Design Patterns

Adapter Pattern™

ebru@hacettepe.edu.tr
ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/
@ebrul76
Kasim 2017
*modified from http://www.classes.cs.uchicago.edu



mailto:ebru@hacettepe.edu.tr
mailto:ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/

« You program for the control center of a US phone company. Your network
management software is Object Oriented with a simple hierarchy...

1S RE p vl N s 1 caet R WA X e 11 1]
ANCUHUT A Vdnalycin iy o are

- US Network
InitializeNetwork()

« Your company acquires a Japanese phone company. The workings of a Japanese
network are complex and foreign to you, but you need to incorporate this new network
into your software.

« The Japanese company used similar software with a NetworkUtilities class containing
a StartNetwork operation rather than InitializeNetwork. You are only given a
compiled version of the class.

« Do you begin studying Japanese communication protocols and waste millions of
company dollars implementing your own InitializeNetwork algorithm?



« The adapter pattern is a design pattern that is used to allow two
incompatible types to communicate. Where one class relies upon a
specific interface that is not implemented by another class, the
adapter acts as a translator between the two types.

« 3 essentially classes involved:
o Target - class that needs to steal operations from some other
class (Adaptee)
o Adapter - class that wraps the operations of the foreign class
(Adaptee) in Target-familiar interfaces
o Adaptee - class with operations desired for the Target class

« In Class Adapter, this was accomplished by having the Adapter
inherit from both the Target and the Adapter.



« In Object Adapter, the Adapter subclasses the
Target. Instead of subclassing the Adaptee, the Adapter
internally holds an instance of the Adaptee and uses it to call
Adaptee operations from within operations familiar to the




Valféa*faradigm for UML Community Edition [noLlfca)'l; gcg{nmercial use] Adaptee (Compiled Japanese Code)




Network.java - the target
public abstract class Network {

abstract void InitializeNetwork();

JapaneseNetwork.java - the adapter

public class JapaneseNetwork extends Network {
//instance of the adaptee
NetworkUtilities myAdapteeObject;

public void JapaneseNetwork(NetworkUtilities nu) {
myAdapteeObject = nu;

public void InitializeNetwork() {
myAdapteeObject.StartNetwork();

NetworkUtilities.java - the adaptee
public class NetworkUtilities {

public void StartNetwork() {
//complex Japanese network code...
h
}

Tester.java - the client

public class Tester {
public void Tester() {
NetworkUtilities nu = new NetworkUtilities();
JapaneseNetwork jNetwork = new JapaneseNetwork(nu);
USNetwork uNetwork = new USNetwork();

//both networks use familiar interface but jNetwork
uses //adaptee
uNetwork.InitializeNetwork();
jNetwork.InitializeNetwork();
}
}




Problem

* Your payroll has been calculated by an internal class. However you
have decided to use a third party class that will give you more
flexibility.

* The methods used for calculating payroll the third party XYZ class
have different names and parameters.

* How is the best way to implement the XYZ class with as little changes
as possible.



Solution is to Use an Adapter

* Create an interface that defines all the existing method calls to the
present calculation class.

* Build an adapter that implements the new interface so that no
method calls will be broken

* Implement methods in the adapter that accept the old calls and
make the new calls to XYZ.



BaseApp

(from Console Interface)

D e S | g N *Main() <<Interface>>

“dOPaer"() ICaICUIate
(from Business Services)
7 <
Classes y N
y ®calculateHourly()
instantiates %calculateSalary()

CalculatePay
(from Business Services)
&hourly : double
S&fringe : doublel]

CalculateAdapter

(from Business Services)

¥CalculatePay()
®calculateHourly()
®calculateSalary()

%calculateHourly()
%calculateSalary()

XY ZPayCalculator

(from Business Services)

&hourly : double

¥XY ZPayCalculator()
¥performHourly PayCalculation()
¥performSalaryiedPayCalculation()




Sequence for Existing System

pg . CalculatePay




Sequence for Use of Adapter

Calcula_teA... XYZPa_ al...

e
I




Output to Console

<~ "C:\Neal Documents\Visual Studio Projects\CIS48 4
Hourly Payroll "C:\Neal Documents\\Visual Stu

George Applegate 430
Jim Bonner 451.5

Salaried Payroll
Don Ho 1469.7
Steve Smith 1961.076

Press any key to continue




namespace AdapterPattern BaseApp Class
{

class BaseApp

{
static void Main(string[] args)
{
BaseApp ba = new BaseApp();
ba.doPayroll();
}

private void doPayroll()

{

/I the only change in the application is to use the CalculateAdapter

/I rather than the CalculatePay class in use currently

1

/lICalculate cp = new CalculatePay(10.75);

ICalculate cp = new CalculateAdapter();

Console.WriteLine("Hourly Payroll");

Console.WriteLine("George Applegate " + cp.calculateHourly(40.0).ToString());
Console.WriteLine("Jim Bonner " + cp.calculateHourly(42.0).ToString());
Console.WriteLine(" ");

Console.WriteLine("Salaried Payroll");

Console.WriteLine("Don Ho " + cp.calculateSalary(1, 1278.0).ToString());
Console.WriteLine("Steve Smith " + cp.calculateSalary(2, 1634.23).ToString());
Console.WriteLine(" ");



namespace AdapterPattern

{

CalculatePay Class

public class CalculatePay : ICalculate

{

private double hourly;
private double[] fringe;

public CalculatePay(double h)

{

}

hourly = h;

fringe = new double[3];
fringe[0] = .1;
fringe[1] = .15;
fringe[2] = .2

public double calculateHourly(double hours)

{
}

return (hours * hourly);

public double calculateSalary(int category, double salary)

{
}

return (salary * (1 + fringe[category]));



|Calculate Interface

namespace AdapterPattern

{ public interface ICalculate
{ double calculateHourly(double hours);
double calculateSalary(int category, double salary);
}



CalculateAdapter Class

namespace AdapterPattern

{
public class CalculateAdapter : ICalculate
{
public CalculateAdapter()
{
}
public double calculateHourly(double hours)
{
XYZPayCalculator xyz = new XYZPayCalculator();
return xyz.performHourlyPayCalculation(hours);
}
public double calculateSalary(int category, double salary)
{
XYZPayCalculator xyz = new XYZPayCalculator();
return xyz.performSalaryiedPayCalculation(salary);
}
}



XYZPayCalculator Class

namespace AdapterPattern

{

public class XYZPayCalculator
{

private double hourly;

public XYZPayCalculator()

{
hourly = 10.75;
}
public double performHourlyPayCalculation(double hours)
{
return (hours * hourly);
}
public double performSalaryiedPayCalculation(double salary)
{

double fringe;
if (salary < 1500.00)

fringe = .15;
else

fringe = .20;
return (salary * (1 + fringe));



