
SOFTWARE
DEVELOPMENT

Process, Models,
Methods,
Diagrams
Software Development
Life Cyles

Part - V

 Extreme Programming (XP)
was conceived and developed
by Kent Beck to address the
specific needs of software
development conducted by
small teams in the face of
vague and changing
requirements.

 Extreme Programming
nominates coding as the key
activity.

 The programmer is the heart of
XP.

Why Extreme?

XP takes commonsense principles and practices to extreme
levels.

 If code reviews are good, we’ll review code all the time (pair
programming).

 If testing is good, everybody will test all the time (unit testing).

 If design is good, we’ll make it part of everybody’s daily
business (refactoring).

 If integration testing is important, then we’ll integrate and test
several times a day.

 If short iterations are good, we will make the iterations really,
really short – seconds, minutes and hours, not weeks, months
and years.

 This new lightweight methodology challenges many
conventional tenets, including the long-held assumption
that the cost of changing a piece of software rises
dramatically over the course of time.

 The cost of change curve for XP is a flat curve, which is
achieved by simple design, tests, and an attitude of
constant refinement of the design.

Historical Cost of Change Curve - The cost of
change rising exponentially over time

XP Cost of Change Curve - The cost of change
may NOT rise over time

Fundamentals of XP include:

 Writing unit tests before programming and keeping all
of the tests running at all times.

 Integrating and testing the whole system--several times a
day.

 Producing all software in pairs, two programmers at one
screen.

 Starting projects with a simple design that constantly
evolves to add needed flexibility and remove unneeded
complexity.

 Putting a minimal system into production quickly and
growing it in whatever directions prove most valuable.

Why is XP so different?

 XP doesn't force team members to specialize and become
analysts, architects, programmers, testers, and integrators--
every XP programmer participates in all of these critical
activities every day.

 XP doesn't conduct complete up-front analysis and design-
-an XP project starts with a quick analysis of the entire
system, and XP programmers continue to make analysis
and design decisions throughout development.

 Develop infrastructure and frameworks as you develop
your application, not up-front--delivering business value is
the heartbeat that drives XP projects.

 Don't write and maintain implementation documentation--
communication in XP projects occurs face-to-face, or
through efficient tests and carefully written code.

OVERVIEW

XP - What is involved: The four basic activities of Extreme
Programming are coding, testing, listening, and designing.

 Coding: You code because if you don't code, at the end of

the day you haven't done anything.

 Testing: You test because if you don't test, you don't know

when you are done coding

 Listening: You listen because if you don't listen you don't

know what to code or what to test

 Designing: And you design so you can keep coding and

testing and listening indefinitely (good design allows

extension of the system with changes in only one place)

There are four basic values in XP:

Communication, Simplicity, Feedback, Courage

Principles

Rapid feedback

Assume Simplicity

 Incremental Changes

Embrace Change

Quality Work

Planning Game

Small releases

Metaphor

Simple design

Testing

Refactoring

Pair Programming

Collective
ownership

Continuous
integration

40-hour week

On-site Customer

Coding Standards

Business People

Scope

Priority

Composition

Release Date

Technical People

Estimates

Consequences

Process

Detailed
Scheduling

Every release must be as small as
possible

Contain the most valuable business
requirements

Release has to make sense

Helps understand

• Basic elements of the project

• Relationships

The system must communicate everything
you want to communicate

No duplicate code

The system should have the fewest possible
classes

The system should have the fewest possible
methods

Sources

Programmers

Customers

Types of Testing

Unit Testing

Functional Testing

After getting something to work we refactor
Revise and edit
Followed by running all the tests

We cannot check in our code until:

All tests are green.

All duplication has been removed

The code is as expressive as we can make it

Two programmers collaborate on the same
design, algorithm, code or test case

Pairing is dynamic

Encourages communication, productivity and
enhances code quality

Pairing is useful for cross-training established
employees and for training new employees

Pair programming research reveals that:
 Pairs use no more man-hours than singles

 Pairs create fewer defects

 Pairs create fewer lines of code

 Pairs enjoy their work more

Any team member may add to the code at any
time

Everybody takes responsibility for the whole
system

Encourages simplicity:
 Prevents complex code from entering the system

 Increases individual responsibility and personal
power

Reduces project risk:
 Spreads knowledge of the system around the team

Code is integrated and tested after a few hours

Daily builds are for wimps
 Build, end to end, at every check in

 Check in frequently

 Put resources on speeding build time

 Put resources on speeding test time

Reduces project risk:
 You’ll never spend days chasing a bug that was created

some time in the last few weeks

Provides valuable human benefit during
development

Overtime is a symptom of a serious problem
on a project

Occasionally, programmers may work one
week of moderate overtime. Two weeks in a
row is out of the question

Programmers need to be well rested to work
efficiently

A real customer must sit with the team full time

The on-site customer enables an XP team to
explore business requirements as it needs to
and gives direct access to someone who can
make key decisions quickly

Provides value to the company by contributing
to the project, thus reducing project risk.

 In XP, if the system isn’t worth the time of one
customer, maybe it’s not worth building.

 Programmers write all code in accordance with rules
adopted voluntarily by the team

 Make it impossible to tell who wrote what

 Having no standards slows pair programming and
refactoring

Constraints

 No duplicate code

 System should have the fewest possible classes

 System should have the fewest possible methods

 Comments should be minimized

ADVANTAGES

 Customer focus increase the chance that the software
produced will actually meet the needs of the users

 The focus on small, incremental release decreases the
risk on your project:
 by showing that your approach works and

 by putting functionality in the hands of your users, enabling
them to provide timely feedback regarding your work.

 Continuous testing and integration helps to increase
the quality of your work

 XP is attractive to programmers who normally are
unwilling to adopt a software process, enabling your
organization to manage its software efforts better.

DISADVANTAGES

 XP is geared toward a single project, developed and
maintained by a single team.

 XP is particularly vulnerable to "bad apple" developers who:

 don't work well with others

 who think they know it all, and/or

 who are not willing to share their "superior” code

 XP will not work in an environment where a customer or
manager insists on a complete specification or design before
they begin programming.

 XP will not work in an environment where programmers are
separated geographically.

 XP has not been proven to work with systems that have
scalability issues (new applications must integrate into
existing systems).

XP focuses on people

Values team work over power

XP works well when there are
uncertain or volatile
requirements

XP is a process not a miracle
cure for all software
development problems

