FLANNING
Data acyuisition
Space mdoxicy
Applicatioos

OPFERATIONS

Data acquisition
Coaniant L

[0
Stundurdisation

Software
Development

Process, Models,
Methods,
Diagrams

Software Development
Life Cyles

Part - Il

As a Reminder

Discipline Artifact Incep. | Elab. | Const. | Trans.
Iteration-* 11 EL .En | CL.Cn | 1
Business Modeling |Domain Model S
Requirements Use-Case Model S T
Vision S T
Supplementary Specification S r
Glossary S T
Design Design Model S T
SW Architecture Document S
Data Model S T
Implementation Implementation Model S 1 I
Project Management |SW Development Plan S r T T
Testing Test Model S T
Environment Development Case S T

Sample Development Case of UP artifacts, s - start; r - refine

Sample Agile based SP

Inception .-

Overview \

P Elabzratlo Elabﬁratln Elabzratm Special
~ teration 1 Iteration 2 Iteration 3 Topics

. ' . : i Topics such as OO analysis and OO
SosestiElss Cllzestizos Translating design are incrementally introduced in
ALTUEE beil Designs to Code iteration 1, 2, and 3.

Re-Inception: Artifacts

. 1 .
Artitact Comment

Vision and Business Case Describes the high-level goals and constraints, the business
case, and provides an executive summary.

Use-Case Model Describes the functional requirements, and related non-func-
tional requirements.

Supplementary Specification Describes other requirements.

Glossary Key domain terminology.

Risk List & Risk Management Describes the business, technical. resource, schedule risks, and
Plan ideas for their mitigation or response.

Prototypes and proof-of-concepts |To clarify the vision, and validate technical 1deas.

Iteration Plan Describes what to do 1n the first elaboration iteration.

Phase Plan & Software Develop- |Low-precision guess for elaboration phase duration and effort.

ment Plan Tools, people, education, and other resources.

Development Case A description of the customized UP steps and artifacts for this
project. In the UP, one always customizes it for the project.

Understanding Requirments

* Requirements are capabilities and conditions to which the system—
and more broadly, the project—must conform

* Reg. Managment: a systematic approach to finding, documenting,
organizing, and tracking the changing requirements of a system

FURPS+ Requirement Model

* Functional - features, capabilities, security.

e Usability - human factors, help, documentation.

* Reliability - frequency of failure, recoverability, predictability.

e Performance - response times, throughput, accuracy, availability,
* resource usage.

e Supportability - adaptability, maintainability, internationalization,
e configurability.

* The “+” means
* Implementation - resource limitations, languages and tools, hardware..
* Interface - constraints imposed by interfacing with external systems.
* QOperations - system management in its operational setting.
* Packaging - for example, a physical box.
* Legal - licensing and so forth.

In common usage, requirements are categorized as functional (behavioral) or non-functional (everything else);
some dislike this broad generalization, but it is very widely used.

Use-Case Model: Writing Requirements In Context

* The idea of use cases to describe functional requirements was
introduced in 1986 by lvar Jacobson

* Alistair Cockburn, in 1992, defined what use cases are (or should be)

* A scenario is a specific sequence of actions and interactions between
actors and the system under discussion; it is also called a use case
Instance

e A use case is a collection of related success and failure scenarios that
describe actors using a system to support a goal.

Use Case Analysis

What is a Use Case?

* A sequence of actions a system performs that yields a valuable result for a particular
actor.

What is an Actor?

* A user or outside system that interacts with the system being designed in order to
obtain some value from that interaction

Use Cases describe scenarios that describe the interaction between users of the system
and the system itself.

Use Cases describe WHAT the system will do, but never HOW it will be done.

Usecase presentation formats

* brief—terse one-paragraph summary, usually of the main success scenario.

e casual—informal paragraph format. Multiple paragraphs that cover vari ous
scenarios

* fully dressed—the most elaborate. All steps and variations are written in detail,
and there are supporting sections, such as preconditions and success
guarantees.

What’s in a Use Case?

* Define the start state and any preconditions that accompany it
* Define when the Use Case starts

* Define the order of activity in the Main Flow of Events

* Define any Alternative Flows of Events

* Define any Exceptional Flows of Events

* Define any Post Conditions and the end state

* Mention any design issues as an appendix

* Accompanying diagrams: State, Activity, Sequence Diagrams

* View of Participating Objects (relevant Analysis Model Classes)

* Logical View: A View of the Actors involved with this Use Case, and any Use Cases used or extended by
this Use Case

Lets see sample

Usecase Level

* Elementary Business Usecase: A task performed by one person in one
place at one time, in response to a business event, which adds
measurable business value and leaves the data in a consistent state

A common use case mistake is defining many use cases at too low a
level; that is, as a single step, subfunction, or subtask within an EBP

e Goals, namely usecases, are usually composite, from the level of an
enterprise ("be profitable"), to many supporting intermediate goals
while using applications ("sales are captured"), to supporting
subfunction goals within applications ("input is valid"). Similarly, use
cases can be written at different levels to satisfy these goals, and can
be composed of lower level use cases

Finding Usecase, Goal, Actor

Use cases are defined to satisfy the user goals of the primary actors. Hence, the basic
procedure is:
1. Choose the system boundary. Is it just a software application, the hardware and

application as a unit, that plus a person using it, or an entire organization? Once the
external actors are identified, the boundary becomes clearer.

2. ldentify the primary actorskl those that have user goals fulfilled through using
services of the system

3. For each, identify their user goals. Raise them to the highest user goal level that
satisfies the EBP guideline

4. Define use cases that satisfy user %oals; name them according to their goal.
Usually, user goal-level use cases will be one-to-one with user goals, but there may be

exceptional situation.

Actor-Goal List

Actor Goal Actor Goal
Cashier process sales System add users
process rentals Admuinistra- modify users
handle returns tor delete users
cash in manage security
cash out manage system tables
Manager start up Sales Activ- |analyze sales and per-
shut down 1ty System formance data

Actor

An actor is anything with behavior, including the system under
discussion (SuD) itself when it calls upon the services of other systems

* Primary Actor: has user goals fulfilled through using services of the SuD
e Supporting Actor: provides a service (for example, information) to the SuD

e Offstage Actor: has an interest in the behavior of the use case, but is not
primary or supporting

Usecase Diagram

O

system boundary NextGen
_\H - .
O
h /;F’rocess Sal:-a\
\\x\.

wactors

Sales Activity |-

System

System
Administrator

| Gﬂ age Securi

N

Payment
Authorization
Service

. _

wactors
Tax Calculator

«actors
Accounting
System

wactors
HR System

use case

_ . communication

alternate
notation for
a computer
systj;m actor

N
|
¥

/' Expected
‘

case work.

Use cases are text documents.
Doing use case work means to

write text.

Suggestion
Draw a simple use case

diagram in conjunction with

an actor-goal list.

Use case diagrams and use case
relationships are secondary in use

Relationships between Use Cases

1. Generalization - use cases that are specialized versions of other use
cases.

2. Include - use cases that are included as parts of other use cases.
Enable to factor common behavior.

3. Extend - use cases that extend the behavior of other core use cases.
Enable to factor variants.

yTn nidyvn Nnin1

1. Generalization

* The child use case inherits the
behavior and meaning of the
parent use case.

* The child may add to or
override the behavior of its parent.

yTn nidyvn Nnin1

More about Generalization

non-graduate graduate
registration registration

2. Include

* The base use case explicitly incorporates the behavior of another use
case at a location specified in the base.

* The included use case never or sometimes stands alone. It only occurs
as a part of some larger base that includes it.

More about Include

* Enables to avoid describing the same flow of events several times by
putting the common behavior in a use case of its own.

updating
grades / "<<include>> o
~~~~ >/ verifying

Student id

-
-
-
-
-
-
-
-
-
-
-
-
-

yTn nidyvn Nnin1



3. Extend

* The base use case implicitly incorporates the behavior of another use
case at certain points called extension points.

* The base use case may stand alone, but under certain conditions its
behavior may be extended by the behavior of another use case.



More about Extend

* Enables to model optional behavior or branching under conditions.

<<extend>>

yTn nidyvn Nnin1



Relationships between Actors

N

* Generalization.

s}ident
O O
RS RS
graduate non-
student graduate

student

yT'!n NnidM yn Nninn



Relationships between Use Cases
and Actors

e Actors may be connected to use cases by associations, indicating that
the actor and the use case communicate with one another using

messages.
A
grades faculty

yTn nidyvn Nnin1




't is not a recipe, but good sample

Discipline | Artifact Comments and Level of Requirements Effort
Incep Elab 1 Elab 2 Elab 3 Elab 4
1week 4 weeks 4 weeks 3 weeks 3 weeks

Requirements |Use-Case 2-day require- Near the end of |Near the end of |Repeat, com- Repeal with the

Model ments work- this iteration, this iteration, plete 707 of all  |goal of 80-90% of
shop. Mostuse  |host a 2-day host a 2-day use cases in the use cases
cases identified |requirements requirements detail. clarified and
by name, and workshop. workshop. written 1n detail.
summarized ina |Obtam insight  |Obtaimn insight Only a small por-
short paragraph. |and feedback and feedback tion of these
Only 10% writ-  |from the imple-  |from the imple- have been bult
ten 1n detail. mentation work, |mentation work, i elaboration;

then complete then complete the remainder
30% oftheuse  [50% of the use are done 1n con-
cases m detail.  [cases in detail. struction.

Design Design Model |none Design for a repeat repeat Repeat. The high
small set of high- risk and archi-
risk architectur- tecturally sigmifi-
ally sigmficant cant aspects
requirements. should now be

stabilized.

Implementa- Implementa- |none Implement these. |Repeat. 5% of the |Repeat. 10% of |Repeat. 15% of

tion tion Model final system1s  |the final system |the final system

(code, efc) buult. 1s built. 15 built.

Project Man-  |SW Develop- |Very vague esti- |Estimate starts |a liftle better...  |alittle bettor...  |Overall project

agement ment Plan mate of total to take shape. duration, major

effort. nulestones,
effort, and cost
estimates can
now be ralionally
committed to




Usecases in Elaboration: Tag Reaq.

* Risk includes both technical complexity and other factors, such as

uncertainty of effort or usability

* Coverage implies that all major parts of the system are at least
touched on in early iteration, perhaps a "wide and shallow"
implementation across many components

* Criticality refers to functions of high business value

Requirement (Use

Rank Case or Feature) Comment
High Process Sale Scores high on all ranking criteria.
Logging Pervasive. Hard to add late.

Medmm Maintain Users

Low

Affects security subdomain.




Sample Start-Up Iteration Planning

Iteration 1 Requirements : The requirements for the first iteration of the NextGen POS
application follow:

* Implement a basic, key scenario of the Process Sale use case: entering items and
receiving a cash payment.

* Implement a Start Up use case as necessary to support the initialization needs of the
iteration.

* Nothing fancy or complex is handled, just a simple happy path scenario, and the design
and implementation to support it.

. '(Ij'herg is no collaboration with external services, such as a tax calculator or product
atabase.

* No complex pricing rules are applied.

* The deaign and implementation of the supporting Ul would also be done, but is not
covered.

Subsequent iterations will grow on this foundation.



Incremental Development for the Same Usecase
Across the lterations

A use case or feature is
1 2 3 - often too complex to
complete in one short

f \ \ iteration.
. Therefore, different part

Use Case Use Case Use Case or scenarios must be
Process Sal®rocess Sald’rocess Sale gllocated to different
iterations.

7
i
A A

L
L

it

FoEEE

Use Case
Process Rentals
Feature:

Logging

Use case implementation may be spread across iterations.



You Know You Didn't Understand Elaboration When...

* |Itis more than "a few" months long for most projects.

* It only has one iteration (with rare exceptions for well-understood problems)

* Most requirements were defined before elaboration.

* The risky elements and core architecture are not being tackled.

* It does not result in an executable architecture; there is no production-code programming.

* |tis considered primarily a requirements phase, preceding an implementation phase in construction.

* There is an attempt to do a full and careful design before programming.

* There is minimal feedback and adaptation; users are not continually engaged in evaluation and feedback
* There is no early and realistic testing.

* The architecture is speculatively finalized before programming.

* Itis considered a step to do the proof-of-concept programming, rather than programming the production
core executable architecture.

* There are not multiple short requirements workshops that adapt and refine the requirements based on
feedback from the prior and current iterations



