ebru@hacettepe.edu.tr

ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/
@ebrul76

mailto:ebru@hacettepe.edu.tr
mailto:ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/

Policy

- One midterm (24 points), total 3 uninformed quiz (12 points
for each) and final exam (50 points)

-No homework

-No memorization

-Explanation, discussion, question-answer Textbook
-Slides will be shared on personel web site DGSlgH Patterns
Elements of Reusable
-Also answer key of exams Object-Oriented Software
Erich Gamma
Richard Helm

Ralph Johnson
John Vlissides

Write «design patterns» to Google,
get more than you need

»
o
=
=
w
(@)
©)
74
<
=
=
&
=
<
)
-
o
22
w
w
©)
Z
>
=~
(@)
(®)
L
Z
@)
-
=
m
w

Cover an © 199

Foreword by Grady Booch

s

Why or Why not

Because of Because of
-me -me
- hesitate from design - direct focus on design

- having more funny options
- bilingual content

- being shy to answer me

- dislike pen and paper

you may withdraw you may be willing to go on

Content, as expected...

=

T G by SR by G
t—“ﬂ-
-

g

—

| ets start: what is the definition of...

-Class

-Association
-Inheritance
-Polymorphism
-Encapsulation
-Abstraction

-UML & its diagrams

Fast Review: Confusing Start

Encapsulation: Hiding implementation details, define expected 1/0s

199JJ3 pue asne)

Abstraction: Hiding whole system, define a way to access the system

Fast Review: OOP Concepts

Encapsulation

Base Class Chject

A
\ -
Abstract Class [A
A
‘-1\ Jl‘ - o
\ :

Create
Deg o Instance Rayne

Access Modifiers > 3 Ci . Properties Methods Property values Methods
Color Sit Color. Gray, ¥White, and Black Sit
Eye Color Lay Down Evwez Color Blue and Brawn Lay Diowan
! Height Shake Height: 18 Inches Shake
Length Came Length: 3B Inchaz Come
Yifeight Weight 30 Founds

Polymorphism e)

\(

I
'
'
1
I

L

- -...-_-"
~

P
Mobile A
Class

Abstraction

= Properties

& IEMICode

& IsSingleSIM

F& Processor

& SIMCard
= Methods
ConnectBlueTooth
Dial
GetlEMICode
GetWIFIConnection
Receive

e e

SendMessage

™

ast Review: Object

Association - No ownership &
No lifetime dependency

Aggregation - One owner instance
but no lifetime dependency

Composition - One owner instance and
lifetime of child instance dependson
lifetime of owner instance

Relations

~. L
/Assouahon

{> Inheritance

— — — —————[> Realizel Implimentation

___—————> Dependancy
<> Agaregation
’ Composition

Object Relations and Multiplicities

Multiplicity means to define that how many objects can be related
with the objects of correponding class.

Relation means to there are some structural reasons to occur
together or unstructural reasons for communication between
objects to achieve a specific purpose

Multiplicity:

In OO analysis and design this can help to implement, test and
debug the code.

Relations:

The relations of is_a and has_a are fundamental ways to
understand collections of classes.

In an OO0 implementation these relations will usually be visible in
the code. But they are not the only interesting relations!

The simplest association is binary and represented by a line
e.g.

<name=>

Class_A Class B

Normally, we at least annotate the association
with a <name>, e.qg.

studies p

Student Course

name title

An arrow can be added to show the orientation
or asymmetry of the relation.

In this case studies IS not symmetric.

subject
Student Course

participant
name title

The existence of an association between two
classes often indicates some level of coupling,
In the sense of related concepts.

According to standard practice, coupling should
be minimized and cohesion maximized.

The commonest multiplicities are:

One-to-one

tax_coding

John Smith
760901-1234

o
Mary Jones

691205-5678

People Tax codes

One-to-many

mother_of

K. Meinke

N. Meinke

Women People

Many-to-many

parent_of

o K. Meinke
K.W. Meinke \

N. Meinke

People People

UML has a notation for multiplicity:

*

< =

< © =

one and only one

Zero or one

fromMto N

greater than or equal to zero
..same ...

greater than or equal to M

Examples: one-to-one

Class A

one-to-many

Class B

Class A

Class B

many-to-many

Class A Class B

We can also add multiplicity constraints
to aggregation and composition relations,

e.g. ...

Relationships: 3 Kinds

Window
open () e Event
close ()
o dependency
generalization
ConsoleWindow DialogBox

Control

L associlation

Generalization

Relationship between general thing (parent) and more specific thing (child)
Child “is-a-kind-of” parent.

Child inherits attributes and operations of parent.

generalliatlon Shape T pase class
Rectangle Circle Polygon

Square - Ieaf class

Dependency

A change in one thing may affect another.

“Uses” relationship.

May have a name, but not common.

AudioClip
name
_ Microphone
record (m:Microphone)
start ()
t
stop () dependency

Assoclations (UML)

Represent conceptual relationships between classes

direction indicator:

_ _ how to read relation name
relationship name .

Professor . teaches » 1 * Course

teacher ™~-.__ class™,

role names o
> Multiplicity

defines the number of objects

assoclated with an instance

of the association.
Default of 1;

a N

Associations - In Other OOAD

Associations may be binary, ternary, or higher order
binary association

Professor Course
teaches

Fusion Style

Ternary association

Student Course

Score

Assocliations — A Question

How would you model the following situation?

“You have two files, say Homework1 and MyPet, where Homework1 is
accessible only by you, but MyPet is accessible by anybody.”

You could create two classes, File and User. Homeworkl and MyPet are files, and you
are a user.

Approach 1: Now, would you associate the file access right with File?

Approach 2: Or, would you associate the file access right with User?

Associations

UML Association Class

class

File

\]/ 1. User |
class
AccessRight —
access permission association

class

Associations — UML Links

m link is @a semantic connection among objects.
m A link is an instance of an association.

association
| FSS class

associajion name)
Worker 1 %

" : f Compan
empioyee> er%ﬁlo er

+setSalary(s : Salary)
+setDept(d : Dept)

w : Worker |--assign(developm

: Company

Named object Anonymous object

AssocIations - Aggregation

- structural association representing “whole/part” relationship.

- “has-a” relationship.

part

Department

1..

whole

multiplicit
e plICItY ‘

*

0 Com;l>any

association _
aggregation

Modeling Simple Dependencies

The most common dependency between two classes is one
where one class uses another as a parameter to an operation.

Create dependency pointing from class with operation to parameter.

Using relationship

CourseSchedule

addCourse(c: Course) | T\ Course
removeCourse(c : Course

Usually initial class diagrams will not have any significant number of
dependencies in the beginning of analysis but will as more details are identified.

Modeling Single Inheritance

Look for common responsibilities, attributes, and operations that are
common to two (2) or more classes.

If necessary, create a new class to assign commonalities.
Specify that the more-specific classes inherit from the more-general.

Security In UML, abstract classes and their
: operations would be italicized.
tVal
presentvatue () abstract
history /()
is-a-kind-of relationship ZAN
| |
CashAccount Stock Bond
interestRate
presentValue () presentValue () presentValue ()

PreferredStock CommonStock

Modeling Single Inheritance (cont’d)

Abstract
Abstraction—the essential characteristics of a thing.
Abstract class—cannot be instantiated.

Abstract method—has no implementation defined (i.e., no method
body).

Depicted in italics or with stereotypes.

Concrete
Not abstract.
Can have instances.

Modeling Structural Relationships

O Considering a bunch of classes and their association relationships

School

3

“ member

Student

has

attends *

Department

0.1

1.*

composite symbol (¢)get loaded versus the aggregation

Course

V'S

assigned to

1.*

1

chairperson

4 teaches 1.*

Instructor

Modeling Structural Relationships

Composite

Body

Liver

Heart

Aggregation
Car
Wheel Engine

O O O

Composite is a stronger form of aggregation. Composite parts live and die with the whole.

Modeling Structural Relationships

Specify an association to create a navigation path between two objects
(in either direction).

Specify an association if two objects interact with each other beyond
operation arguments.

How do you know that objects of one class must interact with another class?

* Review the scenarios that were derived from Use Cases.
» CRC cards seem much less used in practice..

Specify multiplicity; 1 is assumed.

Specify aggregation when one of the classes represents a whole over
the other classes.

Modeling relationships

Use dependencies when relationship is not structural.
Use generalization with “is-a” relationship.

Don’t introduce cyclical generalizations.

Balance generalizations - Not too deep, not too wide.
Use associations where structural relationships exist.

Drawing a UML relationship
m Use rectilinear or oblique lines consistently.
m Avoid lines that cross.

m Show only relationships necessary to understand a particular grouping
of things.

m Elide redundant associations.

Fast Review: Class Diagram

] iied 1 Enroliment 4 | 5
Student enrote —» Marks Received — n Seminar

Name Get Average To Date Name
Address Get Final Mark Seminar Number
Phone Number rdered. EIFO Fees
Email Address 0-._{0 oo } on waiting list 0.*
Student Number Add Student
Average Mark 0..* | Drop Student
Is Eligible To Enroll
Get Seminars Taken Professor

Name instructs

Address 0.1

Phone Number
Email Address
Salary

?Some seminars may
not have an
instructor?

Here is the relation tuple:

{Type, Multiplicity, Name, Roles}

Fast Review: UML Diagram

What is Analysis and Design?

What is Analysis and Design?

Analysis emphasizes an investigation of the problem and
rrequirements, rather than a solution. For example, if a new
computerized library information system is desired, how will it be used?

Design emphasizes a conceptual solution that fulfills the requirements,
rather than its implementation. For example, a description of a
database schema, object model and dynamic model. Ultimately,
designs can be implemented.

Analysis and design have been summarized in the phase «do the right
thing» (analysis), and «do the thing right» (design)

When?

Discipline Artifact Incep. Elab. | Const. | Trans.
Iteration-* 11 El. En | CLCn | 71 T2
Business Modeling Domain Model 5
Requirements Use-Case Model 5 r
Vision s r
Supplementary Specificabon 5 r
sl e L
Design Model 5 r ~
SW Architecture Document 5 >
Data Model 5 L -
Implementation Implementation Model 5 r r
Project Management (SW Development Plan 5 r r r
Testing Test Model 5 r
Environment Development Case s r

Sample Development Case of UP artifacts, s - start; r - refine

Inputs?

Inputs?

Requirements are
capabilities and conditions
to which the system—and
more broadly, the project—
must conform

Sample UP Artifacts

- N
) Domain ‘Partial artitacls,
Business Modei refined in eachj
Modeling B’/E'l wy feration.
.f‘%}a \‘——'\,M_/h__/

terms, atiribittes, vaiidation

consiraints

Use-Case 00— = — — = s L;pl_ —i — \
Model YT ementary
. TR T — Vislan Specification | Glossary
Requirements I;j—,;?] .15 lé{ I 9. —-
i e

De_sijgn Model

Design
requiretments, Q\‘bl
priorities ér
)
s
N
Project)
Management
e gli O
d
Tes& Development
Plan Case
Test |_—__1T Environment :}l

Sample UP artifact influence.

Let’s discuss

DESIGN DESIGN

Accuracy ?
Flexibility?

Outline of Design Patterns

Structura

MNarmas

Diagrams

UML relresher
Temp late Method

2. Behavioral Pattems (1) ﬁ ﬁ:;n;gy Conmverting swilch stalemerts
:-:r

1. Introduction 1o Patterns

G anarnics
Observar
Polymorp hic
Singleton Managing synchronization

3. Creational P‘attems/ N '.'nrmnm.us&&amiﬂ
Fadory Method Simp le fadory
Tough questions
E:
Adapter Objed Adapler
4. Structural Patiems (1) Clens Adupter

Decorator Colledtions
Camposita Recursively visiting

\Design Patterns Course|

Visilar
Command Swing

5. Behavioral Pattems (Il Tvend Pools
Mamanlo
Chain ol Responsib ility
State

Comparing to padages
Is it a Design Pattemn?

Bridge
i Virlual Proxy
Praxy »~ Remote Proxy
“. Protadion Proxy

6. Structural Fattemns (1)

"Drawings help people to
work out intricate
relationships between

- .;.. parts.”
| n :I_ 9 7 7 R . Christopher Alexander
-

Christopher Alexander (born 1936), architect,
has been worked on the effects of designs on
the structures (building, cities, centers) and,
he has tried on the design quality

He used «Design Pattern» name to describe
the problems that occur and occur in different
scales and can be solvable in the same
manner

Definition from the father

Design Pattern definition from Alexander:

“Each pattern describes a problem

1)which occurs over and over aqain in our environment and then

2)describes the core of the solution to that problem, in such a way that

3)you can use this solution a million times over, without ever doing it
the same way twice”

Design pattern is the solution outline for the problems triggered by
same reasons
Patterns = problem/solution pairs in context
Patterns facilitate reuse of successful software architectures
and design
Not code reuse !!!
Instead, solution/strategy reuse
Sometimes, interface reuse

Somewhere in the community at least one big pl
>) where a few hundred people can gather, with beer i
A Pattern l,zmguagc wine, music, and perhaps a half-dozen activities, $0

Towns - Buildings - Construction people are conﬁnuously criss—crOSSing from one to an t

criss-cross paths
activities

Christopher Alexander
Sara Ishikawa - Murray Silverstein

open alcoves
Max Jacobson - Ingrid Fiksdahl-King

Shlomo Angel

From Architectural design 2 software design

At the early 1990s, software design issues were discussed

by considering two basic question

Are there any problems occuring repeatedly and each solution

carries some similiar structures?

s it possible to desing a software by using patterns even domains

may change from one to another

The book that started it all
Community refers to authors as the “Gang of Four”

Figures and some text in these slides
come from this book

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Jehnson
John Vl0issides

Components of a Pattern

Pattern name
identify this pattern; distinguish from other patterns
define terminology

Pattern alias — “also known as”
Real-world example
Context / Problem

Solution
typically natural language notation

Structure
class (and possibly object) diagram in solution

Interaction diagram (optional)

Consequences
advantages and disadvantages of pattern
ways to address residual design decisions

Components of a Pattern (cont’d)

Implementation
critical portion of plausible code for pattern

Known uses
often systems that inspired pattern

References - See also
related patterns that may be applied in similar cases

Why this book is serious

Because,

-First announcement of Design Patterns for us

-Total 23 patterns are catalogued with all components
-They triggered to revise principles OO Modeling

-The opinion of reusable solution/experience emerged

-Reliability, flexibility and robustness of these solutions have
been tested in different situations and in different domains

-Common terminology is extended by means of patterns

-Pattern based analysis of the problem makes modeler more
aware about the quality

-Patterns make software more flexible and easier to change

Basic principles of GoF

All of 23 patterns suggest same 3 things:

“Design interfaces”
“Favour aggregation over inheritance”

“Find what varies and encapsulate it”

Principles Underlying Patterns

Rely on abstract classes to hide differences between subclasses
from clients

object class vs. object type
class defines how an object is implemented
type defines an object’s interface (protocol)

Program to an interface, not an implementation

Principles (cont’d)

Black-box vs. white-box reuse

black-box relies on object references, usually through
instance variables

white-box reuse by inheritance

black-box reuse preferred for information hiding, run-time
flexibility, elimination of implementation dependencies

disadvantages: Run-time efficiency (high number of
instances, and communication by message passing)

Favor composition over class inheritance

Principles (cont’d)

Delegation
powerful technique when coupled with black-box reuse

Allow delegation to different instances at run-time, as long as
instances respond to similar messages

disadvantages:
sometimes code harder to read and understand
efficiency (because of black-box reuse)

Find what varies and encapsulate it

Design patterns taxonomy

Creational patterns
concern the process of object creation

Structural patterns
deal with the composition of classes or objects

Behavioral patterns

characterize the ways in which classes or objects interact and
distribute responsibility.

CMSC 433, FALL 2002

Absiract Faciony
Acdapier

Sroge

(el [(o] 2]

Bulider

Ciain of Responsibilty

Command
[&] compest=
[&] oecomter

- (] e

Factory Metod [B | coserer
S— [(=] zngresn
roamrer Stat
e sty
Mscor Tempiate Method
P Vishor
Fressie

Client

ainterisces

=hanaleReque s}

=FandieRequest)

+handeRequesi]

aimierfaces

TemninalExpraceion

HonbsminalExpreceion

+interpret) - Combext

+inierpneti] - Conbest

wini=faces aiRfEriace s
Agorsgats Herator
Oy et Ee]
lK'lk [|l
Conarsiasggregats ConorebaRerator
=Createfiemion) - Confext +next{] : Coniext

f sucesssor (Cain of Responsibility

Type: Benavioral

What It ks

Aycid coupling e sender of 3 reguest o
Itz necebver by giving mone than one object
a chance to Fandie the request. Chaim the
recefving obiects and pass e request
along the ciain undl an object kandies &

Command

Type: Echaviorai

Whiat | ls:

Encapsulate a nequest as an object,
thessby l=Sing you parameterize clients
Wit different requess, queus or log
requests, and suppor undoabie operations.

Intemprater
Typa: Behavioral

What R o

Ghien a language, defre a nepresentadion
for Its grammar siong with an intpneter
at uses the representation o inberpret
seniences in the language.

[terator

Type: Behavioral

What R o

Frovide a way io access the siemens of
an aggregale object sequentially wiout
expasing s underying representation.

Memento

Typa: Behaviors

What it ls:

Without viclaing =ncapsulation, caphune
and syismallze an object's infermal siate

=0 that T object can be restored b this
stabe kafer

COhserver
Type: Bafardoral

WWhat i b

Eamanio

-stabe

Originator

-stabe

=setMementolin m : Memenio)
=Creabebiemeniod)

almierisces

=atachiln o - DbssneT]

ruoiifies

et

ainiefaces

=defachiir o - Dbsenver]

Define & one-to-many dependency bebwesn

chjects o Fat when one objedt changes
siate, all lis dependents are nodfied and
updaied automaticaly.

State

Type: Behavionl

Whhat | le:

Alow ani object o aiter Bs behavior when
s Infemal siate changes. The object wil
appear io change lts dass.

Sirateqgy

Type: Behavionl

Whhat | le:

Define a family of aigorithes,
encapsuiate sach o, and make thes
nierchangeabie. Lets S algorthm vary
riiependeniy fom

cllenis that uss it

Template Method

Type: Ezhavioral

What It is:
Define the skeleston of an algorthm In an

cperation, defeming some steps o subcasses

Lets subclysses redefine cerbin steps
of an aigoritrm without changing e
aigorthm’s stnchre.

+update]

ohseryes

ConoredeDbcaner

undae)

+requesh]

sinterfaces
tate

+randiai)

Contaet

erizriaces
Etratogy

+ENECuE (]

AbcirachTlaes

+ e miplabed Aol
[Frubhdethod |

PN

= subidethodi)

/——— Memento Proxy
saving state Adapter
Builder o ”‘< \
K P terator g w”"“ e{edsw Bridge
composites
adaing composed
'/ to objects -
Decorator sharig ol o
Composs defining
‘ ik B ”’V‘I’““ the chain
Flyweight desahg Visitor
N i) }
versus guts
. aadding
i] — Operations 2
(mnng nterpreter Chain of Responsibility
i vl s Mediator |=—
\ complex
m“"”‘mw"’“'q ——— Observer
defining State
algorithm's
Template Method [———— often Um\
Prototype —
configure factory e Factory Method
dynamk(aﬂy ——/ implement using
Abstract F.
/ actory
single
instance

netonce

SIngIe/ton / "

When and How Design patterns are used

Whatever Software Life Cyle Model is applied
(i.e. RUP, Scrum, XP, Waterfall)

While building analysis model
and
Modeling of software requirements

Design Patterns are also known as
GRASP Patterns

“GRASP is an acronym that stands for General Responsibility
Assignment Software Patterns”

The name was chosen to suggest the importance of grasping
these principles to successfully design object-oriented software

GRASP Patterns

Do not state new ideas

Name and codify widely used basic principles

Responsibilities

UML defines a responsibility as “a contract or obligation of a
classifier”.

A class embodies a set of responsibilities that define the
behaviour of the objects in the class.

Responsibilities

“A responsibility is not the same thing as a method, but
methods are implemented to fulfill responsibilities.”

“Responsibilities are implemented using methods that either
act alone or collaborate with other methods and objects.”

Responsibilities and methods are related

: Register : Sale

|
makePayment(cashTendered) >I

makePayment(cashTendered)

_ create(cashTendered) | . payment
\Implies Sale
|

I
|
objects have a ' :
' responsibility ! [
To create
Payments

Responsibilities revolve around

Doing
Knowing

Collaboration

“Doing” responsibilities

Doing something itself, such as creating an object or doing a
calculation

Initiating action in other objects

Controlling and co-coordinating activities in other objects

“Knowing™ responsibilities

Knowing about private encapsulated data
Knowing about related objects

Knowing about things that it can derive or calculate

GRASP Patterns

Key three:
Creator
Controller
Information Expert

Who should be responsible for creating an new instance of
some class?

Some options:

Assign B the responsibility to create A if one or more of the following
is/are true:

B “contains” A (e.q. Invoice creates Invoicelineltem)
B records A
B closely uses A

B has the initializing data for A that will be passed to A when it is
created (thus B is the Expert with respect to creating A). (e.g. Sale
creates Payment)

Do not distribute the creation knowledge of A

Creating a SalesLineltem

: Reqister

makeLineltem(quantity)

. Sale

create(quantity)

Salesljneltem

Controller

What first object beyond the Ul layer receives and coordinates a
system operation?

Use Case or Session Controller
Use case/session (e.qg. Register)*

Guidelines/Issues

Controller usually delegates work to other objects—it
controls, coordinates, it does not do much work itself

Danger: Bloated controller
a single controller receives all system events (and there are many)
a controller that does the work itself

a controller that has many attributes; maintains significant
information

Among Cures for Bloat
more controllers, use case controllers, more delegation

Information Expert

What is the general principle of assigning responsibilities to
objects?
A Solution:

Assign a responsibility to the class that has the information
necessary to fulfill it—the “information expert”

(note: start this process by clearly stating the responsibility!)

Information Expert

Example: Sale has the responsibility of knowing its total,
expressed with the method named getTotal

Information Expert

_ Register

getTotal()

_ Sale

getSubtotal()

SalesLineltem

getPrice()

ProductD_escription

Collaboration

Fulfillment of a responsibility often requires information from different
classes of objects

Example, sales total requires the collaboration of 3 classes of objects: Sale,
SalesLineltem, ProductDescription

Interact via messages™

Analysis Model

In Analysis, we analyze and refine the requirements described in the Use Cases in
order to achieve a more precise view of the requirements, without being

overwhelmed with the details

Again, the Analysis Model is still focusing on WHAT we’re going to do, not HOW
we’re going to do it (Design Model). But what we're going to do is drawn from
the point of view of the developer, not from the point of view of the customer

Whereas Use Cases are described in the language of the customer, the Analysis
Model is described in the language of the developer:

* Boundary Classes
e Entity Classes
* Control Classes

Boundary Classes (out of
DP’s Scope)

Boundary classes are used in the Analysis Model to model interactions
between the system and its actors (users or external systems)

Boundary classes are often implemented in some GUI format (dialogs,
widgets, beans, etc.)

Boundary classes can often be abstractions of external APIs (in the case of
an external system actor)

Every boundary class must be associated with at least one actor:

A4+

Custom er EnterPinDialog

(Trom Uze Case wWiew)

Entity Classes (in the DP’s
Scope)

Entity classes are used within the Analysis Model to model
persistent information

Often, entity classes are created from objects within the
business object model or domain model

Zeommunicates >

3
}_O werifyPA : :

EnterFinlialog Custom erP rofile

Control Classes (in the DP’s
Scope)

Control classes model abstractions that coordinate, sequence, transact,
and otherwise control other objects

Control classes are often encapsulated interactions between other
objects, as they handle and coordinate actions and control flows.

Customer EnterPinlialog CustomerP rofile
(fom Use Case Wlew)
Zacommunicates
wrenfy P LA

Appendix: Requirements/Glossary

Course Registration System
Glossary

Version 2.0

Revision History

Date Version Description Author
26/Dec/1998 1.0 Draft version Bill Collings
19/Feb/1999 2.0 Moved some of the terms to the Wylie College glossary. Bill Collings

Glossary
1.Introduction

The glossary contains the workinTg definitions for terms and classes in the Course Registration System. This glossary
will be expanded throughout the lite of the project. Any definitions not included in this document may be included in
the Rational Rose Model. Generic terms used outside this project should be captured in the organizational Glossary.

2. Definitions

Alternative course selection
A student mjﬁht choose to register for one or more alternative courses, in case one or more of the primary selections
are not available.
Billing System
Part of the university's Finance System used for processing billing information.

Appendix:Requirements/Stakeholder Requests

This artifact contains any type of requests, a stakeholder
(customer, end user, marketing person, and so on)
might have on the system to be developed.

It may also contain references to any type of external
sources to which the system must comply.

Although the system analyst is responsible for this
artifact, many people will contribute to it: marketing
people, end users, customers-anyone who is considered
to be a stakeholder to the result of the project.

Appendix:Stakeholder Requests

Stakeholder requests are mainly collected during the
inception and elaboration phases, however you should
continue to collect them throughout the project's
lifecycle for planning enhancements and updates to the
product.

A change request tracking tool is useful for collecting
and prioritizing these requests.

Appendix:Storyboard

A Storyboard is a logical and conceptual description of
system functionality for a specific scenario, including the
interaction required between the system users and the
system. A Storyboard "tells a specific story".

System Analyst

Optional. Produced in early Elaboration, during
requirements elicitation.

Appendix: Requirements/Storyboard

The following people use the Storyboards:

system analysts, to explore, clarify, and capture the behavioral interaction
envisioned by the user as part of requirements elicitation.

user-interface designers, to design the user interface and to build a prototype
of the user interface;

designers of the classes that provide the user interface functionality; They use
this information to understand the system's interactions with the user, so
they can properly design the classes that will implement the user interface;

those who design the next version of the system to understand how the
system carries out the flow of events;

those who test to test the system's features;

the manager to plan and follow up the analysis & design work.

Appendix: Software Requirements Specification

The Software Requirements Specification (SRS) captures the
software requirements for the complete system, or a portion of
that system.

The Requirements Specifier role specifies and maintains the
detailed system requirements.

Considered first in the Inception phase, refined in the
Elaboration and Construction phases.

Appendix: Software Requirements Specification
The following people use the Software Requirements Specification:

The system analyst creates and maintains the Vision and Supplementary
Specifications, which serves as input to the SRS and are the communication
medium between the system analyst, the customer, and other developers.

The requirements specifier creates and maintains the individual use case and
other components of the SRS package,

Designers use the SRS Package as a reference when defining responsibilities,
operations, and attributes on classes, and when adjusting classes to the
implementation environment.

Implementers refer to the SRS Package for input when implementing classes.

The Project Manager refers to the SRS Package for input when planning
iterations.

Testers use the SRS Package as an input to considering what tests will be
required.

file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_sysan.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/artifact/ar_vsion.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/artifact/ar_sspec.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_ucaut.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/artifact/ar_uc.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_dsgnr.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_implm.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wk_projm.htm
file:///C:/Program Files2/RUP/RationalUnifiedProcess/process/workers/wks_testers.htm

Fast Review: Sequence Diagram

Librarian Book MemberRecord Transaction

i1 : check availabilty of boo

2 : book avalbie() ;

3 vdidate member()

4 check number of books issued()

5 : book can be issued() J

[-r 6 <<creates>

7 add member and book details)

|

9 : upda:e member record()

8 update book status()

jagram

Sequence D

Receptionist

I e R e R e e e e e e e 7
.
!
!
!
i
:
£ H
=) '
[=4 '
i
:
!
{
m
= h
0| '
) '
= '
| "
i '
= !
g h
= 5
& = |
w "
o '
.-.-ﬂ. '
| A
5 5 &
S s £ | } e
o - ' o~ v 3
o £ ' ' ¥ ¥ o 2
= i ! N
=] el e e
& || E ic n R
[i 6 1 £ 9 iz e
P-3 = o 3 -} b
T 'S |88 2 {
5 v 3J "o P2 I
a .a) R Ve e | o '
' o w o~ -
m N4 @ +® ! - '
= [3
() 1 e = "
:::::: A P ST 2 TR g S L
U i 2 H
=l b L= ;
S0y ' ' e '
” ; : "
| ' \ H
£ ! ! !
........... Dcealo e dloadb e e e B ol e] s
9 g LA : A : Yw./ AR §
I ' 1 ' ']
= g g) : : < & ‘B
3 =R ke b= e |E EIE '3
& PR DAl b= ol = = '8 =]
5 g I 1 I Q Elm) o
VA |83 o 1 & SN o
& P e v o) B 9T Ve
i i £ i ' cio c
o = | S e £ S we
=] P o | & v U 20 g =]
4 4 bl P B B o @iy]
= e ; S
z VR R A W S 8

23 : RecordComplains{)

'
5
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

3 return

Manager

1 PurchasesStock

:
D

Fast Review

Fast Review: State Diagram

protocol state machine name

N

protocol keyword
indicates protocol state machine

state machine User Account {proté’cov initial pseudostate PhoneCall | name
protocol transition with composite state
[isUniqueld()] precondition and trigger (operation)
create/ I/’— . -\\
- pie (Timeow) e
New [isAccountDormant()] suspend/
7| do/ play message
I dial digit{n)
[isVerified()] Protocol transition with 7 event aﬁer [1 5 SE‘:-.] b [incumple‘le] ﬂ-}ﬁrd
activate/ |4 precondition, trigger (operation), lift receiver condition
[isUniqueld()] and postcondition ngt i time event after (15 sec)
protocol state) activity = DialTone dial digit(n) self
Y, [isSuspendRequested()] suspend/ e Sl cha o . transition
, ——— v dial digit(n)finvalid i
[isCancelRequested()] Active [isAccountDormant()] suspend/ dial dlglt{n][\ialld]
cancel/ [isResumeRequested()] resume/ install Invalid 1|"|r Jeonnact
do/ play message
J C Ir.IB o e, L By et Eﬁnecﬂﬂg
[isCancelRequested()] [isPolicyViolated()] H' = bu“r
cancel/ cancel/ Pinned Bus‘f connected
do/ play busy
il calles callee tone
[isCancelRequested()] cancel/ h ANSWers hangs up
Closed angs up \
[hasNoBalanceDue()] [isPolicyViolated()] cancel/ /disconnect Ringing]
cancel service Jong)< Callee answers | o/ play ringing tone |
l\ /enable speech
protocol state
with an invariant final state .
uml-diagrams.org exit point

