Design Patterns

ebru@hacettepe.edu.tr

ebruakcapinarsezer@gmail.com

http://yunus.hacettepe.edu.tr/~ebru/
@ebrul76
Aralik 2017

mailto:ebru@hacettepe.edu.tr
mailto:ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/

What is a mediator

e An object that abstracts inter-workings of two
or more objects.

e Acts as communication hub that serve to
decouple objects — no need to know about
each other, just need to know their Mediator.

ePromotes loose coupling by keeping objects
from referencing to each other explicitly

Before and After Mediator

-
=

P

L xr;:i ‘.'L‘_] .

Classification and Intent

eClassification: Object Behavior
eEncapsulate object-to-object communication

eKeeps objects from knowing about each other directly; this allows us
easily change an object’s behavior

When to use a mediator?

e\When one or more objects must interact with
several different objects.

eWhen centralized control is desired

eWhen simple object need to communicate in
complex ways.

eWhen you want to reuse an object that
frequently interacts with other objects

Motivation

. OO-design allows for more reusable and more elegant programs, when
objects need to refer to each other, this elegance is often lost.

. By consolidating all interaction in a single class, we can regain elegance
and reusability

Mediator: a system of at least 3 objects messaging in a star
topology

Provides a common connection point, centralized
(subclassable) behavior and behavior mgmt, all with a
common interface

/

Structure

oncrteesor h

Participant--Abstract Mediator

Define the Collegue-to-Mediator interface

Participani--Concreie Mediator

e Derivated from Abstract Mediator
e Aware of and knows the purpose of all concrete Collegues
e Receives messages from a colleague & sends

necessary commands to other colleagues

Participant--Abstract Colleague

eDefine the Mediator-to- Colleague interface
eKnows about the mediator, but none of its colleagues

Participani--Concrete Colleagues

eDerived from abstract Colleague

eEach Concrete Colleague knows its own behavior on a
small scale, but NOT on a large scale.

Mediator & the Rest of the World

Related Design Pattern

eObserver: the Mediator class may be
implemented using an Observer

eFacade: is similar to a Mediator, but with
one-way communication from the Facade
to its subsystem classes.

Conclusion

oA mediator is an objcet-behavior design pattern.

eUse a Mediator when simple objects interact in
complex ways

eThe Mediator pattern consists of two types of
objects: the Mediator and its Colleagues

eAll object-to-object communication is encapsulated
in the Mediator

eMediator allows for greater reusability, and
generally more elegant, readable code.

package com.javapapers.designpattern.mediator;

public interface IATCMediator {

Landing problem

public void registerRunway(Runway runway);
public void registerFlight(Flight flight);
public boolean islandingOk();

public void setlandingStatus(boolean status);

package com.javapapers.designpattern.mediator;

public class ATCMediator implements IATCMediator {
private Flight flight;
private Runway runway;
public boolean land;

public void registerRunway(Runway runway) {
this.runway = runway;

}

public void registerFlight(Flight flight) {
this.flight = flight;
¥

public boolean islLandingOk() {
return land;

}

@0verride
public void setlandingStatus(boolean status) {
land = status;

package com.javapapers.designpattern.mediator;

public class Flight implements Command {
private IATCMediator atcMediator;

public Flight(IATCMediator atcMediator) {
this.atcMediator = atcMediator;

¥
public void land() {
package com.javapapers.designpattern.mediator; if (atcMediator.islLandingOk()) {
System.out.println({"Landing done....");

public interface C and { atcMediator.setlandingStatus(true);

void land();
; }

1 else
System.out.println({"Will wait to land....");

public void getReady() {

package com.javapapers.designpattern.mediator; System.out.println("Getting ready...");
. - R

public class MediatorDesignPattern { ¥
public static void main(5tring args[]) {

IATCMediator atcMediator = new ATCMediator();
Flight sparrowl®l = new Flight(atcMediator); age com.javapapers.designpattern.mediator;
Runway mainRunway = new Runway(atcMediator);

atcMediator.registerFlight(sparrowl@l); ic class Runway implements Command {
atcMediator.registerRunway(mainRunway); private IATCMediator atcMediator;
sparrowl@l.getReady();
mainRunway.land(); public Runway(IATCMediator atcMediator) {
sparrowl@l.land(); this.atcMediator = atcMediator;
} atcMediator.setlandingStatus(true);
¥ ¥
@0verride

public void land() {
System.out.println("Landing permission granted...");
atcMediator.setlandingStatus(true);

