FLANNING
Data acyuisition
Space mdoxicy
Applicatioos

OPFERATIONS

Data acquisition
Coaniant L

[0
Stundurdisation

Software
Development

Process, Models,
Methods,
Diagrams

Software Development
Life Cyles

Part - |

Let’s combine UP with UML

Published September 2001 UML 1.4
RTF report 4/99 UML 1.3
I
[]
OMG revision 9/97, adoption 11/97 UML 1.1 | | OMG feedback
OMG submission 1/97 UML 1.0
[
I
6/96 & 9/96 UML 09 & 0.91 UML patterners’input
I : .
. Other methods
OOPSLA 10/95 Unified Method 0.8 and objectory
I
[l
Start 1/95 Booch Method oMT

Potted h

istory of UML

Influences on UML

Meyer

Before a_np‘ after
conditions \

Booch
Booch Method

-“-‘-""'--...*

Rumbaugh
oMT

UNIFIED

> MODELING

LANGUAGE

Jacobson
OOSE

I

Harel

Statecharts

Shlaer-Mellor
Object life cycles

|

W

Gamma et al.

\

/ Frameworks and Patterns

/ Operation descriptions and

Fusion

message numbering

Embley
+— | Singleton classes and
igh-level view

\ Wirfs-Brock

Responsibilities

Qdell
Classification

The primary diagrams that comprise the UML

e Use case diagrams:Essentially, these present the interactions between users (human or otherwise) and the system.
They therefore also highlight the primary functionality of the system.

e Class diagrams: These diagrams present the static (class) structure of the system. They are the core of the UML
notation and of an object-oriented design.

e Object diagrams: These diagrams use notation which is almost identical to class diagrams, but they present the
objects and their relationships at a particular point in time. Object diagrams are not as important as class diagrams,
but can be very useful.

e Activity diagrams: These describe the flow of activities or tasks, typically within an operation. They are a bit like a
graphical pseudocode.

e Sequence diagrams: These diagrams show the sequence of messages sent between collaborating objects for a
particular task. They highlight the flow of control between the objects.

e Collaboration diagrams: These diagrams show the sequence of messages sent between collaborating

objects for a particular task. The diagrams highlight the relationships between the collaborating objects. Tools allow
you to generate collaboration diagrams from sequence diagrams (and vice versa).

e Statecharts: A statechart, or state diagram, illustrates the states an object can be in and the transitions which move
the object between states.

e Component diagrams: These diagrams are used to illustrate the physical structure of the code in terms of the source
code. In Java this means the class files and Java Archive Files (JAR),as well as items such as Web Archive Files (WAR)
and Enterprise Archive Files (EAR) in the Java 2 Enterprise Edition architecture.

e Deployment diagrams: Deployment diagrams illustrate the physical architecture of the system in terms of processes,
networks and the location of components.

Complete System Model

Use case
diagrams

T~

Sequence
diagrams

Collaboration
diagrams

-

/

Class
diagrams

Statecharts
diagrams

Object
diagrams

~

lr'._,,..-""

Component
diagrams

T~

Deployment
diagrams

AN

Activity
diagrams

What is UML and What is not

The UML is thus a language for:

e visualizing,

e specifying,

e describing, and

e documenting a software system.

However, the UML is not a design method, it is purely a notation for documenting a design (note that the above
all relate to describing the design). A notation on its own is not enough: a method indicating how to apply that
design is required. Conceptually the UML can be used with any appropriate object-oriented design method.

First, it is worth trying to dispel one of the major myths surrounding the UML — it is not a methodology or a process! The
UML is a notation that can be used to describe object-oriented systems. This notation tells you nothing about how you
should go about carry out a design, producing the elements of a UML diagram or identifying how you should structure

your models.

Another myth to deal with is that the UML is complete. It is not!

UML and UP

Essentially the following holds with the iterative approach in
the Unified Process:

e You plan a little.

e You specify, design and implement a little.

* You integrate, test and run.

e You obtain feedback before next iteration.

Phases

! |terations

Tortons

Activities

Building blocks of Unifed Process

The roles of Use cases

Use case model

model /

>

N

specifies

_— inputs + outputs

Analysis use /
case realizations .
Design use

case
realizations

To summarize the role of use cases they:
e identify the users of the system and their requirements

O
dentifies™ |
Analysis J_,,,.--’""'I entifies C:::)

N\

organizes

Subsystem
model

e aid in the creation and validation of the system’s architecture

e help produce the definition of test cases and procedures

e direct the planning of iterations

e drive the creation of user documentation

e direct the deployment of the system

e synchronize the content of different models
e drive traceability throughout models

~~

implemented

tested in

Test
specification

~.

Source
code

Major deliverables of UP’s phases

il e [nception: The output of this phase is the vision for the

= system. This includes a very simplified use case model (to
Inception > identify what the primary functionality of the system is)
Vision and a very tentative architecture, and the most important

or significant risks are identified and the elaboration phase

\ ’—D% is planned.
Elaboration / O == e Elaboration: The primary output of this phase is the

/N

1

Baseline architecture architecture, along with a detailed use case model and a
set of plans for the construction phase.
e Construction: The end result of this phase is the
% implemented product which includes the software
as well as the design and associated models. The product
may not be without defects, as some further work has yet
to be completed in the transition phase.
Transition e Transition: he transition phase is the last phase of a
cycle. The major milestone met by this phase is the final
production-quality release of the system.

Construction

Full beta release

Final release

Time

Diciplines versus phases

Inception

Elaboration

Canstruction

Transition

Requirerments

Analysis

e Requirements:This discipline focuses on the activities which
allow the functional and nonfunctional requirements of the
system to be identified. The primary product of this discipline
is the use case model.

e Analysis: The aim of this discipline is to restructure the
requirements identified in the requirements discipline in terms
of the software to be built rather than in the user’s less precise
terms. It can be seen as a first cut at a design; however, that is
to miss the point of what this discipline aims to achieve.

e Design: The design discipline produces the detailed design
which will be implemented in the next discipline.

e Implementation: This discipline represents the coding of the
design in an appropriate programming language and the
compilation, packaging, deployment and documenting of the
software.

e Test: The test discipline describes the activities to be carried
out to test the software to ensure that it meets the user’s
requirements, that it is reliable etc.

UP and UML

Workflow Products

Requirements

Use case
model

Analysis

Analysis
model

Design

ﬂmplementatin

Implementation

K model

)

Test Test model

Product of diciplines

Deployment

model

Implementation
and test

/,

]
S~

Requirements

UP is sprial

Analysis

Inception
Elaboration
Construction

Transition

Diciplines with comprimised activities

Workflows

Activities

Requirements +—>

Find actors and use cases, prioritize use cases, detail use
cases, prototype user interface, structure the use case model

A 4

Analysis }

Architectural analysis, analyse use cases, explore
classes, find packages

Architectural design, trace use cases, refine and design
classes, design packages

Implementation +—>

Architectural implementation, implement classes and interfaces,
implement subsystems, perform unit testing, integrate systems

Test }

Plan and design tests, implement tests, perform
integration and system tests, evaluate tests

