
Design Patterns

Strategy Pattern*
How to design for flexibility?

ebru@hacettepe.edu.tr

ebruakcapinarsezer@gmail.com

http://yunus.hacettepe.edu.tr/~ebru/

@ebru176

Ekim 2017

*revised from, www.uwosh.edu/faculty_staff/huen/262/f09/slides/10_Strategy_Pattern.ppt

mailto:ebru@hacettepe.edu.tr
mailto:ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/

Existing Duck application

Duck

quack()

swim()

display()

//other duck-like methods…

MallardDuck

display() {

// looks like a mallard}

RedHeadDuck

display() {

// looks like a redhead }

The display()

method is abstract,

since all duck

subtypes look

different

Other duck

types inherit

from the

Duck class

. . .

Each duck subtype is

responsible for

implementing its own

display() method

All ducks quack

and swim. The

superclass takes

care of the

implementation

code

Testing Mallard, RedHeadDuck classes

Changing Requirment

• No sweat!
• Add a method fly() in Duck

• Continue to use inheritance

Add a method fly() in Duck

Duck

quack()

swim()

display()

fly()

//other duck-like methods…

MallardDuck

display() {

// looks like a mallard}

RedHeadDuck

display() {

// looks like a redhead }

All subclasses

inherit fly()

Executing

Something seriously wrong!

Strategy Pattern 7

Duck

quack()

swim()

display()

fly()

//other duck-like methods…

MallardDuck

display() {

// looks like a mallard}

ReadHeadDuck

display() {

// looks like a redhead }

All duck types

now can fly

including

RubberDuck

RubberDuck

quack() {

// overridden to Squeak }

display() {

// looks like a rubberduck

}

Executing … What?

Root cause?

• Applying inheritance to achieve re-use

• Poor solution for maintenance

• Using inheritance as before
• Override the fly() method in rubber duck as in quack()

How do we fix this?

Executing

Strategy Pattern 10

Is the problem solved?

• Any new problems?

Wait a minute

• How about new duck types?
• Decoy duck?

• Can’t quack

• Can’t fly

• How do we solve it?

Summary

• What have we done so far?

• What problems have we solved?

• What problems have we introduced in solving the problems?

• Is there a better way of doing things?

How about Interface?
• Take the fly() method out of Duck superclass

• And make a Flyable() interface
• Only those ducks that fly are required to implement the interface

• Make a Quackable interface too

13

class Duck

swim()

display()

//other duck-like methods…

MallardDuck

display()

fly()

quack()

RedHeadDuck

display()

fly()

quack()

RubberDuck

display() {

quack()

interface Flyable

fly()

Interface Quackable

quack()

But

• You shoot yourself in the foot by duplicating code for every duck type
that can fly and quack!

• And we have a lot of duck types

• We have to be careful about the properties – we cannot just call the
methods blindly

• We have created a maintenance nightmare!

Re-thinking:

• Inheritance has not worked well because
• Duck behavior keeps changing
• Not suitable for all subclasses to have those properties

• Interface was at first promising, but
• No code re-use
• Tedious

• Every time a behavior is changed, you must track down and change it in
all the subclasses where it is defined

• Error prone

#1 Design Principle

• Identify the aspects of your application that vary and separate them
from what stays the same

• So what are variable in the Duck class?
• Flying behavior

• Quacking behavior

• Pull these duck behaviors out of the Duck class
• Create new classes for these behaviors

How do we design the classes to implement the fly
and quack behaviors?

• Goal: to keep things flexible

• Want to assign behaviors to instances of Duck
• Instantiate a new MallardDuck instance

• Initialize it with a specific type of flying

• Be able to change the behavior dynamically

#2 Design Principle

• Program to a supertype, not an implementation

• Use a supertype to represent each behavior
• FlyBehavior and QuackBehavior
• Each implementation of a behavior will implement one of

these supertypes

• In the past, we rely on an implementation
• In superclass Duck, or
• A specialized implementation in the subclass

• Now: Duck subclass will use a behavior represented
in a supertype.

Strategy Pattern 19

3 classes in code

public interface FlyBehavior {

public void fly();

}

public class FlyWithWings implements FlyBehavior {

public void fly() {

System.out.println("I'm flying!!");

}

}

public class FlyNoWay implements FlyBehavior {

public void fly() {

System.out.println("I can't fly");

}

}

public interface QuackBehavior {

public void quack();

}

Specific behaviors by implementing interface QuackBehavior

public class Quack implements QuackBehavior {
public void quack() {

System.out.println("Quack");

}
}

--

public class Squeak implements QuackBehavior {
public void quack() {

System.out.println("Squeak");

}
}

public class MuteQuack implements QuackBehavior {
public void quack() {

System.out.println("<< Silence >>");

}
}

Integrating the Duck Behavior

1. Add 2 instance variables:

Strategy Pattern 24

Duck

FlyBehavior flyBehavior

QuackBehavior quackBehavior

performQuack()

Swim()

Display()

performFly()

//OTHER duck-like methods

Instance

variables hold

a reference to

a specific

behavior at

runtime

Behavior

variables are

declared as the

behavior

SUPERTYPE

These general

methods

replace fly() and

quack()

2. Implement performQuack()

public abstract class Duck {

// Declare two reference variables for the behavior interface types

FlyBehavior flyBehavior;

QuackBehavior quackBehavior; // All duck subclasses inherit these

// etc

public Duck(FlyBehavior f, QuackBehavior q) {

}

public Duck() {

}

public void performQuack() {

quackBehavior.quack(); // Delegate to the behavior class

}

3. How to set the quackBehavior variable &
flyBehavior variable

public class MallardDuck extends Duck {

public MallardDuck() {

quackBehavior = new Quack();
// A MallardDuck uses the Quack class to handle its quack,
// so when performQuack is called, the responsibility for the quack
// is delegated to the Quack object and we get a real quack

flyBehavior = new FlyWithWings();
// And it uses flyWithWings as its flyBehavior type

}

public void display() {

System.out.println("I'm a real Mallard duck");

}
Strategy Pattern 27

Strategy Pattern 28

Testing the Duck code

Type and compile:

• Duck class and the MallardDuck class

• FlyBehavior interface and the two behavior implementation
classes (FlyWithwings.java and flyNoWay.java)

• QuackBehavior interface and 3 behavior implementation classes

• Test class (MiniDuckSimulator.java)

Strategy Pattern 29

// 1. Duck class

public abstract class Duck {

// Reference variables for the behavior interface types

FlyBehavior flyBehavior;

QuackBehavior quackBehavior; // All duck subclasses inherit these

public Duck() { }

abstract void display();

public void performFly() {

flyBehavior.fly(); // Delegate to the behavior class

}

public void performQuack() {

quackBehavior.quack(); // Delegate to the behavior class

}

public void swim() {

System.out.println("All ducks float, even decoys!");

}

Is it possible to manage

all duck’s sub-object

with this super type?

2. FlyBehavior and two behavior implementation classes

public interface FlyBehavior {

public void fly();

}

public class FlyWithWings implements FlyBehavior {

public void fly() {

System.out.println("I'm flying!!");

}

}

public class FlyNoWay implements FlyBehavior {

public void fly() {

System.out.println("I can't fly");

}

}

// 3. QuackBehavior interface and 3 behavior implementation classes

public interface QuackBehavior {

public void quack();

}

--

public class Quack implements QuackBehavior {

public void quack() {

System.out.println("Quack");

}

}

public class Squeak implements QuackBehavior {

public void quack() {

System.out.println("Squeak");

}

}

public class MuteQuack implements QuackBehavior {

public void quack() {

System.out.println("<< Silence >>");

}

}

Strategy Pattern 33

4. Type and compile the test class

(MiniDuckSimulator.java)

public class MiniDuckSimulator {

public static void main(String[] args) {

Duck mallard = new MallardDuck();

mallard.performQuack();

// This calls the MallardDuck's inherited performQuack() method,

// which then delegates to the object's QuackBehavior

// (i.e. calls quack() on the duck's inherited quackBehavior

// reference)

mallard.performFly();

// Then we do the same thing with MallardDuck's inherited

// performFly() method.

}

}

At the end: Strategy project

Check-in

• We have built dynamic behavior in ducks e.g. a MallardDuck
• The dynamic behavior is instantiated in the duck’s constructor

• How can we change the duck’s behavior after instantiation?

Changing a duck’s behavior after instantiation

• Set the duck’s behavior type through a mutator method on the duck’s
subclass

How to set behavior dynamically?

1. Add new methods to the Duck class

public void setFlyBehavior (FlyBehavior fb) {

flyBehavior = fb;

}

public void setQuackBehavior(QuackBehavior qb) {

quackBehavior = qb;

}

Strategy Pattern 36

2. Make a new Duck type (ModelDuck.java)

public class ModelDuck extends Duck {

public ModelDuck() {

flyBehavior = new FlyNoWay();

// Model duck has no way to fly

quackBehavior = new Quack();

}

public void display() {

System.out.println("I'm a model duck");

}

}

Strategy Pattern 37

Enabling ModelDuck to fly

• Use a mutator (setter) method to enable ModelDuck to fly

3. Make a new FlyBehavior type
(FlyRocketPowered.java)

public class FlyRocketPowered implements FlyBehavior {

public void fly() {

System.out.println("I'm flying with a rocket");

}

}

4. Change the test class (MiniDuckSimulator.java), add the
ModelDuck, and make the ModelDuck rocket-enabled

Duck model = new ModelDuck();

model.performFly();

// call to performFly() delegates to the flyBehavior

// object set in ModelDuck's constructor

model.setFlyBehavior(new FlyRocketPowered());

// change the duck's behavior at runtime by

// invoking the model's inherited behavior setter

// method

model.performFly();

Big Picture on encapsulated
behaviors
Reworked class structure

Strategy Pattern 44

Duck

FlyBehavior flyBehavior

QuackBehavior quackBehavior

Swim()

Display()

performQuack()

performFly()

setFlyBehavior()

setQuackbehavior()

//OTHER duck-like methods

MallardDuck

display()

RedHeadDuck

display()

RubberDuck

display()

Encapsulated fly behavior

Encapsulated quack behavior

HAS-A can be better than IS-A

• Each duck has a FlyBehavior and a QuackBehavior to which it
delegates flying and quacking

• Composition at work
• Instead of inheriting behavior, ducks get their behavior by being composed

with the right behavior object

Third Design Principle

• Favor composition over inheritance
• More flexibility

• Encapsulate a family of algorithms into their own set of classes

• Able to change behavior at runtime

Strategy Pattern 46

Strategy

• Define a family of algorithms

• Encapsulate each one

• Make them interchangeable

In a Strategy design pattern, you will:

You should use Strategy when:

• You have code with a lot of algorithms

• You want to use these algorithms at different times

• You have algorithm(s) that use data the client should not know about

Strategy Class Diagram

Context

contextInterface()

Strategy

algorithmInterface()

ConcreteStrategyC

algorithmInterface()

ConcreteStrategyB

algorithmInterface()

ConcreteStrategyA

algorithmInterface()

Strategy makes this easy!

Class

functionX()

functionY()

StrategyX

functionX()

...
StrategyY

functionY()

...

Benefits of Strategy

• Eliminates conditional statements
• Can be more efficient than case statements

• Choice of implementation
• Client can choose among different implementations with different space and

time trade-offs

• Families of related algorithms

• Alternative to subclassing
• This lets you vary the algorithm dynamically, which makes it easier to change

and extend

• You also avoid complex inheritance structures

Strategy Pattern

• The strategy Pattern
• Defines a family of algorithms,

• Encapsulates each one,

• Makes them interchangeable.

• Strategy lets the algorithm vary independently from clients that use it

