FLANNING
Diatu seyuisition
Space mdoztey
Applications

QPERATIONS
Data acquisition
C ination
Stundardizsstion
Froturement

SOFTWARE
DEVELOPMENT

Process, Models,
Methods,

Diagrams

Software Development
Life Cyles

Part - V



OVERVIEW

= Extreme Programming (XP)
was conceived and developed
by Kent Beck to address the
specific needs of software
development conducted by
small teams in the face of
vague and changing
requirements.

= Extreme Programming

nominates coding as the key
activity.

= The programmer is the heart of
XP.




OVERVIEW

Why Extreme?

XP takes commonsense principles and practices to extreme
levels.

= If code reviews are good, we’ll review code all the time (pair
programming).

= If testing is good, everybody will test all the time (unit testing).

= If design is good, we’ll make it part of everybody’s daily
business (refactoring).

= If integration testing is important, then we’ll integrate and test
several times a day.

= If short iterations are good, we will make the iterations really,
really short — seconds, minutes and hours, not weeks, months
and years.

)



OVERVIEW

= This new lightweight methodology challenges many
conventional tenets, including the long-held assumption
that the cost of changing a piece of software rises
dramatically over the course of time.

= The cost of change curve for XP is a flat curve, which is
achieved by simple design, tests, and an attitude of
constant refinement of the design.




OVERVIEW

Historical Cost of Change Curve - The cost of
change rising exponentially over time

cRSETm = =M

Analysis Design Implementation Testing Production

()



OVERVIEW

XP Cost of Change Curve - The cost of change
may NOT rise over time

fRESESTM =mo =M

'L MWE S




OVERVIEW

Fundamentals of XP include:

= Writing unit tests before programming and keeping all
of the tests running at all times.

= Integrating and testing the whole system--several times a
day.

= Producing all software in pairs, two programmers at one
screen.

= Starting projects with a simple design that constantly
evolves to add needed flexibility and remove unneeded
complexity.

= Putting a minimal system into production quickly and
growing it in whatever directions prove most valuable.




OVERVIEW

Why is XP so different?

e XP doesn't force team members to specialize and become
analysts, architects, programmers, testers, and integrators--

every XP programmer participates in all of these critical
activities every day.

e XP doesn't conduct complete up-front analysis and design-
-an XP project starts with a quick analysis of the entire
system, and XP programmers continue to make analysis
and design decisions throughout development.

e Develop infrastructure and frameworks as you develop
your application, not up-front--delivering business value is
the heartbeat that drives XP projects.

e Don't write and maintain implementation documentation--
communication in XP projects occurs face-to-face, or
through efficient tests and carefully written code.

)



OVERVIEW

XP -What is involved: The four basic activities of Extreme
Programming are coding, testing, listening, and designing.

= Coding: You code because if you don't code, at the end of
the day you haven't done anything.

= Testing: You test because if you don't test, you don't know
when you are done coding

= Listening: You listen because if you don't listen you don't
know what to code or what to test

= Designing: And you design so you can keep coding and
testing and listening indefinitely (good design allows
extension of the system with changes in only one place)

)



XP VALUES/PRINCIPLES

There are four basic values in XP:
Communication, Simplicity, Feedback, Courage

Principles
= Rapid feedback
= Assume Simplicity

= Incremental Changes
= Embrace Change
= Quality Work




KEY PRACTICES OF XP

= Planning Game
=Small releases
= Metaphor

= Simple design
= Testing

= Refactoring

= Pair Programming

= Collective
ownership

= Continuous
Integration

= 40-hour week
= On-site Customer
= Coding Standards




PLANNING GAME

Business People

=Scope
= Priority
= Composition

= Release Date

Technical People

= Estimates
= Consequences
= Process

= Detailed
Scheduling




SMALL RELEASES

= Every release must be as small as
possible

= Contain the most valuable business
requirements

= Release has to make sense




METAPHOR

Helps understand
 Basic elements of the project

 Relationships




SIMPLE DESIGN

= The system must communicate everything
you want to communicate

= No duplicate code

= The system should have the fewest possible
classes

= The system should have the fewest possible
methods




TESTING

Sources

 Programmers

= Customers

Types of Testing

= Unit Testing

= Functional Testing




REFACTORING

= After getting something to work we refactor
= Revise and edit
= Followed by running all the tests

v All tests are green.
v'All duplication has been removed

v'The code is as expressive as we can make it




PAIR PROGRAMMING

= Two programmers collaborate on the same
design, algorithm, code or test case

= Pairing is dynamic

= Encourages communication, productivity and
enhances code quality

= Pairing is useful for cross-training established
employees and for training new employees

= Pair programming research reveals that:
= Pairs use no more man-hours than singles
» Pairs create fewer defects W
= Pairs create fewer lines of code
= Pairs enjoy their work more




UNIVERMITY OF UTAH EXPERIMENT: PRIRS SPENT 15% MORE TiME
ON THE PROGRAM THAN INDIVIDUALS

Relative Time: One Individual v= Two
Collaborators

SN E=N E=N B

Program 1 Program 2 Program 3

O Cne Individual @ Two Collaborators




UNIVERMITY OF UTAH EXPERIMENT: CODE WRITTEN BY PRIRS PASSED
MORE TEST CASES THAN CODE WRITTEN BY INDIVIDUALS

Post Development Test Cases Passed

100.0%
al.0% -
B0.0%
40.0%
20.0%

0.0%

Program 1 Program 2 Program 3

O Indivicduals @ Collaborators




UNIVERSITY OF UTAH EXPERIMENT: PAIRS CONSISTENTLY IMPLEMERTED
THE SAME FUNCTIONAELITY PRODUCED BY INDIVIDUALS IN FEWER LINES
OF CODE

Lines of Code

ml =l &

Program 1 Program 2 Program 3

O Individuals @ Collaborator s




COLLECTIVE OWNERSHIP

= Any team member may add to the code at any
time

= Everybody takes responsibility for the whole
system

= Encourages simplicity:
= Prevents complex code from entering the system

= Increases individual responsibility and personal
power

= Reduces project risk:
= Spreads knowledge of the system around the team




CONTINUOUS INTEGRATION

= Code is integrated and tested after a few hours

= Daily builds are for wimps
= Build, end to end, at every check in
= Check in frequently
= Put resources on speeding build time
= Put resources on speeding test time

= Reduces project risk:

= You’ll never spend days chasing a bug that was created
some time in the last few weeks

= Provides valuable human benefit during
development




FORTY HOUR WEEK
(SUSTRINABLE PACE)

= Overtime is a symptom of a serious problem
on a project

= Occasionally, programmers may work one
week of moderate overtime. Two weeks in a
row is out of the question

 Programmers need to be well rested to work
efficiently




ON-SITE CUSTOMER

» A real customer must sit with the team full time

= The on-site customer enables an XP team to
explore business requirements as it needs to
and gives direct access to someone who can
make key decisions quickly

= Provides value to the company by contributing
to the project, thus reducing project risk.

=In XP, if the system isn’t worth the time of one
customer, maybe it’s not worth building.




CODING STANDARDS

= Programmers write all code in accordance with rules
adopted voluntarily by the team

= Make it impossible to tell who wrote what

= Having no standards slows pair programming and
refactoring

Constraints

= No duplicate code

= System should have the fewest possible classes

= System should have the fewest possible methods
= Comments should be minimized




RDVANTRGES / DISADVANTAGES

ADVANTAGES

= Customer focus increase the chance that the software
produced will actually meet the needs of the users

= The focus on small, incremental release decreases the
risk on your project:
= by showing that your approach works and

= by putting functionality in the hands of your users, enabling
them to provide timely feedback regarding your work.

= Continuous testing and integration helps to increase
the quality of your work

= XP is attractive to programmers who normally are
unwilling to adopt a software process, enabling your
organization to manage its software efforts better.

()



RDVANTAGES /DISADVANTAGES

DISADVANTAGES

= XP is geared toward a single project, developed and
maintained by a single team.

= XP is particularly vulnerable to "bad apple" developers who:
= don't work well with others
= who think they know it all, and/or
= who are not willing to share their "superior” code

» XP will not work in an environment where a customer or
manager insists on a complete specification or design before
they begin programming.

= XP will not work in an environment where programmers are
separated geographically.

= XP has not been proven to work with systems that have
scalability issues (new applications must integrate into
existing systems).




CONCLUSION

= XP focuses on people

= Values team work over power

= XP works well when there are \\\ | / //
uncertain or volatile N 4
requirements = =

»XP is a process not a miracle ~ S~

cure for all software
development problems

O
O
o




