
Software
Development

Process, Models,
Methods,
Diagrams

Software Development
Life Cyles

Part - III

As a Reminder

Sample Agile based SP

Re-Inception: Artifacts

Understanding Requirments

• Requirements are capabilities and conditions to which the system—
and more broadly, the project—must conform

• Req. Managment: a systematic approach to finding, documenting,
organizing, and tracking the changing requirements of a system

FURPS+ Requirement Model
• Functional - features, capabilities, security.

• Usability - human factors, help, documentation.

• Reliability - frequency of failure, recoverability, predictability.

• Performance - response times, throughput, accuracy, availability,

• resource usage.

• Supportability - adaptability, maintainability, internationalization,

• configurability.

• The “+” means
• Implementation - resource limitations, languages and tools, hardware..
• Interface - constraints imposed by interfacing with external systems.
• Operations - system management in its operational setting.
• Packaging - for example, a physical box.
• Legal - licensing and so forth.

In common usage, requirements are categorized as functional (behavioral) or non-functional (everything else);
some dislike this broad generalization, but it is very widely used.

Use-Case Model: Writing Requirements In Context

• The idea of use cases to describe functional requirements was
introduced in 1986 by Ivar Jacobson

• Alistair Cockburn, in 1992, defined what use cases are (or should be)

• A scenario is a specific sequence of actions and interactions between
actors and the system under discussion; it is also called a use case
instance

• A use case is a collection of related success and failure scenarios that
describe actors using a system to support a goal.

Use Case Analysis

• What is a Use Case?

• A sequence of actions a system performs that yields a valuable result for a particular
actor.

• What is an Actor?

• A user or outside system that interacts with the system being designed in order to
obtain some value from that interaction

• Use Cases describe scenarios that describe the interaction between users of the system
and the system itself.

• Use Cases describe WHAT the system will do, but never HOW it will be done.

Usecase presentation formats

• brief—terse one-paragraph summary, usually of the main success scenario.

• casual—informal paragraph format. Multiple paragraphs that cover vari ous
scenarios

• fully dressed—the most elaborate. All steps and variations are written in detail,
and there are supporting sections, such as preconditions and success
guarantees.

What’s in a Use Case?

• Define the start state and any preconditions that accompany it

• Define when the Use Case starts

• Define the order of activity in the Main Flow of Events

• Define any Alternative Flows of Events

• Define any Exceptional Flows of Events

• Define any Post Conditions and the end state

• Mention any design issues as an appendix

• Accompanying diagrams: State, Activity, Sequence Diagrams

• View of Participating Objects (relevant Analysis Model Classes)

• Logical View: A View of the Actors involved with this Use Case, and any Use Cases used or extended by
this Use Case

Lets see sample

Usecase Level

• Elementary Business Usecase: A task performed by one person in one
place at one time, in response to a business event, which adds
measurable business value and leaves the data in a consistent state

• A common use case mistake is defining many use cases at too low a
level; that is, as a single step, subfunction, or subtask within an EBP

• Goals, namely usecases, are usually composite, from the level of an
enterprise ("be profitable"), to many supporting intermediate goals
while using applications ("sales are captured"), to supporting
subfunction goals within applications ("input is valid"). Similarly, use
cases can be written at different levels to satisfy these goals, and can
be composed of lower level use cases

Finding Usecase, Goal, Actor

Use cases are defined to satisfy the user goals of the primary actors. Hence, the basic
procedure is:
1. Choose the system boundary. Is it just a software application, the hardware and
application as a unit, that plus a person using it, or an entire organization? Once the
external actors are identified, the boundary becomes clearer.
2. Identify the primary actors� those that have user goals fulfilled through using
services of the system
3. For each, identify their user goals. Raise them to the highest user goal level that
satisfies the EBP guideline
4. Define use cases that satisfy user goals; name them according to their goal.
Usually, user goal-level use cases will be one-to-one with user goals, but there may be
exceptional situation.

Actor-Goal List

Actor

An actor is anything with behavior, including the system under
discussion (SuD) itself when it calls upon the services of other systems

• Primary Actor: has user goals fulfilled through using services of the SuD

• Supporting Actor: provides a service (for example, information) to the SuD

• Offstage Actor: has an interest in the behavior of the use case, but is not
primary or supporting

Usecase Diagram

Expected
Use case diagrams and use case
relationships are secondary in use
case work.

Use cases are text documents.
Doing use case work means to
write text.

Suggestion
Draw a simple use case
diagram in conjunction with
an actor-goal list.

ניתוח מערכות מידע 16

Relationships between Use Cases

1. Generalization - use cases that are specialized versions of other use
cases.

2. Include - use cases that are included as parts of other use cases.
Enable to factor common behavior.

3. Extend - use cases that extend the behavior of other core use cases.
Enable to factor variants.

ניתוח מערכות מידע 17

1. Generalization

• The child use case inherits the

behavior and meaning of the

parent use case.

• The child may add to or

override the behavior of its parent.

parent

child

ניתוח מערכות מידע 18

registration

graduate

registration

non-graduate

registration

More about Generalization

ניתוח מערכות מידע 19

2. Include

• The base use case explicitly incorporates the behavior of another use
case at a location specified in the base.

• The included use case never or sometimes stands alone. It only occurs
as a part of some larger base that includes it.

base included
<<include>>

ניתוח מערכות מידע 20

More about Include

• Enables to avoid describing the same flow of events several times by
putting the common behavior in a use case of its own.

updating

grades

output

generating

verifying

Student id

<<include>>

<<include>>

ניתוח מערכות מידע 21

3. Extend

• The base use case implicitly incorporates the behavior of another use
case at certain points called extension points.

• The base use case may stand alone, but under certain conditions its
behavior may be extended by the behavior of another use case.

base extending
<<extend>>

ניתוח מערכות מידע 22

More about Extend

• Enables to model optional behavior or branching under conditions.

Exam

copy

request

Exam-

grade

appeal

<<extend>>

ניתוח מערכות מידע 23

Relationships between Actors

• Generalization.

student

non-

graduate

student

graduate

student

ניתוח מערכות מידע 24

Relationships between Use Cases
and Actors

• Actors may be connected to use cases by associations, indicating that
the actor and the use case communicate with one another using
messages.

updating

grades
faculty

It is not a recipe, but good sample

Usecases in Elaboration: Tag Req.
• Risk includes both technical complexity and other factors, such as

uncertainty of effort or usability

• Coverage implies that all major parts of the system are at least
touched on in early iteration, perhaps a "wide and shallow"
implementation across many components

• Criticality refers to functions of high business value

Sample Start-Up Iteration Planning

Iteration 1 Requirements : The requirements for the first iteration of the NextGen POS
application follow:

• Implement a basic, key scenario of the Process Sale use case: entering items and
receiving a cash payment.

• Implement a Start Up use case as necessary to support the initialization needs of the
iteration.

• Nothing fancy or complex is handled, just a simple happy path scenario, and the design
and implementation to support it.

• There is no collaboration with external services, such as a tax calculator or product
database.

• No complex pricing rules are applied.

• The design and implementation of the supporting UI would also be done, but is not
covered.

Subsequent iterations will grow on this foundation.

Incremental Development for the Same Usecase
Across the Iterations

You Know You Didn't Understand Elaboration When...

• It is more than "a few" months long for most projects.

• It only has one iteration (with rare exceptions for well-understood problems)

• Most requirements were defined before elaboration.

• The risky elements and core architecture are not being tackled.

• It does not result in an executable architecture; there is no production-code programming.

• It is considered primarily a requirements phase, preceding an implementation phase in construction.

• There is an attempt to do a full and careful design before programming.

• There is minimal feedback and adaptation; users are not continually engaged in evaluation and feedback

• There is no early and realistic testing.

• The architecture is speculatively finalized before programming.

• It is considered a step to do the proof-of-concept programming, rather than programming the production
core executable architecture.

• There are not multiple short requirements workshops that adapt and refine the requirements based on
feedback from the prior and current iterations

