

Objective of This Course

- To build on fundamental concepts in Materials Science and Engineering.
- To introduce the students to thermodynamics in solid systems, mainly to solidification problems and alloy phase diagrams.
- ✓ Students will learn about:
 - Phase transformations in materials
 - · Material structure and how structure determines properties
 - How processing, especially solidification can change structure

Materials Science and Technology III 2018/2019 Spring Semester

- Lecturer:
 - Dr. Damla Çetin Altındal
 - Office: Lab 4 / Assistant Office
 - e-mail address: damlacetin@hacettepe.edu.tr
- <u>Class Schedule:</u>
 - Wednesday: 13:00-15:50

Objective of This Course

- ✓ This course will help to:
 - Use/select materials properly
 - Understand the mechanisms that affect material properties
 - Realize new design opportunities with materials
 - Instill technical competence in mathematics, science and materials engineering
 - Develop problem solving skills
 - Instill an ability to select the right materials when designing a component, unit, or process in the chemical/manufacturing industry that meets performance specifications
 - Instill an ability to use the techniques, skills, and modern engineering tools necessary for chemical engineering practice

THE SCIENCE AND ENGINEERING OF MATERIALS

Weeks	Topics				
1	Review: Introduction to materials science and engineering; Classification of materials; Materials design and selection				
2	Principles of solidification: Technological significance; Nucleation; Growth mechanisms; Cooling curves Casting: Structure; Solidification defects; Casting processes in manufacturing				
3	Solid solutions and phase equilibrium: Phases and phase diagram; Solubility and solid solutions; Unlimited solid solubility; Solid solution strengthening				
4	Isomorphous phase diagrams: Material properties and phase diagram; Solidification of a solidsolution alloy; Coring				
5	Eutectic phase diagrams: Intermetallic compounds; Dispersion strengthening; Three phase reactions; Non-equilibrium freezing in the eutectic system				
6	Strengthening by phase transformations and heat treatment: Nucleation in solid state transformations; Age or precipitation hardening				
7	Midterm				
8	Eutectoid reaction; Martensitic reaction; Tempering				
9	Non-equilibrium solidification and segregation, solute trapping Solidification of polymers and inorganic glasses; Joining of metallic materials				
10	Heat treatment of steels and cast irons				
11	Nonferrous alloys: Aluminum, Magnesium, Copper, Nickel, Cobalt, Titanium alloys				
12	Classes of materials: Metals; Ceramics; Polymers; Semiconductors; Composites				
13	Classes of materials: Concrete and construction materials; Electronic materials; Magnetic materials; Photonic materials				
14	Preparation to final exam				
15	Final exam				

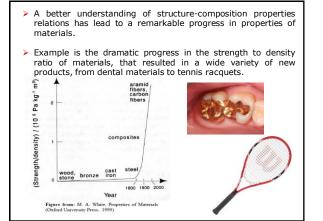
Text Book:

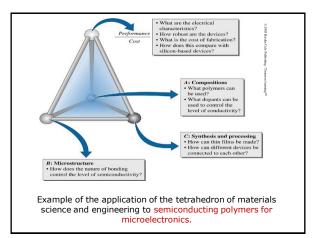
Donald R. Askeland, Pradeep P. Fulay "The Science & Engineering of Materials", 6th Edition, 2011.

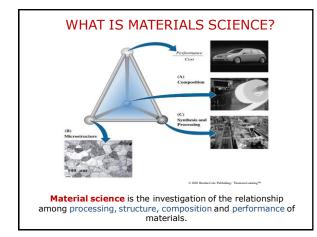
Reference Books:

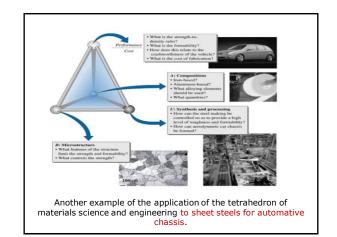
- William D. Callister, Jr. "Materials Science and Engineering: An Introduction", 6th Edition, Wiley.
 William D. Callister, Jr. "Materials Science and Engineering: An Introduction", 7th Edition, Wiley.
- Wiley.
 William D. Callister, Rethwisch, "Fundamentals of Materials Science and Engineering: An Integrate Approach", ^{3rd} Edition, Wiley, 2008.
 J. F. Shackelford, "Introduction to Materials Science for Engineers, 6/E", 6th Edition, Prentice Hall, 2005.

Grading


Homeworks \rightarrow 15%


Project \rightarrow 20%


Midterm $\rightarrow 25\%$


Final exam \rightarrow 40%

Historical Perspective Stone \rightarrow Bronze \rightarrow Iron \rightarrow Advanced materials □ Beginning of the Material Science - People began to make tools from stone. Start of the Stone Age was about two million years ago. Natural materials: stone, wood, clay, etc. □ The Stone Age ended about 5000 years ago with introduction of bronze in the Far East. Bronze is an **alloy** and it can be hammered or cast into a variety of shapes, can be made harder by alloying and corrode slowly. The Iron Age began about 3000 years ago and continues today. Use of iron and steel, a stronger and cheaper material changed drastically daily life of a common person. □ Age of Advanced materials: Throughout the Iron Age, many new types of materials have been introduced (ceramic, semiconductors, polymers, composites...). Understanding of the relationship among structure, properties, processing, and performance of materials are important for the intelligent design of new materials.

Example: Hip Implant

• Requirements

- mechanical strength
- roughness
- biocompatibility

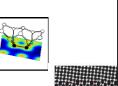
Length Scales

Angstrom = $1\text{\AA} = 1/10,000,000,000 \text{ meter} = 10^{-10} \text{ m}$ Nanometer = 10 nm = 1/1,000,000,000 meter = 10⁻⁹ m Micrometer = 1µm = 1/1,000,000 meter = 10⁻⁶ m Millimeter = 1mm = 1/1,000 meter = 10⁻³ m

> Interatomic distance ~ a few Å A human hair is \sim 50 μm

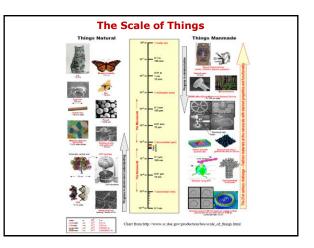
Materials are...

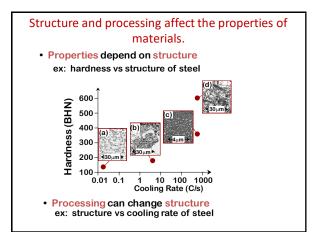
engineered structures Subatomic level Electronic structure of individual atoms that defines interaction among atoms

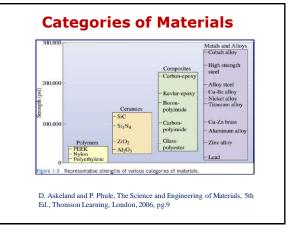

(interatomic bonding).

Atomic level

Arrangement of atoms in materials (for the same atoms can have different properties, e.g. two forms of carbon: graphite and diamond)


• Microscopic structure Arrangement of small grains of material that can be identified by microscopy.


• Macroscopic structure Structural elements that may be viewed with the naked eye.



	Category	Applications	Properties
Metals & Alloys	Alloy steels	Automobile chassis	Strengthened by heat treatment
raunies & Glasse	Silica	Optical fibers for transfer of information	Refractive index, low optical losses
Polymers	Ероху	Encapsulation of integrated circuits	Electrically insulating and moisture resistant
Semiconductors	Silicon	Transistors and integrated circuits	Unique electrical behavior
Composites	Titanium- clad steel	Reactor vessels	Corrosion resistant (due to titanium) low cost and high strength (due to steel)

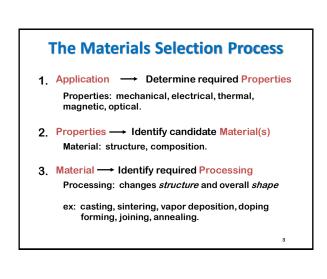
ſ

Categories of Materials Metals & Alloys Ceramics & Glasses Polymers Semiconductors Composites

Types of Materials

- Metals:
 - Strong
 - High thermal & electrical conductivity
 - Opaque, reflective

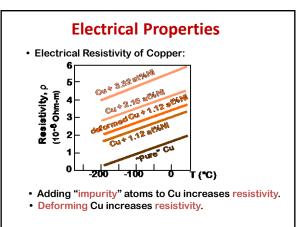
Polymers:

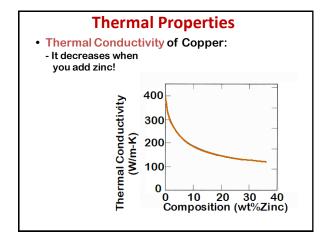

- Soft, ductile, low strength, low density
- Thermal & electrical insulators
- Optically translucent or transparent

Ceramics:

- Brittle, glassy

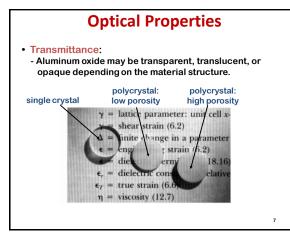
Properties of Materials

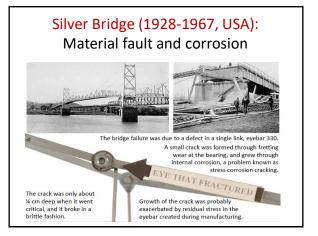

Properties are the way the material responds to the environment and external forces.

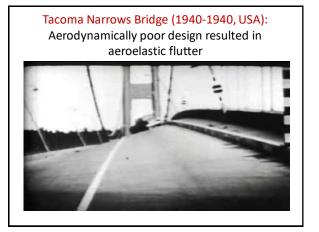

Mechanical properties – response to mechanical forces, strength, etc.

Electrical and **magnetic** properties - response electrical and magnetic fields, conductivity, etc.

Thermal properties are related to transmission of heat and heat capacity.


Optical properties include to absorption, transmission and scattering of light.





- Use the right material for the job
- Understand the relation between properties, structure, and processing
- Recognize new design opportunities offered by materials selection

