
Design Patterns

ebru@hacettepe.edu.tr

ebruakcapinarsezer@gmail.com

http://yunus.hacettepe.edu.tr/~ebru/

@ebru176

Şubat 2017

mailto:ebru@hacettepe.edu.tr
mailto:ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/


Policy
- One midterm (24 points), total 3 uninformed quiz (12 points
for each) and final exam (50 points)

-No homework

-No memorization

-Explanation, discussion, question-answer

-Slides will be shared on personel web site

-Also answer key of exams

Write «design patterns» to Google,

get more than you need

Textbook



Why or Why not
Because of

- me

- hesitate from design

- having more funny options

- bilingual content

- being shy to answer me

- dislike pen and paper

you may withdraw

Because of

- me

- direct focus on design

you may be willing to go on



Content, as expected…



Lets start: what is the definition of…
-Class

-Association

-Inheritance

-Polymorphism

-Encapsulation

-Abstraction

-UML & its diagrams



Fast Review: Confusing Start
Encapsulation: Hiding implementation details, define expected I/Os

Abstraction: Hiding whole system, define a way to access the system

C
au

se an
d
 effect



Fast Review: OOP Concepts



Fast Review: Object Relations



Object Relations and Multiplicities
Multiplicity means to define that how many objects can be related 
with the objects of correponding class.

Relation means to there are some structural  reasons  to occur 
together or unstructural reasons for  communication between 
objects to achieve a specific purpose

Multiplicity:

In OO analysis and design this can help to implement, test and 
debug the code.

Relations:

The relations of is_a and has_a are fundamental ways to 
understand collections of classes.

In an OO implementation these relations will usually be visible in 
the code. But they are not the only interesting relations!



The simplest association is binary and represented by a line 
e.g.

Class_A Class_B
<name>

Normally, we at least annotate the association

with a <name>, e.g.



Student Course
studies 

name title

An arrow can be added to show the orientation

or asymmetry of the relation. 

In this case studies is not symmetric.



Student Course

name title

The existence of an association between two 

classes often indicates some level of coupling,

in the sense of related concepts.

According to standard practice, coupling should 

be minimized and cohesion maximized.

participant

subject



The commonest multiplicities are:

One-to-one

John Smith

Mary Jones

760901-1234

691205-5678

People Tax_codes

tax_coding



One-to-many

M.E. Meinke
K. Meinke

N. Meinke

Women
People

mother_of



Many-to-many

M.E. Meinke
K. Meinke

N. Meinke

People People

parent_of

K.W. Meinke



UML has a notation for multiplicity:

1 one and only one

0 .. 1 zero or one

M .. N from M to N

* greater than or equal to zero

0 .. * …same …

M .. * greater than or equal to M



Examples: one-to-one

Class_A Class_B
1 1

Class_A Class_B
1 *

one-to-many



many-to-many

Class_A Class_B
* *

We can also add multiplicity constraints

to aggregation and composition relations, 

e.g. …



Relationships: 3 Kinds

Window

open()

close()

ConsoleWindow DialogBox Control

Event

association

dependency
generalization



Generalization
Relationship between general thing (parent) and more specific thing (child)

Child “is-a-kind-of” parent.

Child inherits attributes and operations of parent.

Rectangle

Square

PolygonCircle

Shape base class

leaf class

generalization



AudioClip

Dependency
A change in one thing may affect another.

“Uses” relationship.

May have a name, but not common.

record(m:Microphone)

start()

stop()

Microphone
name

dependency

One important use of dependency



Associations (UML)

Professor Courseteaches

relationship name

direction indicator:
how to read relation name

teacher class

role names
Multiplicity

defines the number of objects 

associated with an instance 

of the association.

Default of 1; 

Zero or more (*);

1..**

 Represent conceptual relationships between classes



Associations - In Other OOAD

Professor Course
teaches

Fusion Style

binary association

Ternary association

Student Course

Score

Associations may be binary, ternary, or higher order



Associations – A Question

How would you model the following situation?

“You have two files, say Homework1 and MyPet, where Homework1 is 
accessible only by you, but MyPet is accessible by anybody.”

You could create two classes, File and User.  Homework1 and MyPet are files, and you 
are a user.

Approach 1: Now, would you associate the file access right with File? 

Approach 2: Or, would you associate the file access right with User?



Associations

File User

access permission

 UML Association Class

AccessRight

* 1..*

association 

class

class class



Associations – UML Links

 link is a semantic connection among objects. 

 A link is an instance of an association.

Company1..* *
employee employer

: Companyassign(development)w : Worker

link

Named object Anonymous object

class
association

class

Worker

+setSalary( s : Salary)

+setDept( d : Dept) 

works for

association name



Associations - Aggregation

CompanyDepartment
1..*

association

multiplicity

aggregation

part whole

- structural association representing “whole/part” relationship.

- “has-a” relationship.



Modeling Simple Dependencies

CourseSchedule

addCourse(c : Course)

removeCourse(c : Course

Course

Usually initial class diagrams will not have any significant number of 

dependencies in the beginning of analysis  but will as more details are identified.

Using relationship

 The most common dependency between two classes is one 
where one class uses another as a parameter to an operation.

Create dependency pointing from class with operation to parameter.



Modeling Single Inheritance

In UML, abstract classes and their

operations would be italicized.

CashAccount

presentValue()

interestRate

Security

presentValue()

history()

Bond

presentValue()

Stock

presentValue()

PreferredStock CommonStock

abstract

is-a-kind-of relationship

 Look for common responsibilities, attributes, and operations that are 

common to two (2) or more classes.

 If necessary, create a new class to assign commonalities.

 Specify that the more-specific classes inherit from the more-general.



Modeling Single Inheritance (cont’d)

Abstract
Abstraction—the essential characteristics of a thing.

Abstract class—cannot be instantiated.

Abstract method—has no implementation defined (i.e., no method 
body).

Depicted in italics or with stereotypes.

Concrete
Not abstract.

Can have instances.



Modeling Structural Relationships

composite symbol (  )get loaded versus the aggregation

School

InstructorCourse

Department

Student

*

1..*

1..*

1

has

5 member

*

*attends 4

*

1..*3 teaches

1..*

1..* 1..*

1..*

0..1

1 chairperson

5
assigned to

 Considering a bunch of classes and their association relationships



Modeling Structural Relationships

Composite is a stronger form of aggregation.  Composite parts live and die with the whole.

Liver

Body

Heart Wheel

Car

Engine

Composite Aggregation



Modeling Structural Relationships
Specify an association to create a navigation path between two objects 
(in either direction).

Specify an association if two objects interact with each other beyond 
operation arguments.

Specify multiplicity; 1 is assumed.

Specify aggregation when one of the classes represents a whole over 
the other classes.

How do you know that objects of one class must interact with another class?

• Review the scenarios that were derived from Use Cases.

• CRC cards seem much less used in practice..



Hints & Tips
Modeling relationships

Use dependencies when relationship is not structural.

Use generalization with “is-a” relationship.

Don’t introduce cyclical generalizations.

Balance generalizations - Not too deep, not too wide.

Use associations where structural relationships exist.

 Drawing a UML relationship

 Use rectilinear or oblique lines consistently.

 Avoid lines that cross.

 Show only relationships necessary to understand a particular grouping 

of things.

 Elide redundant associations.



Fast Review: Class Diagram

Here is the relation tuple: 

{Type, Multiplicity, Name, Roles}



Fast Review: UML Diagram



What is Analysis and Design?



What is Analysis and Design?

Analysis emphasizes an investigation of the problem and 
rrequirements, rather than a solution. For example, if a new 
computerized library information system is desired, how will it be used?

Design emphasizes a conceptual solution that fulfills the requirements, 
rather than its implementation. For example, a description of a 
database schema, object model and dynamic model. Ultimately, 
designs can be implemented.

Analysis and design have been summarized in the phase «do the right 
thing» (analysis), and «do the thing right» (design)



When?



Inputs?



Inputs?

Requirements are 
capabilities and conditions 
to which the system—and 
more broadly, the project—
must conform



Let’s discuss

Accuracy ?

Flexibility?



Outline of Design Patterns



In 1977…

Christopher Alexander (born 1936), architect,   
has been worked on the effects of  designs on 
the structures (building, cities, centers) and, 
he has tried on the design quality

He used «Design Pattern» name to describe 
the problems that occur and occur in different 
scales and can be solvable in the same 
manner



Definition from the father

Design Pattern definition from Alexander: 

“Each pattern describes a problem 

1)which occurs over and over again in our environment and then

2)describes the core of the solution to that problem, in such a way that

3)you can use this solution a million times over, without ever doing it 
the same way twice”



Smart Summary

Design pattern is the solution outline for the problems triggered by 
same reasons

Patterns = problem/solution pairs in context
Patterns facilitate reuse of successful software architectures 
and design

Not code reuse !!!
Instead, solution/strategy reuse
Sometimes, interface reuse



From Architectural design 2 software design

At the early 1990s, software design issues were discussed 
by considering two basic question 

Are there any problems occuring repeatedly and each solution 
carries some similiar  structures?

Is it possible to desing a  software by using patterns even domains 
may change from one to another

The book that started it all
Community refers to authors as the “Gang of Four”
Figures and some text in these slides 

come from this book



Components of a Pattern
Pattern name

identify this pattern; distinguish from other patterns
define terminology

Pattern alias – “also known as”

Real-world example

Context / Problem

Solution
typically natural language notation

Structure
class (and possibly object) diagram in solution

Interaction diagram (optional)

Consequences
advantages and disadvantages of pattern
ways to address residual design decisions



Components of a Pattern (cont’d)

Implementation

critical portion of plausible code for pattern

Known uses

often systems that inspired pattern

References - See also

related patterns that may be applied in similar cases



Why this book is serious
Because,

-First announcement of Design Patterns for us

-Total 23  patterns are catalogued with all components

-They triggered to revise principles OO Modeling

-The opinion of reusable solution/experience emerged 

-Reliability, flexibility and robustness of these solutions have 
been tested in different situations and in different domains

-Common terminology is extended by means of patterns

-Pattern based analysis of the problem makes modeler more 
aware about the quality

-Patterns make  software more flexible and easier to change 



Basic principles of GoF

All of 23 patterns suggest same 3 things:

“Design interfaces”

“Favour aggregation over inheritance”

“Find what  varies and encapsulate it”



Principles Underlying Patterns

Rely on abstract classes to hide differences between subclasses 
from clients

object class vs. object type
class defines how an object is implemented

type defines an object’s interface (protocol)

Program to an interface, not an implementation



Principles (cont’d)

Black-box vs. white-box reuse

black-box relies on object references, usually through 
instance variables

white-box reuse by inheritance

black-box reuse preferred for information hiding, run-time 
flexibility, elimination of implementation dependencies

disadvantages: Run-time efficiency (high number of 
instances, and communication by message passing)

Favor composition over class inheritance



Principles (cont’d)

Delegation

powerful technique when coupled with black-box reuse

Allow delegation to different instances at run-time, as long as 
instances respond to similar messages

disadvantages: 
sometimes code harder to read and understand 

efficiency (because of black-box reuse)

Find what  varies and encapsulate it



Design patterns taxonomy

Creational patterns 

concern the process of object creation

Structural patterns 

deal with the composition of classes or objects

Behavioral patterns 

characterize the ways in which classes or objects interact and 
distribute responsibility.







Whatever Software Life Cyle Model is applied

(i.e. RUP, Scrum, XP, Waterfall)

While building analysis model

and

Modeling of software requirements

When and How Design patterns are used



Design Patterns are also known as 
GRASP Patterns

“GRASP is an acronym that stands for General Responsibility 
Assignment Software Patterns”

The name was chosen to suggest the importance of grasping
these principles to successfully design object-oriented software



GRASP Patterns

Do not state new ideas

Name and codify widely used basic principles



Responsibilities

UML defines a responsibility as “a contract or obligation of a 
classifier”. 

A class embodies a set of responsibilities that define the 
behaviour of the objects in the class.



Responsibilities

“A responsibility is not the same thing as a method, but 
methods are implemented to fulfill responsibilities.”

“Responsibilities are implemented using methods that either 
act alone or collaborate with other methods and objects.”  



Responsibilities and methods are related

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered) 

: Payment
create(cashTendered)

Implies Sale 

objects have a 

responsibility

To create 

Payments



Responsibilities revolve around

Doing

Knowing

Collaboration



“Doing” responsibilities

Doing something itself, such as creating an object or doing a 
calculation

Initiating action in other objects

Controlling and co-coordinating activities in other objects



“Knowing” responsibilities

Knowing about private encapsulated data

Knowing about related objects

Knowing about things that it can derive or calculate



GRASP Patterns

Key three:

Creator

Controller

Information Expert



Creator

Who should be responsible for creating an new instance of 
some class?

Some options:
Assign B the responsibility to create A if one or more of the following 

is/are true:

B “contains” A (e.g. Invoice creates InvoiceLineItem)

B records A 

B closely uses A

B has the initializing data for A that will be passed to A when it is 
created (thus B is the Expert with respect to creating A). (e.g. Sale 
creates Payment)

Do not distribute  the creation knowledge of A



Creating a SalesLineItem

 : Register  : Sale  : 

SalesLineItem

makeLineItem(quantity)

create(quantity)



Controller

What first object beyond the UI layer receives and coordinates a 
system operation?

Use Case or Session Controller
Use case/session (e.g. Register)*



Guidelines/Issues

Controller usually delegates work to other objects—it 
controls, coordinates, it does not do much work itself

Danger: Bloated controller
a single controller receives all system events (and there are many)

a controller that does the work itself

a controller that has many attributes; maintains significant 
information

Among Cures for Bloat
more controllers, use case controllers, more delegation



Information Expert

What is the general principle of assigning responsibilities to 
objects?

A Solution:

Assign a responsibility to the class that has the information 
necessary to fulfill it—the “information expert”

(note: start this process by clearly stating the responsibility!)



Information Expert

Example:  Sale has the responsibility of knowing its total, 
expressed with the method named getTotal



Information Expert

 : Register  : Sale  : 

SalesLineItem

 : 

ProductDescription

getTotal( )

getSubtotal( )

getPrice( )



Collaboration
Fulfillment of a responsibility often requires information from different 
classes of objects

Example, sales total requires the collaboration of 3 classes of objects:  Sale, 
SalesLineItem, ProductDescription

Interact via messages*



Appendix:Analysis Model
In Analysis, we analyze and refine the requirements described in the Use Cases in 
order to achieve a more precise view of the requirements, without being 
overwhelmed with the details

Again, the Analysis Model is still focusing on WHAT we’re going to do, not HOW 
we’re going to do it (Design Model).  But what we’re going to do is drawn from 
the point of view of the developer, not from the point of view of the customer

Whereas Use Cases are described in the language of the customer, the Analysis 
Model is described in the language of the developer:

• Boundary Classes

• Entity Classes

• Control Classes



Appendix:Boundary Classes (out of 
DP’s Scope)

Boundary classes are used in the Analysis Model to model interactions 
between the system and its actors (users or external systems)

Boundary classes are often implemented in some GUI format (dialogs, 
widgets, beans, etc.)

Boundary classes can often be abstractions of external APIs (in the case of 
an external system actor)

Every boundary class must be associated with at least one actor:



Appendix: Entity Classes (in the DP’s
Scope)

Entity classes are used within the Analysis Model to model 
persistent information

Often, entity classes are created from objects within the 
business object model or domain model



Appendix: Control Classes (in the DP’s
Scope)

Control classes model abstractions that coordinate, sequence, transact, 
and otherwise control other objects

Control classes are often encapsulated interactions between other 
objects, as they handle and coordinate actions and control flows.



Appendix: Requirements/Glossary
Course Registration System

Glossary

Version 2.0

Revision History

Date                Version  Description                                                                           Author

26/Dec/1998    1.0          Draft version                                                                          Bill Collings

19/Feb/1999    2.0          Moved some of the terms to the Wylie College glossary.      Bill Collings

Glossary

1.Introduction 

The glossary contains the working definitions for terms and classes in the Course Registration System. This glossary
will be expanded throughout the life of the project. Any definitions not included in this document may be included in
the Rational Rose Model. Generic terms used outside this project should be captured in the organizational Glossary.

2. Definitions

Alternative course selection
A student might choose to register for one or more alternative courses, in case one or more of the primary selections
are not available.

Billing System
Part of the university's Finance System used for processing billing information.



Appendix:Requirements/Stakeholder Requests
This artifact contains any type of requests, a stakeholder 
(customer, end user, marketing person, and so on) 
might have on the system to be developed. 

It may also contain references to any type of external
sources to which the system must comply.

Although the system analyst is responsible for this
artifact, many people will contribute to it: marketing
people, end users, customers-anyone who is considered
to be a stakeholder to the result of the project.



Appendix:Stakeholder Requests

Stakeholder requests are mainly collected during the
inception and elaboration phases, however you should
continue to collect them throughout the project's
lifecycle for planning enhancements and updates to the
product.

A change request tracking tool is useful for collecting
and prioritizing these requests.



Appendix:Storyboard

A Storyboard is a logical and conceptual description of 
system functionality for a specific scenario, including the 
interaction required between the system users and the 
system. A Storyboard "tells a specific story".

System Analyst

Optional. Produced in early Elaboration, during 
requirements elicitation. 



Appendix: Requirements/Storyboard

The following people use the Storyboards: 

system analysts, to explore, clarify, and capture the behavioral interaction 
envisioned by the user as part of requirements elicitation. 

user-interface designers, to design the user interface and to build a prototype 
of the user interface; 

designers of the classes that provide the user interface functionality; They use 
this information to understand the system's interactions with the user, so 
they can properly design the classes that will implement the user interface; 

those who design the next version of the system to understand how the 
system carries out the flow of events; 

those who test to test the system's features; 

the manager to plan and follow up the analysis & design work. 



Appendix: Software Requirements Specification

The Software Requirements Specification (SRS) captures the 
software requirements for the complete system, or a portion of 
that system. 

The Requirements Specifier role specifies and maintains the 
detailed system requirements.

Considered first in the Inception phase, refined in the 
Elaboration and Construction phases. 



Appendix: Software Requirements Specification

The following people use the Software Requirements Specification:

The system analyst creates and maintains the Vision and Supplementary 
Specifications, which serves as input to the SRS and are the communication 
medium between the system analyst, the customer, and other developers. 

The requirements specifier creates and maintains the individual use case and 
other components of the SRS package, 

Designers use the SRS Package as a reference when defining responsibilities, 
operations, and attributes on classes, and when adjusting classes to the 
implementation environment. 

Implementers refer to the SRS Package for input when implementing classes. 

The Project Manager refers to the SRS Package for input when planning 
iterations. 

Testers use the SRS Package as an input to considering what tests will be 
required. 

file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_sysan.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/artifact/ar_vsion.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/artifact/ar_sspec.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_ucaut.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/artifact/ar_uc.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_dsgnr.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_implm.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_projm.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wks_testers.htm


Fast Review: Sequence Diagram



Fast Review: Sequence Diagram



Fast Review: State Diagram


