
Software 
Development

Process, Models,
Methods,
Diagrams

Software Development 
Life Cyles

Part - I



Let’s combine UP with UML

Potted history of UML



Influences on UML



The primary diagrams that comprise the UML 

• Use case diagrams:Essentially, these present the interactions between users (human or otherwise) and the system. 
They therefore also highlight the primary functionality of the system.
• Class diagrams: These diagrams present the static (class) structure of the system. They are the core of the UML 
notation and of an object-oriented design.
• Object diagrams: These diagrams use notation which is almost identical to class diagrams, but they present the 
objects and their relationships at a particular point in time. Object diagrams are not as important as class diagrams, 
but can be very useful.
• Activity diagrams: These describe the flow of activities or tasks, typically within an operation. They are a bit like a 
graphical pseudocode.
• Sequence diagrams: These diagrams show the sequence of messages sent between collaborating objects for a 
particular task. They highlight the flow of control between the objects.
• Collaboration diagrams: These diagrams show the sequence of messages sent between collaborating
objects for a particular task. The diagrams highlight the relationships between the collaborating objects. Tools allow 
you to generate collaboration diagrams from sequence diagrams (and vice versa).
• Statecharts: A statechart, or state diagram, illustrates the states an object can be in and the transitions which move 
the object between states.
• Component diagrams: These diagrams are used to illustrate the physical structure of the code in terms of the source 
code. In Java this means the class files and Java Archive Files (JAR),as well as items such as Web Archive Files (WAR) 
and Enterprise Archive Files (EAR) in the Java 2 Enterprise Edition architecture.
• Deployment diagrams: Deployment diagrams illustrate the physical architecture of the system in terms of processes, 
networks and the location of components.



Complete System Model



What is UML and What is not
The UML is thus a language for: 
• visualizing, 
• specifying, 
• describing, and 
• documenting a software system.

However, the UML is not a design method, it is purely a notation for documenting a design (note that the above 
all relate to describing the design). A notation on its own is not enough: a method indicating how to apply that 
design is required. Conceptually the UML can be used with any appropriate object-oriented design method.

First, it is worth trying to dispel one of the major myths surrounding the UML – it is not a methodology or a process! The 
UML is a notation that can be used to describe object-oriented systems. This notation tells you nothing about how you 
should go about carry out a design, producing the elements of a UML diagram or identifying how you should structure 
your models.

Another myth to deal with is that the UML is complete. It is not! 



UML and UP

Building blocks of Unifed Process

Essentially the following holds with the iterative approach in 
the Unified Process:
• You plan a little.
• You specify, design and implement a little.
• You integrate, test and run.
• You obtain feedback before next iteration.



The roles of Use cases

To summarize the role of use cases they:
• identify the users of the system and their requirements
• aid in the creation and validation of the system’s architecture
• help produce the definition of test cases and procedures
• direct the planning of iterations
• drive the creation of user documentation
• direct the deployment of the system
• synchronize the content of different models
• drive traceability throughout models



Major deliverables of UP’s phases
• Inception: The output of this phase is the vision for the 
system. This includes a very simplified use case model (to 
identify what the primary functionality of the system is) 
and a very tentative architecture, and the most important 
or significant risks are identified and the elaboration phase 
is planned.
• Elaboration: The primary output of this phase is the 
architecture, along with a detailed use case model and a 
set of plans for the construction phase.
• Construction: The end result of this phase is the 
implemented product which includes the software
as well as the design and associated models. The product 
may not be without defects, as some further work has yet 
to be completed in the transition phase.
• Transition: he transition phase is the last phase of a 
cycle. The major milestone met by this phase is the final 
production-quality release of the system.



Diciplines versus phases
• Requirements:This discipline focuses on the activities which 
allow the functional and nonfunctional requirements of the 
system to be identified. The primary product of this discipline
is the use case model.

• Analysis: The aim of this discipline is to restructure the 
requirements identified in the requirements discipline in terms 
of the software to be built rather than in the user’s less precise
terms. It can be seen as a first cut at a design; however, that is 
to miss the point of what this discipline aims to achieve.

• Design: The design discipline produces the detailed design 
which will be implemented in the next discipline.

• Implementation: This discipline represents the coding of the 
design in an appropriate programming language and the 
compilation, packaging, deployment and documenting of the 
software.

• Test: The test discipline describes the activities to be carried 
out to test the software to ensure that it meets the user’s 
requirements, that it is reliable etc.



UP and UML

Product of diciplines UP is sprial



Diciplines with comprimised activities


