
Process, Models,

Methods,

Diagrams

Software Development

Life Cyles

Part - II

A bench-mark for measuring the

maturity of an organization’s software

process

CMM defines 5 levels of process maturity

based on certain Key Process Areas

(KPA)

Level 5 – Optimizing (< 1%)
-- process change management

-- technology change management

-- defect prevention

Level 4 – Managed (< 5%)
-- software quality management

-- quantitative process management

Level 3 – Defined (< 10%)
-- peer reviews

-- intergroup coordination

-- software product engineering

-- integrated software management

-- training program

-- organization process definition

-- organization process focus

Level 2 – Repeatable (~ 15%)
-- software configuration management

-- software quality assurance

-- software project tracking and oversight

-- software project planning

-- requirements management

Level 1 – Initial (~ 70%)

 Described by W. W. Royce, 1970, IEEE WESCON, Managing the

development of large software systems.

 Decomposition in terms of Function and Data

 Modularity available only at the file level

• cf. C language's static keyword (=="file scope")

 Data was not encapsulated:

• Global Scope

• File Scope

• Function Scope (automatic, local)

 Waterfall Method of Analysis and Design

Feasibility Study

Systems
Integration

Systems
Analysis

Systems Design

Implementation

Review and
Maintenance

 Requirements are known up front before design

 Requirements rarely change

 Users know what they want, and rarely need

visualization

 Design can be conducted in a purely abstract space,

or trial rarely leads to error

 The technology will all fit nicely into place when the

time comes (the apocalypse)

 The system is not so complex. (Drawings are for

wimps)

 Reuse is complicated because Data is strewn

throughout many different functions

• Reuse is usually defined as code reuse and is

implemented through cutting and pasting of the

same code in multiple places. What happens when

the logic changes?

 coding changes need to be made in several

different places

 changing the function often changes the API which

breaks other functions dependent upon that API

 data type changes need to be made each time they

are used throughout the application

 Big Bang Delivery Theory

 The proof of the concept is relegated to the very end of a long

singular cycle. Before final integration, only documents have

been produced.

 Late deployment hides many lurking risks:

• technological (well, I thought they would work together...)

• conceptual (well, I thought that's what they wanted...)

• personnel (took so long, half the team left)

• User doesn't get to see anything real until the very end, and

they always hate it.

• System Testing doesn't get involved until later in the process.

 A variant of the Waterfall

that emphasizes the

verification and

validation of the product

 Testing of the product is

planned in parallel with a

corresponding phase of

development

 Project and Requirements
Planning – allocate resources

 Product Requirements and
Specification Analysis – complete
specification of the software
system

 Architecture or High-Level
Design – defines how software
functions fulfill the design

 Detailed Design – develop
algorithms for each architectural
component

 Production, operation and
maintenance – provide for
enhancement and corrections

 System and acceptance testing –
check the entire software system
in its environment

 Integration and Testing – check
that modules interconnect
correctly

 Unit testing – check that each
module acts as expected

 Coding – transform algorithms
into software

Emphasize planning for verification and

validation of the product in early stages

of product development

Each deliverable must be testable

Project management can track progress

by milestones

Easy to use

Does not easily handle concurrent events

Does not handle iterations or phases

Does not easily handle dynamic changes

in requirements

Does not contain risk analysis activities

Excellent choice for systems requiring
high reliability – hospital patient control
applications

All requirements are known up-front
When it can be modified to handle

changing requirements beyond analysis
phase

Solution and technology are known

 Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
 Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.
 Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.
 Business people and developers must work together daily throughout the
project.
 Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.
 The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.
 Working software is the primary measure of progress.
 Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace indefinitely.
 Continuous attention to technical excellence and good design enhances agility.
 Simplicity–the art of maximizing the amount of work not done–is essential.
 The best architectures, requirements, and designs emerge from self organizing
teams.
 At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Methodologies share common principles,
but differ in practices
eXtreme Programming (XP)
Scrum
Evolutionary Project Management (Evo)
Unified Process (UP)
Crystal
Lean Development (LD)
Adaptive Software Development (ASD)
Dynamic System Development Method

(DSDM)
Feature Driven Development (FDD)

 Rational Software Corp (now part of IBM), lead by 3
amigos: Grady Booch, James Rumbaugh, Ivar
Jacobson

 Derived from several methodologies at that time
 Micro and Macro development process
 Micro deals with tactical issues (daily activities)
 Macro process has inception, elaboration,

construction, and transition
 Generally viewed as heavy weight process
 Agile in sprit, but can get very ceremonial
– Emphasizes iterative cycles, constant feedback
– Developed along with UML which provides for

several forms of documentation
 Comes from disciplined process oriented angle
 Not easy to tailor for small projects

 RUP is a method of managing OO Software

Development

 It can be viewed as a Software Development

Framework which is extensible and features:

• Iterative Development

• Requirements Management

• Component-Based Architectural Vision

• Visual Modeling of Systems

• Quality Management

• Change Control Management

Online Repository of Process Information

and Description in HTML format

Templates for all major artifacts,

including:
• RequisitePro templates (requirements tracking)

• Word Templates for Use Cases

• Project Templates for Project Management

Process Manuals describing key

processes
 http://sce.uhcl.edu/helm/rationalunifiedprocess/process/templates.htm

Two Dimensions

The process can be described in two dimensions, or along two axis:

• the horizontal axis represents time and shows the dynamic aspect of the process as it is

enacted, and it is expressed in terms of cycles, phases, iterations, and milestones.

• the vertical axis represents the static aspect of the process: how it is described in terms of

activities, artifacts, workers and workflows.

 Recognizes the reality of changing requirements

• Caspers Jones’s research on 8000 projects

 40% of final requirements arrived after the analysis phase,
after development had already begun

 Promotes early risk mitigation, by breaking down the system into
mini-projects and focusing on the riskier elements first

 Allows you to “plan a little, design a little, and code a little”

 Encourages all participants, including testers, integrators, and
technical writers to be involved earlier on

 Allows the process itself to modulate with each iteration, allowing
you to correct errors sooner and put into practice lessons learned
in the prior iteration

 Focuses on component architectures, not final big bang
deployments

 Allows for software to evolve, not be produced in

one huge effort

 Allows software to improve, by giving enough time

to the evolutionary process itself

 Allows the system (a small subset of it) to actually

run much sooner than with other processes

 Allows for the management of risk, by exposing

problems earlier on in the development process

 The primary goal of each iteration is to slowly chip away at the
risk facing the project, namely:

• performance risks

• integration risks (different vendors, tools, etc.)

• conceptual risks (ferret out analysis and design flaws)

 Perform a “miniwaterfall” project that ends with a delivery of
something tangible in code, available for scrutiny by the
interested parties, which produces validation or correctives

 Each iteration is risk-driven

 The result of a single iteration is an increment--an incremental
improvement of the system, yielding an evolutionary approach

 Identification of the risks

 Iterative/Incremental Development

The prototype or pilot project
• Booch’s “Tiger Team”

Early testing and deployment as opposed

to late testing in traditional methods

 Inception Phase

Elaboration Phase

Construction Phase

Transition Phase

During the inception phase, you establish the business

case for the system and delimit the project scope.

To accomplish this you must identify all external entities

with which the system will interact (actors) and define the

nature of this interaction at a high-level. This involves

identifying all use cases and describing a few significant

ones.

The business case includes success criteria, risk

assessment, and estimate of the resources needed, and a

phase plan showing dates of major milestones.

The outcome of the inception phase is:

• A vision document: a general vision of the core project's

requirements, key features, and main constraints.

• A initial use-case model (10% -20%) complete)

• An initial project glossary (may optionally be partially expressed as

a domain model)

• An initial business case, which includes business context, success

criteria (revenue projection, market recognition, and so on), and

financial forecast

• An initial risk assessment

• A project plan, showing phases and iterations

• A business model, if necessary

• One or several prototypes

At the end of the inception phase is the first major project milestone.

The evaluation criteria for the inception phase are:

• Stakeholder concurrence on scope definition and cost/schedule

estimates.

• Requirements understanding as evidenced by the fidelity of the

primary use cases.

• Credibility of the cost/schedule estimates, priorities, risks, and

development process.

• Depth and breadth of any architectural prototype that was

developed.

• Actual expenditures versus planned expenditures.

The project may be cancelled or considerably re-thought if it fails to

pass this milestone.

In the elaboration phase, an executable architecture prototype is built in one

or more iterations, depending on the scope, size, risk, and novelty of the

project.

This effort should at least address the critical use cases identified

in the inception phase, which typically expose the major technical risks of

the project.

While an evolutionary prototype of a production-quality component is

always the goal, this does not exclude the development of one or

more exploratory, throwaway prototypes to mitigate specific risks such as

design/requirements trade-offs, component feasibility study, or

demonstrations to investors, customers, and end-users

The outcome of the elaboration phase is:

• A use-case model (at least 80% complete) — all use cases and actors have

been identified, and most usecase descriptions have been developed.

• Supplementary requirements capturing the non functional requirements

and any requirements that are not associated with a specific use case.

• A Software Architecture Description.

• An executable architectural prototype.

• A revised risk list and a revised business case.

• A development plan for the overall project, including the coarse-grained

project plan, showing iterations” and evaluation criteria for each iteration.

• An updated development case specifying the process to be used.

• A preliminary user manual (optional).

At the end of the elaboration phase, you examine the detailed system objectives and

scope, the choice of architecture, and the resolution of the major risks. The main

evaluation criteria for the elaboration phase involves the answers to these questions:

• Is the vision of the product stable?

• Is the architecture stable?

• Does the executable demonstration show that the major risk elements have been

addressed and credibly

resolved?

• Is the plan for the construction phase sufficiently detailed and accurate? Is it

backed up with a credible basis of estimates?

• Do all stakeholders agree that the current vision can be achieved if the current plan

is executed to develop the complete system, in the context of the current

architecture?

• Is the actual resource expenditure versus planned expenditure acceptable?

The project may be aborted or considerably re-thought if it fails to pass this

milestone.

During the construction phase, all remaining components and

application features are developed and integrated into the product,

and all features are thoroughly tested.

The construction phase is, in one sense, a manufacturing process

where emphasis is placed on managing resources and controlling

operations to optimize costs, schedules, and quality.

In this sense, the management mindset undergoes a transition from

the development of intellectual property during inception and

elaboration, to the development of deployable products during

construction and transition.

The outcome of the construction phase is a product ready to put

in hands of its end-users. At minimum, it consists of:

• The software product integrated on the adequate platforms.

• The user manuals.

• A description of the current release.

At this point, you decide if the software, the sites, and the users are

ready to go operational, without exposing the project to high risks.

This release is often called a “beta” release. The evaluation criteria for

the construction phase involve answering these questions:

• Is this product release stable and mature enough to be deployed in

the user community?

• Are all stakeholders ready for the transition into the user

community?

• Are the actual resource expenditures versus planned expenditures

still acceptable?

Transition may have to be postponed by one release if the project fails

to reach this milestone.

This includes:

• “beta testing” to validate the new system against user expectations

• parallel operation with a legacy system that it is replacing

• conversion of operational databases

• training of users and maintainers

• roll-out the product to the marketing, distribution, and sales teams

This phase can range from being very simple to extremely complex,

depending on the type of product. For example, a new release of an

existing desktop product may be very simple, whereas replacing a

nation's air-traffic control system would be very complex.

The primary evaluation criteria for the transition phase involve the

answers to these questions:

• Is the user satisfied?

• Are the actual resources expenditures versus planned

expenditures still acceptable?

An activity of a specific worker is

a unit of work that an individual in

that role may be asked to perform.

Example of activities:

• Plan an iteration, for the Worker: Project

Manager

• Find use cases and actors, for the Worker:

System Analyst

• Review the design, for the Worker: Design

Reviewer

• Execute performance test, for the Worker:

Performance Tester

An artifact is a piece of

information that is produced,

modified, or used by a

process.

Artifacts may take various shapes or forms:

• A model, such as the Use-Case Model or the Design Model

• A model element, i.e. an element within a model, such as a class, a use case or a

subsystem

• A document, such as Business Case or Software Architecture Document

• Source code

• Executables

A workflow is a sequence of activities that produces a result of

observable value.

