Design Patterns

Template Method Pattern*

ebru@hacettepe.edu.tr

ebruakcapinarsezer@gmail.com

http://yunus.hacettepe.edu.tr/~ebru/

@ebrul76
Kasim 2017

*revised from http://ima.udg.edu/~sellares/EINF-ES1/TemplateMethodToni.pdf

mailto:ebru@hacettepe.edu.tr
mailto:ebruakcapinarsezer@gmail.com
http://yunus.hacettepe.edu.tr/~ebru/

The Template Method Pattern

The Template Method Pattern defines the skeleton of an algorithm 1n a
method, deferring some steps to subclasses. Template method lets subclasses
redefine certain steps of an algorithm without changing the algorithm’s
structure.

Toni Sellares
Universitat de Girona

The Template Method Pattern

You have an abstract class that 1s the base class of a

hierarchy. and the behavior that 1s common to all objects AbstractClass
: e Ll : fqn : templateMethod ()
in the hierarchy 1s implemented 1n the abstract class and primitiveOperationt ()
other details are left to the individual subclasses. primitiveOperationZ ()

Template Method allows you to define a skeleton of an

algorithm 1 an operation and defer some of the steps ConereteClass
to subclasses. Template Method lets subclasses redefine primitiveCperationl {)
primitiveOperation2 ()

certain steps of an algorithm without changing the
algorithm's structure.

Time for some caffeine....

Starbuzz Coffee Barista Training Manual

Baristas! Please follow these recipes precisely when
preparing Starbuzz beverages.

Starbuzz Coffee Recipe
(1) Boil some water

(2) Brew coffee in boiling water
(3) Pour coffee in cup ’—\
(4) Add sugar and milk

Starbuzz Tea Recipe)

. The recipe for coffee and
tea are very similar!

(1) Boil some water
(2) Steep tea in boiling water

(3) Pour teain cup /
(4) Add lemon

Whipping up some Coffee in Java

public class Coffee {

void prepareRecipe () { B
boilWater ();
brewCoffeeGrinds (); - Recipe for coffee - each step is implemented
pourlnCup (); as a separate method.
addSugarAndMilk ();)

}
public void boilWater () {

System_ out_printin(*Boiling water”);

}
public void brewCoffeeGrinds () {

System.out_println (“Dripping coffee thru filter™);
} Each of these methods

public void pourinCup () { implements one step of

System.out_printin(“Pouring into cup”); - _/./) the algorithm. There's a
) methed to boil the

) .) water, brew the coffee,
public void addSugarAnElMHk_: ()1 - pour the coffec in the

System.out_println ("Adding Sugar and Milk™); cup, and add sugar and
} milk.

And now for the Tea....

Very similar to the coffee -

ublic class Tea
g . { : 2nd and 4th steps are
void prepareRecipe () { different.

boilWater ();
steepTeaBag ();

pourlnCup ();
addLemon ();

} 4//
public void boilWater () { ﬁ
System.out_printin(*Boiling water™); These methods are
} exactly the same
public void steepTeaBag () {
System.out_println (“Steeping the Tea");
}
public void pourinCup () {
System_out_printin(*Pouring into cup®);
}

public void addLemon (3{ _ i These methods are
System.out_printin ("Adding Lemon” }; Bl specialized to Tea

}
}

We have code duplication - that's a good sign that we need to clean up the design. We should
abstract the commonality into a base class since coffee and tea are so similar, right??
-- Give a class diagram to show how you would redesign the classes.

Sir, may I abstract your Coffee, Tea?

The boilWater() and

CaffeineBeverage pourInCup () are shared by
— | preparerecipe () both subclasses, so defined
//h boilWater (} in the superclass.
The prepareRecipe () pourInCup (

method differs in each
subclass, so it is defined as
abstract.

_ Coffee Tea , Each subclass()
P['E-PU.I' E-H'.EEiPElk J Pl E'-Pﬂ.r E-KEEIPE- [ﬂ"n"e-rride-'.; +hE
Each subclass i:plem%r* b;sza'F'Feeimﬁs () -'L:taje:pTeuBug) 5 prepareRecipe ()
its own recipe. addSugarAndMilk () addLemon () method and implements

its own recipe.
\ The methods specific to /

Coffee and Teac stay in
the subclasses.

Is this a good redesign? Are we overlooking some other commonality? What are other ways that
Coffee and Tea are similar?

What else do they have in common?

Both the recipes follow the same algorithm:

These two are already
abstracted into the base

H//_dcfms.

(1) Boil some water
(2) Use hot water to extract the tea or coffee

(3) Pour the resulting beverage mto a cup

These aren't

(4) Add the appropriate condiments to the beverage. o<

same, they just apply to
——different beverages.

Can we abstract prepareRecipe () too? Yes..

Abstracting PrepareRecipe ()

Provide a common interface for the different methods

« Problem : Coffee uses brewCoffeeGrinds () and
addSugarAndMilk () methods while Tea uses
steep TeaBag () and addLemon () methods

« Steeping and brewing are pretty analogous -- so a common
interface may be the ticket: brew () and addCondiments ()

The New Java Classes....

Because Coffee and Tea
handle these in different
ways, they are going to have

.) to be declared as abstract.
public abstract class CaffeineBeverage { Lz’r fh :futﬁaj Efw 0:};

final void prepareRecipe () { _ |
boilWater () about that stuffl

brew ();
pourlnCup ();
addCondiments ();

¥

abstract void brew (); _ .
abstract void addCondiments (); public class Tea extends CaffeineBeverage {

void boilWater () { public void brew (}{) .
System out println (“Boiling Water”): System.out_printin (" Steeping the Tes");

}

y}irﬂid pourlnCup () { public void addCondiments () {
System.out.printin(“Pouring into cup”); } System.out printin(*Adding Lemon”);
}
} }
public class Coffee extends CaffeineBeverage {
public void brew () {
System.out_println (“Dripping Coffee Thru the Filters™);

}
public void addCondiments ()}

System.out_printin(*Adding Sugar and Milk");
}

What have we done?

« We have recognized that the two recipes are essentially the same,
although some of the steps require different implementations.

— So we’ve generalized the recipe and placed it in the base class.

— We’ve made it so that some of the steps in the recipe rely on the subclass
implementations.

Essentially - we have implemented the Template Method Pattern!

Meet the Template Method

(T prepareRecipe () is the template methed
public abstract class CaffeineBeverage { > h&'"h@}b
Because:

void final prepareRecipe () { (1) it is a method

(2) it serves as a template for an algorithm.
In this case an algorithm for making
caffeinated beverages.

rew (),

pourinCup (); \
addCondiments (); %
In the template, each step of the algorithm is

represented by a method.

abstract void brew () ;
abstract void addCondiments (); }

h_‘"“———._
\ Some methods are handled by this class....

void boilWater () {
// implementation

}

..and some are handled by the subclass.

void pourlnCup () {
[/ implementation

} \

} Methods that need to be supplied by the

subclass are declared abstract.

The Template Method defines the steps of an algorithm and allows subclasses to
provide the implementation of one or more steps.

Behind the scenes.....

Tea myTea = new Tea ();

myTea.prepareRecipe (); N
boilWater ();

brew (): . Polymorphism ensures that while the template controls
pourlnCup (); everything, it still calls the right methods.

addCondiments ();

The Template Method

The Template Method Pattern defines the skeleton of an algorithm 1n a method,
deferring some steps to subclasses. Template method lets subclasses redefine certain
steps of an algorithm without changing the algorithm’s structure.

The template method makes use of the primitiveOperations
to implement an algorithm. It is decoupled from the actual
implementations of these operations.

The Abstract Class contains
the template method. AbstractClass

templateMethed ()
primitiveOperationl ()

/ primitiveOperationZ ()
...and abstract versiéns of \

the operations used in the
template method.

A

Cancr-‘e'l'eﬂla::s
primitiveUperationl ()
primitiveOperation2 ()

-—

w{?oncr*emﬂnss implements the

There may be many abstract operations, which are called
ConcreteClasses each when the templateMethod () needs
implementing the full set of them.

operations required by the
template metheod.

The Hollywood Principle

Don’t call us, we’ll call you!

With the Hollywood principle

— We allow low level components to hook themselves into a system
— But high level components determine when they are needed and how.

— High level components give the low-level components a “don’t call us,
we’ll call you” treatment.

/\ But high-level compenents control when and how.

High Level Component

Low-level components
can participate in the

computation. ~ PN |
Low Level Low Level
Snmp onent Cam ponen

A low-level component never calls a high-
level component directly.

The Hollywood Principle and the Template Method

CaffeineBeverage is our
high-level component. It

has control over the

algorithm for the recipe,

and calls on the subclasses
only when they are needed
for an implementation of a

method.

The subclasses are used simply to
provide implementation details.

CaffeineBeverage /

preparerecipe ()
boilWater ()
pourInCup ()
brew ()
addCondiments ()

k

Coffee

1 Pl
orew i)

addCondiments ()

Tea

—brew{)
addCondiments ()

- 7

Clients of beverages will depend on
the CaffeineBeverage abstraction
rather than a concrete Tea or
Coffee, which reduces dependencies
in the overall system.

Tea and Coffee never call the
abstract class directly without

Y~ being "called"” first.

Template Method implementation 1n Java

* Give primitive and hook methods protected access

— These methods are intended to be called by a template
method, and not directly by clients

* Declare primitive methods as abstract in the superclass
— Primitive methods must be implemented by subclasses
* Declare hook methods as non-abstract

— Hook methods may optionally be overridden by subclasses

» Declare template methods as final

— This prevents a subclass from overriding the method and
interfering with 1t’s algorithm structure

abstract class Game{
private int playersCount;
abstract void initializeGame();
abstract void makePlay(int player);
abstract boolean endOfGame();
abstract void printWinner();
final void playOneGame(int playersCount){
this.playersCount = playersCount;
initializeGame();
intj=0;
while(! endOfGame()){
makePlay(j);
j=1(j+1) % playersCount;
}
printWinner();

I3

class Monopoly extends Game{
/* Implementation of necessary concrete methods */
void initializeGame(){ // ... }
void makePlay(int player){// ... }
boolean endOfGame(){// ... }
void printWinner(){ // ... }

/* Specific declarations for the Monopoly game. */

class Chess extends Game{
/* Implementation of necessary concrete methods */
void initializeGame(){ // ... }
void makePlay(int player){// ... }
boolean endOfGame(){// ...}
void printWinner(){ // ... }

/* Specific declarations for the Chess game. */

http://en.wikipedia.org/wiki/Monopoly_(game)
http://en.wikipedia.org/wiki/Monopoly_(game)
http://en.wikipedia.org/wiki/Chess
http://en.wikipedia.org/wiki/Chess

