
Design Patterns

Factory Pattern
Who should create?

ebru@hacettepe.edu.tr

ebruakcapinarsezer@gmail.com

http://yunus.hacettepe.edu.tr/~ebru/

@ebru176

Ekim 2017

*revised from, www.uwosh.edu/faculty_staff/huen/262/f09/slides/10_Strategy_Pattern.ppt

mailto:ebru@hacettepe.edu.tr
mailto:ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/

Last point we remained

2

Duck should not know:
-Its subclasess
-Its changing behaviour types

Who can create, who should create?

3

A
<interface>

doA()

A1

doA()

A2

doA()

B
<interface>

doB()

B1

doB()

B2

doB()

MyObject
A refA;
B ref B;

doAction()

public void doAction(int i) {
if (i<0) {

refA.doA();
refB.doB();

}
else{

refB.doB();
refA.doA();

}
}

Client1

doSomething()

MyObject m;

Client2

doSomething()

MyObject m;

public void doSomething()
{

if !(m) {
m = new MyObject();
if (condition4A) m.setRefA(new A1());

else m.setRefA(new A2());
if (condition4B) m.setRefB(new B1());

else m.setRefA(new B2());
}
m.doAction();

}

public MyObject()
{

MYObject m;
m = new MyObject();
if (condition4A) m.setRefA(new A1());

else m.setRefA(new A2());
if (condition4B) m.setRefB(new B1());

else m.setRefA(new B2());

m.doSomething();
}

Define an interface for creating an object, but let
subclasses decide which class to instantiate

Factory Method Pattern

revision on march 2017, @ebru

Factory Method: Applicability

• Use the Factory Method pattern when
• to make client class as unable to anticipate the class of

objects it must create/have

• a class wants its subclasses to specify the objects it
creates

The Factory Method Pattern

• This is a ‘Creational’ pattern, i.e. it is concerned with object instantiation

• Used where an abstract class (A) may, itself, need to create objects of other
classes

• where the precise class is not necessarily known.

• The precise class to be instantiated may only be known within a sub-class of A.

• However, all sub-classes of A will share the common signature of the super-
class. Therefore, the abstract class (A) may interact with the created object
through this interface.

Factory Method pattern

• Define an interface for creating an object, but let subclasses decide which class to
instantiate. It lets a class defer instantiation to subclasses

• PROBLEM:

• A framework with abstract application classes and application-specific
subclasses to instantiate to realize different implementations

• SOLUTION:

• The Factory Method pattern encapsulates the knowledge of which subclass to
create and moves this knowledge out of the framework

Example: Simple Pizza Class

Creation and use of Pizza Class

CREATION

USE

Pizza starts subclassing

CREATION KNOWLEDGE

CHANGE IN CREATION

Factory Method: class diagram

• the subclasses redefine abstract methods of the abstract class to return the
appropriate subclass

Client ConcreteCreater1 ConcreteProduct1

Request

createProduct()

new
concreteProduct1

Factory Method Sequence Diagram

Factory Method: class diagram sample

 we call createDocument() the factory method because it is

responsible for “manufacturing” an object

Factory Method pattern

• applicabilities:

• the class that must instantiate classes only knows about abstract classes, which it
cannot instantiate. It only knows when or how to create an object but not what
kind oh object to create, because this is application-specific

• a class want its subclasses to specify the objects to be created

• classes delegate responsibility to one or several helper subclasses and you want
to localize the knowledge of which helper subclass is the delegate

Factory Method pattern

• CONSEQUENCES:
• Factory methods eliminate the need to bind application-

specific classes into your code

• The code only deals with the Product interface and then it can
work with any user-defined ConcreteProduct class

• Clients might have to subclass the Creator class to create a
particular ConcreteProduct object

