FLANNING
Data acyuisition
Space mdoxicy
Applicatioos

OPFERATIONS

Data acquisition
Coaniant L

[0
Stundurdisation

Software
Development

Process, Models,
Methods,
Diagrams

Software Development
Life Cyles

Part - IV

Use-case Model: Drawing System Sequence Diagrams

* A system sequence diagram (SSD) is a picture that shows, for a particular
scenario of a use case, the events that external actors generate, their order, and
Inter-system events

* The terms shown in SSDs (operations, parameters, return data) are terse. These
may need proper explanation so that during design work it is clear what is
coming in and going out. If this was not explicated in the use cases, the
Glossary could be used.

* Phases
* Inception—SSDs are not usually motivated in inception.

* Elaboration—Most SSDs are created during elaboration, when it is useful to identify the
details of the system events to clarify what major operations the system must be
designed to handle, write system operation contracts and possibly support estimation
(for example, macroestimation with unadjusted function points and COCOMO lI).

Sample

system as black box
the name could be "NextGenPOS" but "System" keefds |

the ":" and underline imply an instance, and are explajine
later chapter on sequence diagram notation in the UML

Process Sale Scenario

external actor to i
system ‘ T -.__O
: Cashier Svstem
I
| makeNewSale() .J
box may enlose a ! :
iteration area 0 : I
e I
)) e I enterltem(itemliD, quanti I
the * [..]is an iterati ! (= ty) gl
marker and clause | I
indicating the box is flor I description. total I
iteration :"‘ _______________ B J|
! * [more items] :
| a
| enclSaIe() H a message Wlth
! arameters
return value(s) k | I P
associated with the : I e .
g ol tatal with taxes | it is an abstractig
previous message - |‘_ _________________________________ [— representing the
) e I T I system event of
an abstraction that | .- I keP K gf{i | entering the
: - ; | makePayment(amoun
|gnc(j:>res§re-sentatlon | HI payment data by
|nd medium : ! some mechanisn
i i | B |
the retumn line is :‘_ __________ change due, receipt I
optional if nothing is I —:
returned

SSD for a Process Sale scenario.

SSD with usecase text

&
_ NS
Simple cash-only Process Sale scenario:
1. Customer arrives at a POS checkout) System
with goods and/or services to purchase Cashier .
| |
]]
| |
3. Cashier enters item identifier. I enterltem{itemID, gquantity) ._J'
4 System records sale line item and : :
presents item description, price, and | |
running total. (P N — description. total _________ 1
i * [more items] i
| |
Cashier repeats steps 3-4 until indicates : endSale() :
done. : >
| |
5. System presents total with taxes | total with taxes |
calculated. I"“ ““““““““““““““““““ |
| |
6. Cashier tells Customer the fotal, and | |
asks for payment. I makePayment(amount) >
7. Customer pays and System handles | |
payment. | |
DR change due,receipt ________ 3
|

SSD with use case text.

DOMAIN MODELVISUALIZING CONCEPTS

* A domain model is a or real-world
objects in a domain of interest

* Using UML notation, a domain model is illustrated with a set of class diagrams in
which no operations are defined. It may show:

e domain objects or conceptual classes
e associations between conceptual classes
e attributes of conceptual classes

* Domain model may be considered a visual dictionary of the noteworthy
abstractions, domain vocabulary, and information content of the domain.

Conceptual Class Identification

* In iterative development, one incrementally builds a domain model
over several iterations in the elaboration phase

 Strategies to Identify Conceptual Classes
1. Use a conceptual class category list.
2. ldentify noun phrases.

Samples for Class Identification

Another useful technique (because of its simplicity) suggested is
linguistic analysis: identify the nouns and noun phrases in textual
descriptions of a domain, and consider them as candidate
conceptual classes or attributes

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services fo purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running
total. Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs the completed sale and sends sale and payment information to the
external Accounting (for accounting and commissions) and Inventory systems (to
update inventory).

9. System presents receipt.

10.Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):

Ta. Paying by cash:
1. Cashier enters the cash amount tendered.

Conceptual Class Category Examples
physical or tangible objects Register
Airplane
specifications, designs, or descriptions | ProductSpecification
of things FlightDescription
places Store
Airport
transactions Sale, Payment
Reservaiion
transaction line ifems SalesLineltem
roles of people Cashier
Filot
containers of other things Store, Bin
Airplane
things in a container Item
Passenger

other computer or electro-mechanical
systems external to the system

CreditPaymentAuthorizationSystem
AirTrafficControl

abstract noun concepts Hunger
Acraphobia

organizations SalesDepartinent
ObjectAirline

events Sale, Payment, Meeting
Flight, Crash, Landing

processes SellingAProduct

(often not represented as a concept, BookingASear

but may be)

rules and policies RefundPolicy
CancellationPolicy

catalogs ProductCatalog

PartsCatalog

How to make domain model

1. List the candidate conceptual classes using the Conceptual Class Category
List and noun phrase identification techniques related to the current

requirements under consideration.

2. Draw them in a domain model.

3. Add the associations necessary to record relationships for which there is a
need to

4. Add the attributes necessary to fulfill the information requirements

Domain Model

Flight
ltem : Alrport
W date Flies-to Worse
description orse number * 1 | name
price time
serial number
itemlD
ProductSpecification Flight . L
— N torm Described-by FlightDescription Better
description - Better date * 1 | number
price 1 * | serial number time
itemID
*
~ Specifications or descriptions about other things. The "*" means a Describes-flights-to
muitiplicity of "many." It indicates that one ProductSpecification may describe 1
many (*) ltems.
Airport

name

Payment

1

Pays-for |

Sale

amount

date
time

UP Domain Model

Raw UML class diagra
notation used in an
essential model
visualizing real-world
concepts.

Payment

amount: Money

1

Pays-for !

Sale

getBalance(): Mone

date: Date

— startTime: Time

getTotal(): Money

UP Design Model

Raw UML class diagra
notation used In a
specification model
visualizing software
components.

Raw UML notation is applied in different perspectives and models
defined by a process or method.

Category

Examples

A is a physical part of B

ically, a POST)
Wing — Airplane

Drawer — Register (or more specif-

A is a logical part of B

SalesLineltem — Sale
FlightLeg—FlightRoute

A is physically contained in/on B

Register — Store, Item — Shelf
Passenger — Airplane

A is logically contained in B

TtemDescription — Catalog
Flight— FlightSchedile

A is a description for B

ItemDescription — Item
FlightDescription — Flight

A is a line item of a transaction or report B

SalesLineltern — Sale
Maintenance Job — Maintenance-
Log

A 1s known/logged/recorded/reported/cap-
tured in B

Sale — Register
Reservation — FlightManifest

A is a member of B

Cashier— Store
Pilot — Airline

A 1s an organizational subunit of B

Department — Store
Maintenance — Airline

A uses or manages B

Cashier — Register
Pilot— Airvlane

A communicates with B

Customer — Cashier
Reservation Agent — Passenger

A is related to a transaction B

Customer — Payment
Passenger — Ticket

A 1s a transaction related to another trans-
action B

Payment — Sale
Reservation — Cancellation

AlsnexttoB SalesLineltern — SalesLineltem
Cin— City
Ais owned by B Register — Store

Plane — Airline

A 1s an event related to B

Sale — Ciistomer, Sale — Store
Departure— Flight

Common Assoclation List

Here are some high-priority association categories that
are invariably useful to include in a domain model:

e Ais a physical or logical B.

e Ais physically or logically B.

e Alis B.

Multiplicities

The multiplicity value communicates
how many instances can be validly
another,

particular moment, rather than over

associated with

a span of time.

at

Airline
_-I
Employs
_1 *
Person Assigned-to
1 %*
..-I *

Supervises

Flight

{ Assigned-to

*

1

Plane

* T Zero or more;
Ilmanyll
1 *
= T one or more
1.40 T one to 40
5
T exactly 5
358 T exactly 3, 5, or
Flies-to 1
Flight Flies-from
% 1

Airport

Records-sale-of

Described-by

o

1
|
Product
Product Specification
Catalog Contains
1 1.7
1
0-1 * ised-by Describe
Sales *
Lineltem Store
Stocks Item
1 1 * 1"
1 *
Contained-{n Logs- Houses
completed N
b 1..
* :
Sale Register
Captured-on Started-by Manager
1 1 1 1
.1
" L 1
Paid-by Initiated-by {1 Records-sales-on
1 1 1
Initiated-by
Payment Customer Cashier

A partial domain model.

Records-sale-of

Described-by

| 1
Product
Product Specification
Catalog Contains
1 1 * description
| price
1 itemID
0. * :sed-by Describes
Sales *
Lineltem Store
Stocks Item
quantity 1 | address 1 * 1
name o
1.
. Logs- 1
Contained-jn completed Houses
1 v 1.7
*
Sale Register
Manager
date Started-b¥
Captured-on 1
time 1 1
‘T - 1
Paid-by Initiated-by {1 Records-sales-on
1 1 1
Payment Customer Cashier

amount

A partial domain model.

For the design: Sequence Diagram-200

