
- Tilsner H. & Upadhyaya M. 1987: Action of respiratory inhibitors on seed germination and oxygen uptake in Avena fatua L. — Annals of Botany 59: 477–482.
- Tuan P.A., Kumar R., Rehal P.K., Toora P.K. & Ayele B.T. 2018: Molecular mechanisms underlying abscisic acid/ gibberellin balance in the control of seed dormancy and germination in cereals. — *Frontiers in Plant Science* 9, https://doi.org/10.3389/fpls.2018.00668.
- Wang M., Schoettner M., Xu S., Paetz C., Wilde J., Baldwin I.T. & Groten K. 2017: Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling. — New Phytologist 213: 1755–1770.
- Wang Q., Smith S.M. & Huang J. 2022: Origins of strigolactone and karrikin signaling in plants. — *Trends in Plant Science* 27: 450–459.
- Waters M.T. & Nelson D.C. 2023: Karrikin perception and signalling. — New Phytologist 237: 1525–1541.
- Wellman C.H., Osterloff P.L. & Mohiuddin U. 2003: Fragments of the earliest land plants. — *Nature* 425: 282– 285.
- Yan A. & Chen Z. 2020: The control of seed dormancy and germination by temperature, light and nitrate. — *The Botanical Review* 86: 39–75.
- Yao J., Scaffidi A., Meng Y., Melville K.T., Komatsu A., Khosla A., Nelson D.C., Kyozuka J., Flematti G.R. & Waters M.T. 2021: Desmethyl butenolides are optimal ligands for karrikin receptor proteins. — *New Phytologist* 230: 1003–1016.
- Yao J. & Waters M.T. 2020: Perception of karrikins by plants: a continuing enigma. — *Journal of Experimental Botany* 71: 1774–1781.
- Yu L.-L., Liu C.-J., Peng Y., He Z.-Q. & Xu F. 2022: New insights into the role of cyanide in the promotion of seed germination in tomato. — *BMC Plant Biology* 22, 28, https://doi.org/10.1186/s12870-021-03405-8.