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The main concepts and principles of basic prob-
ability theory are introduced: random variables
and random processes, laws of large numbers, cen-
tral limit theorem, Markov chains, and limit the-
orems for them. They are illustrated by supplied
examples and exercises. The course does not re-
quire knowledge of measure theory, and we refer
to standard facts as they are needed.
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1 Historical remarks (optional)

1.1 Mathematical gambling

The probability theory is a branch of math which studies random phenomena. The main concept of
the probability theory is an event (e.g., “coin toss is head”, “roll a dice by side 3”, etc.). Now days,
there are plenty amazing illustrations of usefulness of this concept almost everywhere. To begin with our
introduction to the probability theory, let us chose the following famous historical problem which had led
to developing basic ideas of the probability theory three and half centuries ago.

In 1654, Chevalier de Mere has met some paradox in his gambling practice. He wrote an angry letter to his
friend Blaise Pascal (a mathematician with whom de Mere discussed mathematical aspects of gambling),
accusing mathematicians in creating incorrect theories contradicting the common practice. Now this
“paradox” is known as the Mere problem or the problem of points: 3 fair dice are thrown, which
sum of numbers “appears more often”, 11 or 12?

De Mere was thinking that the expectation of 11 and of 12 must be equal (accordingly to what he
understand from “mathematical gambling”), indeed

11 = 6 + 4 + 1 = 6 + 3 + 2 = 5 + 5 + 1 = 5 + 4 + 2 = 5 + 3 + 3 = 4 + 4 + 3,

the six equally likely possibilities, and

12 = 6 + 5 + 1 = 6 + 4 + 2 = 6 + 3 + 3 = 5 + 5 + 2 = 5 + 4 + 3 = 4 + 4 + 4,

the six equally likely possibilities! But, after a long series of experiments, de Mere got different “practical”
answer. What is wrong? His friend Pascal (after a quite long mail conversation with Piere de Fermat)
solve the problem as follows.

Consider the six combinations of numbers (from 1 to 6) a,b, and c (with a 6= b 6= c 6= a):

(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a),

as different (with the equal probability of appearance, of course).

The unordered triple {6, 4, 1} appears 6 times by ordered triples

(6, 4, 1), (1, 6, 4), (4, 1, 6), (6, 4, 1), (1, 6, 4), and (4, 1, 6);

the triple {6, 3, 2} – 6 times; {5, 5, 1} – 3 times; {5, 4, 2} – 6 times; {5, 3, 3} – 3 times; and {4, 4, 3} – 3
times. Thus, the sum 11 appears

6 + 6 + 3 + 6 + 3 + 3 = 27

times.

The triple {6, 5, 1} appears 6 times; the triple {6, 4, 2} – 6 times; {6, 3, 3} – 3 times; {5, 5, 2} – 3 times;
{5, 4, 3} – 6 times; and {4, 4, 4} – 1 time. Thus, the sum 12 appears

6 + 6 + 3 + 3 + 6 + 1 = 25

times (25 6= 27) out of 6× 6× 6 = 216 possible results.

Hence, in a long series of dice throwing, the sum 11 appears more often than 12.
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1.2 Modeling of events

We need a math model for describing random events that are result of performing an experiment. We
cannot use frequency of occurrence as a model, because it does not have the power of prediction. First,
we define a state space (or sample space) that we will denote by S. We consider elements of S as outcomes
of the experiment.

Then, we specify a collection A of subsets of S. Each of these subsets is called an event. These events
are sets we can talk about the probability of them. When S is finite, A can be taken to be the collection
of all subsets of S.

The followings are the examples for the finite S.

Example 1.1 Roll a six-sided die; what is the probability of rolling the six or five? First, write a sample
space. Here is a natural one:

S = {1, 2, 3, 4, 5, 6}

In this case, S is finite and we want A to be the collection of all subsets of S. Clearly (outcomes are
equally likely, since the dice thrown suppose to be fair)

P ({6, 5}) = P ({6}) + P ({5}) = 1/6 + 1/6 = 1/3. �

Example 1.2 For the de Mere problem, the sample space is

S = {(a, b, c)| a, b, c ∈ {1, 2, 3, 4, 5, 6}}.

All (a, b, c) ∈ S are equi-likely. The cardinality (the power, or the dimension) of S is 6 × 6 × 6 = 216.
So, we have 216 equi-likely outcomes. In this case P ((a, b, c)) = 1/216 for every a, b, c ∈ {1, 2, 3, 4, 5, 6},

P ({(a, b, c)| a+ b+ c = 11}) = 27/216,

and
P ({(a, b, c)| a+ b+ c = 12}) = 25/216. �

Let A be the class of all events for the sample set S. Under the operations ∪, ∩, and c is a Boolean
algebra.

Definition 1.1 A Boolean algebra is a non-empty set A on which operations union ∪, intersection ∩ and
complement c are defined such that

A,B ∈ A ⇒ A ∪B ∈ A andA ∩B ∈ A

A ∈ A ⇒ Ac ∈ A

and satisfying the following axioms

(i) Commutativity A ∪B = B ∪A, A ∩B = B ∩A

(ii) Associativity (A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C)

(iii) Distributivity (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(iv) Absorption (A ∩B) ∪B = B, (A ∪B) ∩B = B
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(v) Associativity (A ∩Ac) ∪B = B, (A ∪Ac) ∩B = B

Also from (iii) and (iv), idempotent laws are satisfied, i.e. A ∪A = A and A ∩A = A, ∀A ∈ A.

If A = A ∩B or B = A ∪B then the event B is said to include an event A. The inclusion is denoted by
⊂ and the inclusion relation is a partial order relation on A.

Moreover ∅ = A ∩ Ac and S = A ∪ Ac are called the imposible event and the sure event of A. The
definition does not depend on A ∈ A. Two elements A,B are called dsjoint if A ∩B = ∅.

Definition 1.2 An element A ∈ A is said to be an atom if A 6= ∅ and B ⊂ A implies B = ∅ or B = A.

Lemma 1.1 If A is an atom then for any element D ∈ A either A ⊂ D or A ⊂ Dc.

Proof: Let A be an atom. Then for any element D ∈ A, D ∩ A ⊂ A. Hence either A ∩ D = ∅ or
A ∩D = A. Therefore if A ∩D = ∅ then A ⊂ Dc or if A ∩D = A then A ⊂ D. �

Remark that if A and B are distinct atoms of A then A and B are disjoint.

We want more than algebra for events, because we want to deal with sequences of events. Therefore we
define σ-algebra.

Definition 1.3 Let S be a sample space. A non-empty class A is called a σ-algebra if

(i) S ∈ A,

(ii) if A ∈ A then Ac ∈ A,

(iii) given a sequence (An)n ⊆ A, we have ∪nAn ∈ A.

v

1.3 Function of probability

Once we have a sample space and an event-space, we need to assign a probability to every event. This
assignment has to satisfy some properties.

Rule 1. 0 ≤ P (A) ≤ 1 for every event A.

Rule 2. P (S) ≤ 1. Something will happen with probability one.

Rule 3. (Addition rule) If A and B are disjoint events (i.e. A ∩ B = ∅), then the probability, that is at
least one of the two occurs, is the sum of the individual probabilities. More precisely, put P (A ∪ B) =
P (A) + P (B).

In what follows, we use freely the common set theoretical symbols and the terminology. For instance,
P(S) is the power set of S (= the set of all subsets of S), A \B the set of elements of A which are not in
B, Bc = S \B is the complement of B ⊆ S in S, etc.
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1.4 Countable additivity

Recall that a set X is said to be countable infinite (or, just countable) if there is a bijective (1-to-1 and
onto) function from N = {1, 2, 3, ...} onto X, in other words, if we can count X. Examples of countable
sets are N,Z,Z2, and Q. An example of an uncountable set is any nonempty interval in the real line R.

One can form countable union of sets by defining
⋃
i≥1Ai to be the set of elements that are in at least

one of the sets Ai. Similarly,
⋂
i≥1Ai is the set of elements that are in all of the Ais simultaneously (if

there are no such elements, then the intersection is empty).

Rules 1 – 3 suffice if we want to study only finite sample spaces. But infinite sample spaces are also
interesting and much more useful. This happens, for example, if we want to write a model that answers,
what is the probability that we toss a coin 12 times before we toss heads? This leads us to the next, and
final, rule of probability.

Rule 4. (Extended addition rule) If A1, A2, . . . are (countably-many) pairwise disjoint events, then

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).

This rule will be extremely important to us. It needs to be assumed as a part of the model of the

probability theory, which we going to study in this course. In the next lecture, we continue with exact

definitions of this model and consider further methods for defining (and calculating) of the probability.
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2 Axiomatic approach

2.1 Probability axioms

Given a sample space S, an algebra A ⊆ P(S), and a function P : A →
R. The triple (S,A, P ) is called a probability space (and P (A) is

called the probability of an event A) if A is a σ-algebra (algebra of

events) and

1. 0 ≤ P (A) ≤ 1 for each A ∈ A.

2. P (S) = 1.

3. P (
⋃
nAn) =

∑
n P (An) for every pairwise disjoint sequence An of

events.

It should be emphasized that, in many cases, a choice of a proper proba-

bility space is the subject of an experiment.

Example 2.1 If S is either finite or countable, then (S,A, P ) is called a discrete probability space.
Clearly, in this case, P is uniquely determined by values P ({a}) for all a ∈ S such that {a} is an event,
namely

P (A) =
∑

a∈A,{a}∈A

P ({a}) (A ∈ A). �

Consider the following example of a “non-discrete” probability space.

Example 2.2 Suppose that we choose randomly a point in the interval [0, 1]. In this case, events are
exactly the Lebesgue measurable subsets of [0, 1], and the probability is the Lebesgue measure µ of these
subsets. This simple probability function P (A) = µ(A) of a dropped randomly point to fall into A ⊆ [0, 1]
is called the geometric probability.

A slight modification can be obtained if we replace [0, 1] by any Lebesgue measurable subset S of Rn of a
finite Lebesgue measure λ(S) and define P as follows

P (A) = λ(A ∩ S) (A is a Lebesgue measurable subset of Rn). �

Example 2.2 motivates the following definition which is fairly important

in the probability theory. Later on we will extend this definition to an

infinite sequence of probability spaces.
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Definition 2.1 Let (S1,A1, P1), (S2,A2, P2), ... (Sn,An, Pn) be prob-

ability spaces. Define a probability function P on rectangles A1×A2×
...× An, where Ak ∈ Ak, by

P (A1 × A2 × ...× An) := P1(A1) · P2(A2) · ... · Pn(An);

and “extend” P to arbitrary “measurable” subsets of the Cartesian

product S1×S2×...×Sn (at this point some measure theory is needed,

but it is not included in our course, so, we just accept such possibility

of this extension as well as its uniqueness).

The above defined probability P on Lebesgue measurable subsets of the

Cartesian product S = S1 × S2 × ...× Sn gives a rise to the probability

space (S,A, P ), where the algebra of events is the Lebesgue algebra of

S. This probability space is called the product of probability spaces

(S1,A1, P1), (S2,A2, P2), ... , and (Sn,An, Pn).

Example 2.3 Let (S,P(S), P ) be a probability space. In order to define P it suffices to assign a probability
p(s) to each outcome s ∈ S so that:

0 ≤ p(s) ≤ 1 (∀s ∈ S) &
∑
s∈S

p(s) = 1.

Indeed, in this case the probability function P is given by P (A) =
∑
s∈A

p(s) for all A ⊆ S. �

2.2 Independence

Definition 2.2 Two events A and B are independent whenever

P (A ∩B) = P (A) · P (B).

Example 2.4 Suppose you draw a card from a a standard deck. Let H be you drew a heart and K be
that you drew a king. Since

P (H ∩K) = P (king of heart) =
1

52
=

1

4
· 1

13
= P (H)P (K),

the events H and K are independent. �
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Lemma 2.1 For any two events A and B the following conditions

are equivalent:

(i) A and B are independent;

(ii) A and Bc are independent;

(iii) Ac and Bc are independent.

Proof: Since Acc = A, it is sufficient to prove (i)⇒ (ii):

P (A ∩Bc) = P (A)− P (A ∩B) = P (A)− P (A) · P (B) = P (A) · (1− P (B)) = P (A)P (Bc). �

Definition 2.3 A family {Aγ}γ∈Γ of events is called:

(i) independent if, for each finite subfamily {Aγi}i=ki=1, there holds

P (Aγ1 ∩ Aγ2... ∩ Aγk) = P (Aγ1) · P (Aγ2) · ... · P (Aγk);

(ii) pairwise independent if, for every pair (Aγ1, Aγ2) of events

with Aγ1 6= Aγ2, there holds

P (Aγ1 ∩ Aγ2) = P (Aγ1) · P (Aγ2).

If eventsA andB are independent then the family {A,B} is independent.

Moreover, the family {∅, A, S} is independent for any event A such that

A 6= ∅ and A 6= S.

Proposition 2.1 For any family A = {Aγ}γ∈Γ of events:

(i) if A is pairwise independent then the family A′ = {Ac
γ}γ∈Γ is

pairwise independent;

(ii) if A is independent then the family A′ = {Ac
γ}γ∈Γ is independent.

Proof: (i) It follows directly from Lemma 2.1.

(ii) It is enough to show that if P (
j=m⋂
j=1

Aγkj ) =
j=m∏
k=j

P (Aγkj ) for any subset {Aγkj }
j=m
j=1 of arbitrary finite

subset {Aγk}k=nk=1 ⊆ A then P (
k=n⋂
k=1

Acγk) =
k=n∏
k=1

P (Acγk)). The case of n = 1 is trivial. The case of n = 2
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follows from (i). We prove the case n = 3 only and leave the case of arbitrary n to the reader as an
exercise.

Let a family of events {A,B,C} be independent. Then

P (Ac ∩Bc ∩ Cc) = P ((A ∪B ∪ C)c) = 1− P (A ∪B ∪ C) =

1− [P (A) + P (B) + P (C)− P (A ∩B)− P (B ∩ C)− P (C ∩A) + P (A ∩B ∩ C)] =

1− P (A)− P (B)− P (C) + P (A)P (B) + P (B)P (C) + P (C)P (A)− P (A)P (B)P (C) =

(1− P (A))(1− P (B))(1− P (C)) = P (Ac)P (Bc)P (Cc). �

Example 2.5 The collection of all events which are independent with a given event A need not to be
an algebra. To see this, take the unit square S = [0, 1]2 with the geometric probability and consider the
following events:

Skj =
{

(x, y) ∈ S :
k − 1

3
≤ x ≤ k

3
;
j − 1

3
≤ x ≤ j

3

}
(k, j = 1, 2, 3),

and let

A := S12 ∪ S22 ∪ S32, B := S13 ∪ S12 ∪ S11 ∪ S22 ∪ S21 ∪ S33, C = S33 ∪ S32 ∪ S12.

Notice that P (Skj) = 1
9 for all k, j = 1, 2, 3. Since

P (A ∩B) = P (S12 ∪ S22) =
2

9
=

1

3
· 2

3
= P (A) · P (B) and

P (A ∩ C) = P (S33) =
1

9
=

1

3
· 1

3
= P (A) · P (C),

the events B and C are both independent with A. However

P (A ∩ [B ∩ C]) = P (A ∩ S33) = P (∅) = 0 6= 1

27
=

1

3
· 1

9
= P (A) · P (B ∩ C),

which shows that B ∩ C is not independent with A. �

Clearly, every independent family is pairwise independent. However, as

the following example shows, it could happened that a family of events is

pairwise independent but not independent.

Example 2.6 (S.N. Bernstein, 1927) There are four tickets in a box with numbers abc which are (112),
(121), (211), and (222). The probability of taking any ticket is 1/4. Let A1 = {abc| c = 1), A2 = {abc| b =
1), and A3 = {abc| a = 1). Then events A1, A2, and A3 are pairwise independent. Indeed,

P (A1) = P (A2) = P (A3) = 2/4 = 1/2,

P (A1 ∩A2) = P (A2 ∩A3) = P (A3 ∩A1) = 1/4 = (1/2) · (1/2).

However,
P (A1 ∩A2 ∩A3) = P (∅) = 0 6= 1/8 = P (A1) · P (A2) · P (A3). �
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The Definitions 2.1, 2.3 are both generalized by the following definition.

Definition 2.4 Let (S,A, P ) be a probability space and let A1 and

A2 be two σ-algebras of A. A1 is said to be independent with

A2 if, whenever A1 ∈ A1 and A2 ∈ A2,

P(A1 ∩ A2) = P(A1) · P(A2).

An arbitrary family of σ-algebras (Ai)i∈I of events of A is said to be

pairwise independent if any pair (A1, A2) of events is independent,

whenever A1 ∈ Ai1, A2 ∈ Ai2, and i1 6= i2.

Likewise, a finite family of σ-algebras (Ai)i∈I is said to be indepen-

dent iff

∀ (Ai)i∈I ∈
∏

i∈I
Ai : P

(⋂
i∈I
Ai

)
=
∏

i∈I
P (Ai) ,

and an arbitrary family of σ-algebras is said to be independent iff

all its finite subfamilies are independent.

Example 2.7 The sequence of n Bernoulli trials (n-binomial trials) is a series of n independent random
experiments; each of them has two possible outcomes: ”success” (the success is usually denoted by 1) with
the probability p, and ”failure” (the failure is usually denoted by 0), with the probability q = 1− p, where
p = P (1) is the same every time the experiment is conducted.

Consider Ak = {(a1, a2, ..., an)|ak = 1}, where (a1, a2, ..., an) is a sequence of n-Bernoulli trials. Clearly,
P (Ak) = p where we consider as a sample space the Cartesian product of n copies of elementary probability
spaces

({0, 1}, {∅, {0}, {1}, {0, 1}}, P ({0}) = 1− p, P ({1}) = p).

Moreover, the sequence A1, A2, ..., An is independent. For example, if k1, k2, and k3 are distinct, then

P (Ak1 ∩Ak2 ∩Ak3) = p3 = P (Ak1) · P (Ak2) · P (Ak3).

Generalized Bernoulli trails corresponds to the following probability space

({0, 1, 2, ...k}, P({0, 1, 2, ...k}), P ({k}) = pk,
k∑
i=1

pk = 1).

Clearly, the above sequence A1, A2, ..., An is independent. �
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2.3 Conditional probability

Definition 2.5 Let (S,A, P ) be a probability space, and A,B ∈ A
be two events with P (B) > 0. The conditional probability of A

given B is defined by

P (A|B) =
P (A ∩B)

P (B)
. (1)

If A and B are independent with P (B) > 0, then P (A|B) = P (A).

The formula P (A∩B) = P (A|B) ·P (B) may be extended to more than

two events, for example

P (A3∩A2∩A1) = P (A3∩(A2∩A1)) = P (A3|(A2∩A1)) ·P (A2∩A1) =

P (A3|(A2 ∩ A1)) · P (A2|A1) · P (A1)

assuming P (A1 ∩ A2) > 0. More generally:

Theorem 2.1 (Multiplication Theorem) Let A1, A2, ..., An be

a sequence of events with P (∩n−1
k=1Ak) > 0. Then

P (∩nk=1Ak) = P (A1)P (A2|A1) · ... · P (An| ∩n−1
k=1 Ak). �

The following theorem although trivial is very useful.

Theorem 2.2 (Theorem of Total Probability) Let B1, B2, ...

be a finite or countable sequence of disjoint events with all P (Bk) > 0

and ∪∞k=1Bk = S. Then, for any event A,

P (A) =

∞∑
k=1

P (Bk) · P (A|Bk).

Proof:

P (A) = P (A ∩ S) = P (A ∩ (∪∞k=1Bk)) = P (∪∞k=1(A ∩Bk)) =

∞∑
k=1

P (A ∩Bk) =

∞∑
k=1

P (Bk) · P (A|Bk). �
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Formula

P (A) =

∞∑
k=1

P (Bk) · P (A|Bk). (2)

is called Formula of Total Probability. As a consequence of this formula

we obtain so-called Bayes’s formula.

Theorem 2.3 (Bayes’s formula) Let B1, B2, ... be a finite or

countable sequence of disjoint events with all P (Bk) > 0 and ∪∞k=1Bk =

S. Then, for any event A with P (A) > 0, we have

P (Bk|A) =
P (Bk) · P (A|Bk)∑∞
k=1 P (Bk) · P (A|Bk)

.

Proof: Indeed, by (1) and (2), we obtain

P (Bk|A) =
P (Bk ∩A)

P (A)
=
P (A ∩Bk)
P (A)

=
P (Bk) · P (A|Bk)

P (A)
=

P (Bk) · P (A|Bk)∑∞
k=1 P (Bk) · P (A|Bk)

. �

Example 2.8 From a box containing M white balls and N −M black balls, one ball of unknown color is
lost. Find the probability of taking a white one.

Solution: Consider two events B1 = {white ball is lost} and B2 = {black ball is lost}. Clearly, P (B1) =
M
N and P (B2) = N−M

N . Denote also

A = {a ball which is taken from the box is white}.

By the formula of total probability,

P (A) = P (B1) · P (A|B1) + P (B2) · P (A|B2) =
M

N

M − 1

N − 1
+
N −M
N

M

N − 1
=
M

N

The probability of taking a white ball from the box, before one ball was lost, is the same. �

2.4 Exercises

Exercise 2.1 Coefficients p and q of the quadratic equation x2 +px+ q = 0 are taken randomly from the
interval [0, 1]. Find the probability of the event R that the roots of the equation are real.
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Solution: Roots x1,2 =
−p±
√
p2−4q
2 are real iff p2 − 4q ≥ 0 or q ≤ 1

4p
2.

The sample space
S = {(p, q)|0 ≤ p ≤ 1, 0 ≤ q ≤ 1}

with the uniform probability P (A) = area(A).

R = {(p, q)|q ≤ 1

4
p2 & (p, q) ∈ S}.

P (R) = area(R) =

1∫
0

p2

4
dp =

p3

12

∣∣∣∣1
0

=
1

12
. �

Exercise 2.2 Let A1, A2, ..., An be independent events with P (Ak) = 1/2 for all k = 1, 2, ..., n. Find
P (
⋃k=n
k=1 Ak).

Solution: By Proposition 2.1, the events Ac1, A
c
2, ..., A

c
n are independent. Therefore,

P (
k=n⋃
k=1

Ak) = 1− P ([
k=n⋃
k=1

Ak]
c) = 1− P (

k=n⋂
k=1

Ack) = 1−
k=n∏
k=1

P (Ack) = 1− 1

2n
=

2n − 1

2n
. �

Exercise 2.3 Three fair dice are rolled. Denote by Sk the score on k-th die. 1) Given A={S1 = 2}, and
B={S1 + S2 ≤ 5}.
a) Find the conditional probability P (A|B).
b) Are the events A and B independent?

2) Given C={S1 = S2}, D={S2 = S3}, and G={S3 = S1}.
a) Is the set of events {C,D} independent?
b) Is the set of events {C,D,G} independent?

Solution: 1)a)

P (B) = P ({S1 = 1, S2 = 1} ∪ {S1 = 1, S2 = 2} ∪ {S1 = 1, S2 = 3} ∪ {S1 = 1, S2 = 4} ∪ {S1 = 2, S2 = 1}∪

{S1 = 2, S2 = 2}∪{S1 = 2, S2 = 3}∪{S1 = 3, S2 = 1}∪{S1 = 3, S2 = 2}∪{S1 = 4, S2 = 1}) =
10

6 · 6
=

10

36
.

P (A ∩B) = P ({S1 = 2, S2 = 1} ∪ {S1 = 2, S2 = 2} ∪ {S1 = 2, S2 = 3}) =
3

6 · 6
=

3

36
=

1

12
.

P (A|B) =
P (A ∩B)

P (B)
=

3

10
.

1)b) No. Since

P (A ∩B) =
3

36
6= P (A)P (B) =

1

6
· 10

36
=

5

3
· 1

36
.

2)a) Yes. Since

P (C ∩D) = P (S1 = S2 = S3) =
6

6 · 6 · 6
=

1

36
=

1

6
· 1

6
=

6

36
· 6

36
= P (C) · P (D).

2)b) No. Since

P (C ∩D ∩G) = P (S1 = S2 = S3) =
1

36
6= 1

6
· 1

6
· 1

6
= P (C) · P (D) · P (G). �
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Exercise 2.4 Three fair dice are rolled. Denote by Sk, the score on k-th die. Given A={S1 = 2}, and
B={S1 + S2 + S3 ≤ 5}.

a) Find the conditional probability P (A|B).

b) Are the events A and B independent?

c) Given C={S1 = S2}, D={S2 = S3}, and G={S3 = S1}. Is the set of events {C,D,G} independent?

Solution: a)

P (B) = P ((111), (112), (113), (121), (122), (131), (211), (221), (212), (311)) =
10

63
.

P (A ∩B) = P ((121), (122), (221)) =
3

63
.

Hence

P (A|B) =
P (A ∩B)

P (B)
=

3

10
.

b)

P (A) =
1

6
6= 3

10
= P (A|B).

Hence A is not independent with B.

c) Since P (C) = P (D) = P (G) = 6
6·6 = 1

6 then

P (C ∩D ∩G) = P (S1 = S2 = S3) =
6

6 · 6 · 6
=

1

36
6= P (C) · P (D) · P (G) =

1

216
.

Thus the set of events {C,D,G} is not independent. �

Exercise 2.5 There are 10 white and 5 green balls in the box H1. In the box H2 there are 3 white, 5
green, and 7 red balls. One of balls was transferred randomly from H2 into H1. Then we took randomly
a ball from H1. Find the probability P (G) of the event that we got green one.

Solution: Let GT = {a green ball was transferred} and NGT = {not a green ball was transferred}.

Then P (G) = P (G|GT ) · P (GT ) + P (G|NGT ) · P (NGT ) = 6
16 ·

5
15 + 5

16 ·
10
15 = 6

48 + 10
48 = 1

3 . �

Exercise 2.6 Let {A,B,C} be an independent family of events with P (A) = 1/2, P (B) = 1/3, and
P (C) = 1/4. Find P (A ∪B ∪ C).

Solution: The set {Ac, Bc, Cc} is independent by Proposition 2.1. Then

P (A∪B∪C) = 1−P ([A∪B∪C]c) = 1−P (Ac∩Bc∩Cc) = 1−P (Ac)·P (Bc)·P (Cc) = 1−(1−1/2)·(1−1/3)·(1−1/4) =
3

4
. �

Exercise 2.7 There are 5 white and 10 black balls in the box H1. In the box H2, there are 3 white and 7
black balls. One of balls was transferred randomly from H2 into H1. Then, we took randomly a ball from
H1. Find the probability of the event that this ball is white.
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Solution:

A = {the transferred ball is white}; B = {the transferred ball is black}; C = {the taken ball is white}.

P (A) =
3

10
; P (B) =

7

10
, P (C|A) =

5 + 1

16
=

6

16
; P (C|B) =

5

16
.

P (C) = P (C ∩A) + P (C ∩B) = P (A) · P (C|A) + P (B) · P (C|B) =
3

10
· 6

16
+

7

10
· 5

16
=

53

160
. �

Exercise 2.8 Initially, there are 3 red balls, 4 blue, and 2 white ones in a box. In a trail one of ball is
taken randomly out of box without returning back. Consider a series of three trails.

a) Find the probability of the event A that the ball in the first trail is red, it the second one is blue, and
in the last one is white.

b) Find probability of the event B that all three balls taken out form the box are of different colors.

c) Find probability of the event C that all three balls taken out form the box are of the same color.

d) Find the conditional probability of A given B.

Solution:

a) P (A) = P (RBW ) = 3
9 ·

4
8 ·

2
7 = 1

21 .

b) P (B) = P (RBW ) + P (RWB) + P (BRW ) + P (BWR) + P (WRB) + P (WBR) = 6 · 1
21 = 2

7 .

c)

P (C) = P (RRR) +P (BBB) +P (WWW ) =
3

9
· 2

8
· 1

7
+

4

9
· 3

8
· 2

7
+

2

9
· 1

8
· 0

7
=

1

4
· 1

21
+

1

21
=

5

4
· 1

21
=

5

84
.

d) P (A|B) = P (A∩B)
P (B) = P (A)

P (B) = 1/21
2/7 = 1

6 . �

Exercise 2.9 Given two independent Uniform (0,2) distributed random variables X and Y . Calculate
the probability that XY ≤ 1.

Solution: Let D be a subset of R2: D = {(x, y) ∈ R2|0 ≤ x ≤ 2 & 0 ≤ y ≤ 2 & xy ≤ 1}. This is region
bounded by the lines xy = 1, x = 0, x = 2, y = 0, and y = 2.

P (XY ≤ 1) =
1

4

∫ ∫
D

dxdy =
1

4
· 2 · 1

2
+

1

4

2∫
1/2

1

x
dx =

1

4
+

1

4

(
ln 2− ln(2−1)

)
=

1

4
+

1

4
· 2 ln 2 =

1

4
+

ln 2

2
. �

Exercise 2.10 Pit and Bob agree to meet at a certain place some time between 23 and 24 o’clock. Pit
will stay 20 min. Bob will stay 10 min. Assuming that the arrival times are independent and uniformly
distributed, find the probability that they will meet.

Solution:

P (Bob meets Pit) =

∫ ∫
D

dxdy = 1− 1

2

((
2

3

)2

+

(
5

6

)2
)

= 1− 4

18
− 25

72
=

72− 16− 25

72
=

31

72
. �
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Exercise 2.11 Pit and Bull take turns throwing a biased (=unfair) coin that produces a head with prob-
ability α. Pit is starting first, and he will win the game, if Pit gets a head. Bull will win, if Bull gets a
tail.
a) Find the probability P (P c ∩Bc) = P (TH, TH, . . . , TH, . . .) that none will win. Justify you answer.

b) Find the value(s) of α for which the game is fair: that is P (P ) = P (B), where P (P ) is the probability
that Pit wins the game and P (B) is the probability that Bull wins.

Solution: a)

0 ≤ P (P c ∩Bc) ≤ P (TH, TH, . . . , TH︸ ︷︷ ︸
n times

) = [(1− α)α]n → 0 ⇒ P (P c ∩Bc) = 0.

b) By a),

P (P ) = P (B)⇒ P (P ) = P (B) =
1

2
.

Note that P =
⋃∞
n=0 Pn, where P0 = H, P1 = THH, . . . , Pn = (TH)nH.

P (P ) =
∞∑
n=0

P (Pn) = P (H)
∞∑
n=0

P ((TH)n) = α ·
∞∑
n=0

(α(1− α))n = α · 1

1− α(1− α)
=

1

2

⇒ 2α = 1− α(1− α)⇒ α2 − 3α+ 1 = 0⇒ α =
3±
√

9− 4

2
=

3

2
±
√

5

2
.

Since 0 ≤ α ≤ 1 then

α =
3−
√

5

2
. �
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3 Random variables

In what follows, we denote a probability space by (S,A, P ).

3.1 Definition of a random variable

Definition 3.1 A function f : S → R is called a random variable

on S, if f−1((−∞, a]) ∈ A for every a ∈ R.

Two random variables f and g on S are said to be equal almost

surely (f = g(a.s.)) if P ({f = g}) = 1.

By convention, random variables are represented with capital roman

letters, and the event like {s ∈ S : X(s) ∈ B}, where B is a Borel

subset of R and X is an RV, with the simplified notations {X ∈ B}.
In the case when B = {b}, B = {r : r ≤ b}, ..., we write {X = b},
{X ≤ b}, etc.

Remind that the Borel algebra B(R) of subsets of the real line is

defined as the σ-algebra generated by all intervals in R. Clearly, it is

enough to consider only intervals (−∞, a] with a ∈ Q. Given a random

variable X . Notice that X−1(B) ∈ A for any B ∈ B(R).

Among random variables on S, the simplest are indicator functions

of events (it can be shown that the indicator function IA(s) of a subset

A of the sample space S is a random variable iff A is an event).

Notice that not every function f : S → R is a random variable. For example,

consider S = Z, and the algebra of events A consisting of those subsets A of Z for which a ∈ A iff a2 ∈ A.

It is left to the reader to check that, for the identity function f(t) = t, f−1((−∞, a]) 6∈ A for every a ∈ R.

�

It can be shown that the collection of all random variables on (S,A, P )

is a vector space w.r. to usual operations on real-valued functions. A

composition f ◦ X : S → R of any random variable X with a Borel

measurable function f : R→ R is a random variable.
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Sometimes, the term random vector is used for a function F : S → Rn,

all whose components are random variables.

Definition 3.2 An RV X is discrete if there is at most countable

set B ⊆ R such that P (X ∈ B) = 1. An RV X is continuous if

P (X = r) = 0 for every r ∈ R. An RV X which is neither discrete

nor continuous is said to be mixed.

The probability function of an RV X is a function pfX : R→ [0, 1]

such that pfX(r) = P (X = r) for all r ∈ R. RV X is continuous iff∑
r∈R

pfX(r) = 0, and X is discrete iff
∑
r∈R

pfX(r) = 1.

Here we include several examples of discrete RVs.

X is discrete uniform if there is a finite set of reals {r1, ..., rn} such that pfX(rk) = 1
n for all k,

1 ≤ k ≤ n.

X is p-Bernoulli, where 0 ≤ p ≤ 1, if pfX(1) = p and pfX(0) = 1− p.

X is np-Binomial, where 0 ≤ p ≤ 1 and n ∈ N, if

pfX(k) =

(
n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k (0 ≤ k ≤ n).

X is λ-Poisson, where λ > 0, if pfX(k) = λke−λ

k! for every integer k ≥ 0. �

3.2 Distribution function of a random variable

Definition 3.3 Let X : S → R be a random variable on S. Let

FX(r) ≡ P (X ≤ r), r ∈ R .

Then FX is called the distribution function (DF) of X. The

probability measure PX on the Borel algebra B(R), given by

PX(B) ≡ P (X ∈ B), B ∈ B(R),

is called the probability distribution (PD) of X.
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One may also define the joint distribution function and the joint probability distribution (JPD) of a
random vector by similar formulas. We shall turn to this later. Notice that, in some books the distribution
function might be defined by the slightly different formula FX(r) ≡ P ({s : X(s) < r}). Obviously,

FX(r) = P (−r < −X < +∞) = 1− P (−∞ < −X ≤ −r) = 1− F−X(−r)

and FX(r) = 1−F−X(−r). �

Any distribution function is non-decreasing and continuous from the

right, that is, for any a ∈ R,

FX(a) = FX(a+) ≡ lim
0<h→0

FX(a + h)

Notice also that FX is continuous from the left.

Example 3.1

FIA(r) =


0, r < 0;
1− p, 0 ≤ r < 1; (p = P (A))
1, 1 ≤ r.

Clearly, the distribution function of IA depends only on P (A), but not on A. PD of IA is given by the
formula PIA((−∞, r]) = FIA(r), hence

PIA(B) =


0, {0, 1} ∩B = ∅;
1− p, 0 ∈ B, 1 6∈ B; B ∈ B(R)
1, {0, 1} ⊆ B.

�

For any random variable X , the distribution function FX of X is given

by the formula

FX(x) =

∫ x

−∞
dFX =

∫ x

−∞
pX(t)dt,

where

pX(t) = F ′X(t) = lim
∆t→0

∆FX(t)

∆t
= lim

∆t→0

P (t < X ≤ t + ∆t)

∆t

is the density of the probability distribution or the distribution density.

The density “function” of the distribution of the indicator function of A

with p = P (A) is given by using the Dirac “function” δ, which is

formally defined by: ∫
A

δ(t)dt =

{
0, 0 6∈ A,
1, 0 ∈ A.
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Namely, pIA(t) = (1− p)δ(t) + pδ(t− 1). Indeed, this “function” is the

generalized derivative of PIA(A).

More generally, given a discrete RV X which takes values t1 < t2 < . . . <

tn with probabilities P ({tk}) = pk, p1 + p2 + . . . + pn = 1, then density

of the distribution function of X is

p(t) = p1δ(t− t1) + p2δ(t− t2) + . . . + pkδ(t− tk).

By using the Heaviside function

H(t) =

{
0, t < 0;

1, t ≥ 0,

we may write the distribution function of X as follows

FX(t) =

n∑
i=1

piH(t− ti).

Notice that the generalized derivative of H(t) is the “function” δ.

Example 3.2 Find a ∈ R such that the function

p(t) =


0, t ≤ 0;
a√
t
, 0 < t ≤ 1;

0, t > 1

is the distribution density of some random variable X. Find its distribution function and the probability
of {−1

3 ≤ X < 4
5}.

Solution. Using
∫ +∞
−∞ p(t)dt = 1, obtain a = 1

2 . Thus,

FX(t) =

∫ t

−∞
p(s)ds =

∫ t

−∞

ds

2
√
s

=


0, t ≤ 0;√
t, 0 ≤ t ≤ 1;

1, t > 1.

Since FX(t) is continuous,

P

{
− 1

3
≤ X <

4

5

}
= FX

(
4

5

)
− FX

(
− 1

3

)
= FX

(
4

5

)
=

2√
5
. �

Example 3.3 Given the distribution function

FX(t) =


0, t < 2;
(t− 2)2, 2 ≤ t ≤ 3;
1, t > 3
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of a random variable X. Find the probability of {52 < X < 7
2}. Find the distribution density of X.

Solution. Since FX(t) is continuous,

P

{
5

2
< X <

7

2

}
= FX

(
7

2

)
− FX

(
2

5

)
= 1−

(
5

2
− 2

)2

=
3

4
.

Using p(t) = F ′X(t), obtain

p(t) =


0, t < 2,
2(t− 2), 2 ≤ t ≤ 3,
0, t > 3.

�

Example 3.4 Given a sequence of n Bernoulli trials with the probability of success p (it is denoted by
(n, p)). There are two typical problems related to (n, p). The first one is to find the probability P (m) that
the success in (n, p) appears m times. The second one is to find the most probable number k of successes
in (n, p). The first problem being solved by using the classical Bernoulli formula

Pn(m) = Cmn p
m(1− p)n−m, Cmn =

n!

m!(n−m)!
. (3)

For instance, the probability of {≥ m} successes in (n, p) is

Pn({≥ m}) =

n∑
i=m

Cinp
i(1− p)n−i.

To solve the second problem, we begin with the following two inequalities:

Pn(k − 1) ≤ Pn(k), Pn(k + 1) ≤ Pn(k).

From the first inequality, by using (3), one gets Ck−1
n

Ckn
≤ 1−p

p or just k ≤ (n + 1)p. From the second one,

we obtain Ck+1
n

Ckn
≤ 1−p

p or (n+ 1)p ≤ k + 1. Thus

k ≤ (n+ 1)p ≤ k + 1. (4)

It follows from (4) that if (n+ 1)p 6∈ N, then there is only one solution k. If (n+ 1)p ∈ N, then there are
two most probable numbers, k = (n + 1)p and k = (n + 1)p − 1. The situation becomes more clear when
we consider the graph of the following “density”

p(t) =


0, t < 0;
Pn(i), i ≤ t < i+ 1;
0, t ≥ n.

�

3.3 Distribution function of a random vector

Definition 3.4 Given a system ~X = 〈X1, X2, . . . Xn〉 of random

variables on S. Sometimes we shall call ~X a random vector on S.

The probability measure P ~X on the Borel algebra B(Rn), given by

P ~X(A) ≡ P ( ~X−1(A)), A ∈ B(Rn),

is called the probability distribution of ~X.
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The probability function of an RV ~X = 〈X1, . . . , Xn〉 is a function

pf ~X : Rn → [0, 1], such that,, for all ~r = (r1, . . . , rn) ∈ Rn,

pf ~X(~r) = P (X1 = r1 & . . .& Xn = rn).

The probability density of a continuous RV ~X is a function p ~X :

Rn → R+ such that, for all ~r = (r1, . . . , rn) ∈ Rn and for all ~∆r =

(∆r1, . . . ,∆rn) ∈ Rn,

P ( ~X ∈ [~r, ~r + ~∆r]) =

∫ r1+∆r1

r1

. . .

∫ rn+∆rn

rn

p ~X(~r)dr1 . . . drn.

The distribution function of an RV ~X = 〈X1, . . . , Xn〉 is a function

F ~X : Rn → [0, 1] such that

F ~X(~r) = P (X1 ≤ r1 & . . .& Xn ≤ rn).

If a random vector ~X is discrete (that is: all Xk are discrete for 1 ≤
k ≤ n) then

F ~X(~r) =
∑

{tk≤rk, 1≤k≤n}

pf ~X(~t ),

where ~r = (r1, . . . , rn) and ~t = (t1, . . . , tn).

If a random vector ~X is continuous (that is: all Xk are continuous for

1 ≤ k ≤ n) then

F ~X(~r) =

∫ r1

−∞
. . .

∫ rn

−∞
p ~X(~t )dt1 . . . dtn.

3.4 Independent families of random variables

Definition 3.5 A collection {Xi}i∈I of random variables on the same

probability space is called independent if the collection of events

{X−1
i (−∞, ri)}i∈I is independent for arbitrary ri ∈ R.
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It follows immediately that, for an independent collection {Xi}i∈I of RVs,

any collection {Bi}i∈I of Borel subsets of R, and any distinct indices

i1, i2, . . . ik in I , we have

P (Xi1 ∈ Bi1, . . . Xik ∈ Bik) = P (Xi1 ∈ Bi1) · . . . · P (Xik ∈ Bik).

From this remark we obtain

Proposition 3.1 For any independent collection {Xi}i∈I of random

variables on the same probability space and for Borel measurable func-

tions {fi}i∈I, the collection {fi ◦Xi}i∈I of random variables is inde-

pendent.

Proof: For any distinct i1, i2, . . . ik in I and any r1, r2, . . . rk in R, we have (for Borel sets Bij =

f−1ij (−∞, rj)):

P

( j=k⋂
j=1

(fij◦Xij )
−1(−∞, rj)

)
= P

( j=k⋂
j=1

X−1ij (f−1ij (−∞, rj))
)

=

j=k∏
j=1

P (X−1ij (f−1ij (−∞, rj))) =

j=k∏
j=1

P ((fij◦Xij )
−1(−∞, rj)). �

Proposition 3.2 Given a random vector ~X = 〈X1, X2, . . . Xn〉 (on

the same probability space, of course). Then ~X is independent iff

F ~X(x1, x2, . . . xn) = FX1(x1) · FX2(x2) · . . . · FXn(xn).

Proof: Consider the case n = 2 only (the general case is left to the reader as an exercise).

Sufficiency:

FX(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) = P ({X1 ≤ x1}∩{X2 ≤ x2}) = P (X1 ≤ x1)·P (X2 ≤ x2) = FX1(x1)·FX2(x2).
(5)

Necessity: By (5), the necessity follows from Definition 3.5. �

Definition 3.6 If a random vector ~X = 〈X1, X2, . . . , Xn〉 has the

DF F ~X which is n times continuously differentiable in some domain

D ⊆ Rn, then the restriction of distribution density of ~X on D is

p ~X(~x) =
∂nF ~X(~x)

∂x1∂x2 . . . ∂xn
(~x) (~x ∈ D).
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Indeed, we may define DD of an RV X without any assumption of differentiability of DF FX by using

generalized derivatives as in the one-dimensional case.

One of the main reasons for introducing DD is the following formula:

P (X ∈ D) =

∫
D

p ~X(~x)d~x (D ∈ B(Rn)).

Proposition 3.3 For any independent RV ~X = 〈X1, . . . , Xn〉,

p ~X(~x) ≡ pX1(x1) · . . . · pXn(xn). (~x ∈ Rn)

Proof: ∫
{xk≤rk: k=1,2,...n}

p ~X(~x)d~x = F ~X(~r) = FX1(r1) · . . . · FXn(rn) =

∫ r1

−∞
pX1(x1)dx1 · . . . ·

∫ rn

−∞
pXn(xn)dxn =

∫
{xk≤rk: k=1,2,...n}

pX1(x1) · . . . · pXn(xn)d~x.

Therefore, p ~X(~x) ≡ pX1(x1) · . . . · pXn(xn). �

3.5 Convolution theorem

Theorem 3.1 (Convolution theorem) Let X and Y be indepen-

dent RVs with distribution densities pX and pY . Then X + Y has a

distribution density given by

pX+Y (r) =

∞∫
−∞

pX(x)pY (r − x)dx =

∞∫
−∞

pY (y)pX(r − y)dy. (6)

Proof: Since

FX+Y (t) =

t∫
−∞

pX+Y (r) dr = P (X + Y ≤ t) =

∫∫
x+y≤t

p〈X,Y 〉(x, y) dx dy =

∫∫
x+y≤t

pX(x)pY (y) dx dy =

∞∫
−∞

pX(x)

[ t−x∫
−∞

pY (y) dy

]
dx =

∞∫
−∞

pX(x)

[ t∫
−∞

pY (r − x) dr

]
dx =

t∫
−∞

[ ∞∫
−∞

pX(x)pY (r − x) dx

]
dr,

then pX+Y (r) =
∞∫
−∞

pX(x)pY (r − x) dx. The second equality in (6) is due to symmetry. �
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Example 3.5 Let X and Y be independent and identically distributed RVs (iid RVs) with pX(t) =
pY (t) = t

2I(0,2)(t). Then

pX+Y (s) =

∞∫
−∞

pX(s− x)pY (x) dx =
1

4

∞∫
−∞

(s− x)xI(s−2,s)(x)I(0,2)(x) dx =

1

4

2∫
0

(s− x)xI(s−2,s)(x) dx =
1

4


0, s 6∈ [0, 4];
s∫
0

(s− x)x dx, 0 ≤ s < 2; =

s∫
s−2

(s− x)x dx, 2 ≤ s ≤ 4.

1

4

(
I[0,2)(s)

s∫
0

(s−x)x dx+I[2,4](s)
s∫

s−2

(s−x)x dx

)
= I[0,2)(s)

s3

24
+I[2,4](s)

[
−2

3
+
s

2
−s(s− 2)2

8
+

(s− 2)3

12

]
. �

3.6 Conditional DF and Bayes’ Rule

Let us consider shortly a system of two RVs on the same sample space

S, say 〈X, Y 〉.

Definition 3.7 The marginal probability density of 〈X, Y 〉 are

defined as follows

pmX(x) =

∫ +∞

−∞
p〈X,Y 〉(x, y)dy, pmY (y) =

∫ +∞

−∞
p〈X,Y 〉(x, y)dx .

The marginal PD pmX(x) is the usual probability density pX(x) of X , if

Y is not considered.

Definition 3.8 Assume that pX(x) > 0. Then the conditional dis-

tribution of Y given X = x is defined by

FY (y|x) =

∫ y
−∞ p〈X,Y 〉(x, t)dt

pX(x)
,

and the conditional probability density of Y given X = x is

pY (y|x) =
p〈X,Y 〉(x, y)

pX(x)
.

[The last formula can be considered as a version of Bayes’s theorem for densities.]
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Notice that if the system 〈X, Y 〉 is independent, then

pY (y|x) =
p〈X,Y 〉(x, y)

pX(x)
=
pX(x) · pY (y)

pX(x)
= pY (y) .

One of most typical cases of Bayes rule occurs when X is a continuous

RV and Y is a discrete RV. Then:

pY |X(y|x) =
pX|Y (x|y) · pY (y)

pX(x)
,

where the conditional probability mass function of Y given X

is

pY |X(y|x) = lim
∆x→0

P (Y = y|X ∈ [x, x + ∆x]).

In this case:

P (X ≤ a|Y = y) =

a∫
−∞

pX|Y (x|y)dx.

Indeed, applying Bayes rule to the events Y = y and x ≤ X ≤ x + ∆x

lim
∆x→0

P (Y = y|x ≤ X ≤ x+∆x) = lim
∆x→0

P (x ≤ X ≤ x + ∆x)|Y = y)P (Y = y)

P (x ≤ X ≤ x + ∆x)
=

lim
∆x→0

(∫ x+∆x

x pY |X(s|y)ds

)
· P (Y = y)∫ x+∆x

x pY (s)ds
= lim

∆x→0

∆xpY |X(x|y)pY (y)

∆xpY (y)
= pY |X(x|y).

Then P (X ≤ a|Y = y) =
a∫
−∞

pX|Y (x|y)dx. �

3.7 Exercises

Exercise 3.1 Given the following function p(t) =

{
α(4|t| − t2) if |t| ≤ 2,

0 if |t| > 2.

a) Find α for which p(t) = pX(t) is the distribution density of a random variable X.

b) For the value of α which is found in a) and for the correspondent RV X:
(i) Find the distribution function FX(r) for r ≥ 0.
(ii) Find the probability of event −1 ≤ X ≤ 1.

c) Find the values of FX2(1) and FX3(1).
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Solution: a)

∞∫
−∞

p(t)dt =

2∫
−2

α(4|t| − t2)dt = 2α

2∫
0

(4t− t2)dt = 2α

(
2t2 − 1

3
t3
) ∣∣2

0 = 2α

(
8− 8

3

)
= 16α · 2

3
=

32

3
α = 1.

So we have α = 3/32.

b)(i)

FX(r) =

r∫
−∞

p(t)dt =
1

2
+

r∫
0

3

32
(4t−t2)dt =

1

2
+

3

32

[
2t2 − 1

3
t3
]
|r0 =

1

2
+

3

32

[
2r2 − r3

3

]
=

1

2
+

3

16
r2− 1

32
r3.

b)(ii)

P (−1 ≤ X ≤ 1) =

1∫
−1

p(t)dt = 2

1∫
0

3

32
(4t− t2)dt =

6

32

[
2t2 − 1

3
t3
] ∣∣1

0 =
3

16

(
2− 1

3

)
=

5

16
.

c) FX2(1) = P (X2 ≤ 1) = P (−1 ≤ X ≤ 1) = 5
16 , by b(ii).

FX3(1) = P (X3 ≤ 1) = P (X ≤ 1) = [see b(i)] = 1
2 + 3

16 −
1
32 = 16+6−1

32 = 21
32 . �

Exercise 3.2 Random variables X and Y are independent and (1)-exponentially distributed.

a) Calculate the probability that 1 ≤ Y ≤ X ≤ 2.

b) Calculate the probability density of X + Y .

Solution: a) Let D be a subset of R2: D = {(x, y) ∈ R2|1 ≤ y ≤ x ≤ 2}. This is the triangle bounded
by the lines y = x, x = 1, and x = 2.

P (1 ≤ Y ≤ X ≤ 2) =

∫ ∫
D

p〈X,Y 〉(x, y)dxdy = [X and Y are indep.] =

∫ ∫
D

pX(x)pY (y)dxdy =

2∫
1

e−x

 x∫
1

e−ydy

 dx =

2∫
1

e−x(e−e−x)dx = e

2∫
1

e−xdx−
2∫

1

e−2xdx = e(e−1−e)−2+1

2

2∫
1

(e−2x)′dx = 1−1

e
+

1

2
e−2x

∣∣∣∣2
1

= 1−1

e
+

1

2e4
− 1

2e2
.

b)

pX+Y (s) =

∞∫
−∞

pX(s− t)pY (t)dt =

∞∫
−∞

e−(s−t) · I[0,∞)(s− t) · e−t · I[0,∞)(t)dt =

∞∫
0

e−s · I[0,∞)(s− t)dt =

∞∫
0

e−s · I(−∞,s](t)dt =


0 if s < 0;
s∫
0

e−sdt = se−s if s ≥ 0.
�
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Exercise 3.3 Let X and Y be independent (1)-exponentially distributed random variables, i.e.

FX(t) = FY (t) =

{
0 if t < 0,
1− e−t if t ≥ 0.

Find the probability of 0 ≤ Y ≤ X ≤ 1.

Solution: Let D = {(x, y) ∈ R2|0 ≤ y ≤ x ≤ 1}. This is the triangle bounded by the lines x = y, x = 1,
and y = 0.

P (0 ≤ Y ≤ X ≤ 1) =

∫ ∫
D

P〈X,Y 〉(x, y)dxdy = [X and Y are independent] =

∫ ∫
D

PX(x)PY (y)dxdy =

1∫
0

e−x

 x∫
0

e−ydy

 dx =

1∫
0

e−x(1−e−x)dx = −e−x|10−(−1

2
e−2x)|10 = −e−1+1+

1

2
e−2− 1

2
=

1

2
− 1

e
− 1

2e2
. �

Exercise 3.4 Random variables X and Y are independent and (1)-exponentially distributed (that
is pX(t) = pY (t) = IR+(t)e−t). Calculate the probability that X ≥ Y ≥ 2.

Solution. Let D be a subset of R2:

D = {(x, y) ∈ R2|x ≥ y ≥ 2}.

This is the open angle bounded by the
lines y = x and y = 2. -

X

6Y

0

2

2
�
�
�
�
�
�
��

y = x

D
���
��
�
�
��

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�
��

P (X ≥ Y ≥ 2) =

∫ ∫
D

p〈X,Y 〉(x, y)dxdy =
because of the independence

∫ ∫
D

pX(x)pY (y)dxdy =

∞∫
2

e−x

 x∫
2

e−ydy

 dx =

∞∫
2

e−x(e−2 − e−x)dx =

e−2
∞∫
2

e−xdx−
∞∫
2

e−2xdx = e−4 − 1

2
e−4 =

1

2
e−4. �

Exercise 3.5 Two friends agree to meet at a certain place some time between 11 and 12 o’clock. They
agree that the one arriving first will wait h hours, 0 ≤ h ≤ 1, for other to arrive. Assuming that the
arrival times are independent and uniformly distributed, find the probability that they will meet.

Solution.

Denote by X the arrival time of the first
friend and by Y of the second one.
Denote by D the strip |x− y| ≤ h.

Then -
X

6
Y

11

12

12
�
�
�
�
�
�
�y = x

�
�
�
�
�

y = x+ h

�
�
�
�
�y = x− h

D

@@@@
@@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@
@@@
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P (|X − Y | ≤ h) =

∫ ∫
D

p〈X,Y 〉(x, y)dxdy =
because of the independence

∫ ∫
D

pX(x)pY (y)dxdy =

∫ ∫
D

I[11,12](x) · I[11,12](y)dxdy =

∫ ∫
D∩[11,12]2

dxdy =
the shadowed area

1− (1− h)2 = 2h− h2. �

Exercise 3.6 A man and a woman agree to meet at a cafe some time between 13 and 14 o’clock. A
man will stay 30 min. A woman will stay 20 min. Assuming that the arrival times are independent and
uniformly distributed, find the probability that they will meet.

Solution:

Denote by D the strip 1
2 ≥ w −m ≥ −

1
3 .

Then
-

6

13

W

M
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

w −m = 1
2

14

14

w −m = −1
3

w = m

D

@@@@
@
@
@@

@
@@

@
@@

@
@@

@
@
@

@
@@

@
@@

@
@@

@
@
@

@
@
@

@
@@

@
@@

@
@@
@
@
@
@
@

P (D) =

∫ ∫
D

p〈M,W 〉(m,w)dmdw =
because of the independence

∫ ∫
D

pM (m)pW (w)dmdw =

∫ ∫
D

I[13,14](m) · I[13,14](w)dmdw =

∫ ∫
D∩[13,14]×[13,14]

dmdw =
the shadowed area

1− 1

2
·
(

1

2

)2

− 1

2
·
(

2

3

)2

=
72− 9− 16

72
=

47

72
. �

Exercise 3.7 Given two independent (0, 7)-uniform RVs X and Y . Calculate the probability P (0 < Y <
X < 4).

Solution:

Let D = {0 < Y < X < 4}.

P (0 < Y < X < 4) =(
1

7

)2

· 1

2
· 42 =

1

2
· 1

2
· 16 =

8

49
. � -

6

0

Y

X
�
�
�
�
�
�
�
�7

74
�
�
��

�
�
�

�
��

�
�
�
�
�

D

Exercise 3.8 Let X and Y be independent (1)-exponentially distributed random variables Find FX+Y (3)
[hint: use the convolution theorem].
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Solution: Remark that FX(t) = FY (t) = (1− e−t) · I[0,∞)(t).

PX(t) = d
dtFX(t) =

{
0 if t < 0
e−t if t ≥ 0

and PY (t) = PX(t). Then, by Theorem 3.1,

pX+Y (s) =

∞∫
−∞

pX(s− t)pY (t)dt =

∞∫
−∞

e−(s−t)I[0,∞)(s− t) · e−tI[0,∞)(t)dt =

∞∫
0

e−sI[0,∞)(s− t)dt =

∞∫
0

e−sI(−∞,s](t)dt =

{
0 if s < 0
se−s if s ≥ 0

= se−sI[0,∞)(s).

FX+Y (r) =

r∫
−∞

pX+Y (s)ds =

r∫
0

se−sds = s(−e−s)|r0−
r∫

0

(−e−s)ds = −re−r−e−s|r0 = −re−r−e−r+1 = 1−(r+1)e−r.

FX+Y (3) = 1− (3 + 1)e−3 = 1− 4e−3. �

Exercise 3.9 Random variables X and Y are independent and Exponential (β) distributed with EX =
EY = 2.
a) Find the value of β.
b) Calculate the probability density pX+Y (t) of X + Y .

Solution: a)

2 = EX =

∞∫
0

t · 1

β
· e−t/βdt =

−t · e−t/β|∞0 − ∞∫
0

(−e−t/β)dt

 =

∞∫
0

e−t/βdt = −β · e−t/β|∞0 = β.

b) By using of the convolution theorem,

pX+Y (s) =

∞∫
−∞

pX(s− t) · pY (t) · I(0,∞)(s− t) · I(0,∞)(t)dt =

s∫
0

1

2
· e−(s−t)/2 · 1

2
· e−t/2dt =

1

4

s∫
0

e−s/2dt =

1

4
· s · e−s/2 for s ≥ 0; and pX+Y (s) ≡ 0 for s < 0. �

Exercise 3.10 Given two independent random variables X and Y with densities

pX(t) = pY (t) = 3t2 · I[0,1](t).

a) Find the distribution function F−X(t) of the random variable −X.

b) Find the density pX+Y (t) of the random variable X + Y .

Solution:
a)

F−X(t) = P (−X ≤ t) = P (X ≥ −t) = 1−P (X ≤ −t) = 1−
−t∫
−∞

3s2·I[0,1](s)ds = 1−
−t∫
0

3s2ds = 1+t3 for t ∈ [−1, 0];
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and
F−X(t) = 1 for t ≥ 0

F−X(t) = 0 for t ≤ −1.

b)

pX+Y (a) =

∞∫
−∞

pX(a−t)pY (t)dt =

∞∫
−∞

9(a−t)2t2·I{0≤a−t≤1}(t)·I{0≤t≤1}(t)dt = 9

∞∫
−∞

(a4−2at3+a2t2)·I{a−1≤t≤a}(t)·I{0≤t≤1}(t)dt.

So, for 0 ≤ a ≤ 1, we have

pX+Y (a) = 9

a∫
0

(a4 − 2at3 + a2t2)dt = 9

(
t5

5
− 2at4

4
+
a2t3

3

)∣∣∣∣a
0

=
3

10
a5.

And, for 1 ≤ a ≤ 2, we have

pX+Y (a) = 9

1∫
a−1

(a4−2at3+a2t2)dt = 9

(
t5

5
− 2at4

4
+
a2t3

3

)∣∣∣∣1
a−1

= 9

(
1

5
− 2a

4
+
a2

3

)
−9

(
(a− 1)5

5
− 2a(a− 1)4

4
+
a2(a− 1)3

3

)
.

For a 6∈ [0, 2], we have pX+Y (a) = 0. �
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4 Mathematical expectation and variance

4.1 The expectation

Definition 4.1 Given a random variable X on (S,A, P ), then the

expected value (mathematical expectation, average value,

or mean) of X, denoted by E(X) = EX, is defined as the Lebesgue

integral

EX ≡
∫
S

XdP =

∫
S

X(ω)P (dω), (7)

provided that the integral is well defined. That is, at least one of

two values
∫
SX+dP and

∫
SX−dP is finite. If X has a distribution

density p(t), then

EX =

∫ +∞

−∞
sp(s)ds. (8)

Notice that in most cases which are considered in this course, the defini-

tion of the expectation by formula (8) is applicable (although, the distri-

bution density pX(t) may involve the Dirac “function”). The proof of the

following proposition is based on the Lebesgue integration and therefore

is omitted. [Try to understand the formula (8) for g = I(−∞,a], where r ∈ R. The rest of the proof

is based on an approximation.]

Proposition 4.1 (The change of variables) Let X be a random

variable on (S,A, P ). For any Borel measurable g(t) : R→ R,∫
S

|g ◦X|dP =

∫ +∞

−∞
|g(t)|PX(dt) =

∫ +∞

−∞
|s|Pg◦X(ds).

In particular, if
∫
S |g ◦X|dP <∞, then

E(g ◦X) =

∫ +∞

−∞
g(t)PX(dt) =

∫ +∞

−∞
sPg◦X(ds) .

When g is non-negative, then E(g ◦ X) =
∫ +∞
−∞ g(t)PX(dt) even if

E(g ◦X) =∞. �
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If EX = 0, then X is said to be central random variable. In what fol-

lows, CRV stands for a central RV . Now we study some basic properties

of the mathematical expectation.

(a) E(α) = α and E(αX) = αEX for any RV X and any α ∈ R. It

follows immediately from the definition.

(b) E(X − EX) = 0. Indeed, denote by m = EX and apply (8) (by

using of (7), it is obvious):

E(X −m) =

∫ +∞

−∞
(s−m)p(s)ds = m−m = 0.

(c) Given two RVs X and Y on (S,A, P ), then

E(X + Y ) = EX + EY, (9)

assuming that both EX and EY exist and the sum EX + EY is well

defined. In particular, X ≤ Y implies EX ≤ EY . Formula (9) is

obvious as we use the definition of the expected value by the Lebesgue

integral. Using of (8) is more complicated here and is omitted.

(d) Given two independent RVs X and Y on (S,A, P ), then E(XY ) =

EX ·EY (assuming that both EX and EY exist and the product EX ·
EY is well defined). [Remind that a collection {Xi}i∈I of RVs on the same probability space

is called independent if the collection of the following sets {X−1i (−∞, ri)}i∈I is independent for arbitrary

ri ∈ R.] The proof is obvious in the case if all Xi are indicator functions of

events (of course, E(IA) = P (A)). For proving (d) in the general case,

some approximation and the theory of Lebesgue integral is needed, and

hence the proof in the general case is omitted. Notice that the equality

E(XY ) = EX ·EY does not guaranties that X and Y are independent

(see the proof of Proposition 4.10).
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4.2 Conditional expectation

Definition 4.2 Let X be a RV and P (A) > 0 then the conditional

expectation of X given A is

E(X|A) :=
E(X · IA)

P (A)
.

Example 4.1 Let p〈X,Y 〉(x, y) = 3x2

1−x · I{0<x<y<1}(x, y). Find E(Y |14).

pX(x) =

∫
R
p〈X,Y 〉(x, y)dxdy = I(0,1)(x) ·

∫ 1

y=x

3x2

1− x
dy = 3x2 · I(0,1)(x),

p(y|x) =
p〈X,Y 〉(x, y)

pX(x)
=

3x2

1−x · I{0<x<y<1}(x, y)(x, y)

3x2 · I[0,1](x)
=

I{x<y<1}(x, y)

1− x
,

E(Y |X) =

∫
R
yp(y|x)dy =

∫ 1

y=x

y

1− x
dy =

1− x2

2(1− x)
=

1 + x

2
.

Thus, E(Y |14) = 1+1/4
2 = 5/8. �

4.3 The moments and the variance

Definition 4.3 Given an RV X and n ∈ N. Then the n′th moment

of X is defined by

µn(X) = µn ≡ EXn,

provided that EXn is well defined. The variance of X is defined by

VarX ≡ E(X − EX)2 = EX2 − EX · EX,

provided EX2 <∞.

Proposition 4.2 If EXn if finite then EXk is also finite for all

0 ≤ k ≤ n.

Proof: To see this, notice that
|X(s)|k ≤ 1 + |X(s)|n (∀s ∈ S),

and hence E|X|k ≤ 1 + E|X|n. �
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Notice that the first moment of X is EX . Sometimes the term central

nth moment of an RV X is used for E(X−EX)n. Clearly the variance

of X is nothing else than the central second moment of X . Sometimes,

the so-called standard deviation σX ≡ +
√

VarX is more useful than

VarX .

Let us study some elementary properties of the variance.

(a) Var(α) = 0 and Var(αX) = α2VarX for any RV X and for any α ∈
R. In particular, Var(−X) = VarX . Property (a) follows immediately

from properties of the expected value.

(b) If X and Y are two independent RVs, then

Var(X ± Y ) = VarX + VarY,

Provided that VarX and VarY exist.
Proof: In view of the fact that X and Y are independent iff X and −Y are independent, and the fact
that Var(−Y ) = VarY , it is enough to prove Var(X + Y ) = VarX + VarY . By properties (b) and (c) of
the expectation, obtain

Var(X + Y ) = E(X + Y − E(X + Y ))2 = E(X2 + 2XY + Y 2 − 2(X + Y )E(X + Y ) + (E(X + Y ))2) =

EX2 + 2E(XY ) + EY 2 − 2E(X + Y )E(X + Y ) + E(X + Y )E(X + Y ) =

EX2+2E(XY )+EY 2−E(X+Y ) ·E(X+Y ) = EX2+2EX ·EY +EY 2−(EX)2−2EX ·EY −(EY )2 =

{EX2 − (EX)2}+ {EY 2 − (EY )2} = VarX + VarY. �

Notice that the equality Var(X ± Y ) = VarX + VarY does not imply

the independence of X and Y (see the proof of Proposition 4.10).

(c) If X and Y are two independent RVs, then

VarXY = VarX · VarY + VarX · (EY )2 + VarY · (EX)2.

In particular, for any two independent CRV X and Y we have VarXY =

VarX · VarY .
Proof: As X and Y are independent, then X2 and Y 2 are independent by Proposition 3.1. Thus

VarXY = E(XY − E(XY ))2 = E(X2Y 2 − 2XY E(XY ) + E(XY )E(XY )) =

EX2 · EY 2 − 2EX · EY · EX · EY + EX · EY · EX · EY = EX2 · EY 2 − (EX)2 · (EY )2 =

(VarX + (EX)2) · (VarY + (EY )2)− (EX)2 · (EY )2 = VarX ·VarY + VarX · (EY )2 + VarY · (EY )2. �
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Definition 4.4 The moment generating function (MGF) of an

RV X is defined by

MX(t) ≡ E(exp(tX)), t ∈ R.

Notice that MX(t) is well defined, since exp(tX) is non-negative. Cer-

tainly, an MGF could be infinity for some t. Proposition 4.1 allows some-

times to compute moments without computing distributions of Xk. We

shall consider this later. Now we state connections between the MGF and

moments. Unfortunately, complete proofs of the following two proposi-

tions are based on Lebesgue integration, and we omit them.

Proposition 4.3 Let X ≥ 0 be an RV and let t ≥ 0. Then

MX(t) =

∞∑
n=0

tnµn
n!

,

where µn = EXn. �

The proof is actually nothing but the possibility of term by term inte-

gration (in sense of the Lebesgue integral) of the formula exp(tX) =∑∞
n=0

tnXn

n! .

Proposition 4.4 Let X be an RV with MX(t) < ∞ for |t| < ε.

Then E(|X|n) <∞ for all n ∈ N. Moreover, MX(t) =
∑∞

n=0
tnµn
n! for

|t| < ε and MX(t) has all derivatives for |t| < ε, namely:

M
(k)
X (t) =

∞∑
n=0

tnµn+k

n!
= E(exp(tX) ·Xk), |t| < ε. (10)

In particular, M
(k)
X (0) = EXk = µk. �

[It is important to notice that |t|
n·|X|n
n! ≤ exp(|tX|) ≤ exp(tX)+exp(−tX).

Integrating this formula for some 0 < |t0| < ε, one gets E|X|n ≤
n!
tn0

[MX(t) +MX(−t)] <∞. The formula MX(t) =
∑∞

n=0
tnµn
n! for |t| < ε

requires more knowledge of the Lebesgue integration. After getting the

formula, differentiating and obtaining (10) becomes an easy exercise.]
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Proposition 4.5 Let MX(t) = MY (t) < ∞ for |t| < ε 6= 0. Then

FX(t) ≡ FY (t).

Proof: To be included later. �

Example 4.2 Let 〈X,Y 〉 be independent with pX(t) = pY (t) =
I[0,2](t)

2 . (i) Find P (Y (X + 1) < 1).
(ii) Find MX(t).
(iii) Find MX+Y (t).

(i) : P (Y (X + 1) < 1) = P (Y < (X + 1)−1) =

∫ 2

0

∫ (x+1)−1

0

dydx

4
=

1

4

∫ 2

0

dx

x+ 1
=

1

4
·
[

log (x+ 1)

]x=2

x=0

=
log 3− log 1

4
=

log 3

4
.

(ii) : MX(t) =
1

2

∫ 2

0
etxdx =

1

2t

∫ 2

0
tetxdx =

1

2t

[
etx
]x=2

x=0

=
e2t − 1

2t
.

(iii) : MX+Y (t) =[〈X,Y 〉 is independent]= MX(t)MY (t) =
(e2t − 1)2

4t2
. �

4.4 Several Inequalities and the Covariance

Proposition 4.6 (Jensen’s Inequality) Let P (X ∈ (a, b)) = 1, θ : R → R be convex on (a, b), and
E|X|+ E|θ(X)| <∞. Then

θ(EX) ≤ Eθ(X). (11)

Proof: Notice that both

θ′+(t) = lim
s↓t

θ(s)− θ(t)
s− t

, θ′−(t) = lim
s↑t

θ(s)− θ(t)
s− t

exist and are finite whenever a < t < b. Moreover, θ′(t) = lim
s→t

θ(s)−θ(t)
s−t exists except on the at most

countable set of discontinuity points of θ′+ and θ′−. Furthermore,

θ(t)− θ(c) ≥ max[θ′+(c)(t− c), θ′−(c)(t− c)] (t, c ∈ (a, b)). (12)

Applying (12) for t = X(ω) and c = EX, obtain that P (Y ≥ 0) = 1, where the RV Y is defined by

Y (ω) := θ(X(ω))− θ(c)− θ′+(c)(X(ω)− c) (ω ∈ S).

Since
∫
S

[X(ω)− c]dP = 0, then

Eθ(X)− θ(EX) =

∫
S

[θ(X(ω))− θ(c)]dP =

∫
S

[θ(X(ω))− θ(c)− θ′+(c)(X(ω)− c)]dP =

∫
S

Y (ω)dP ≥ 0. �
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Corollary 4.1 For any RV X, it holds that
a) (EX)2n ≤ EX2n for n ∈ N.
b) eEX ≤MX(1).
If X ≥ 0 then
c) (EX)−(2n+1) ≤ E(X2n+1) for n ∈ N.
d) E(lnX) ≤ lnEX.

Proof: a) There is nothing to prove when EX2n =∞. If EX2n <∞, then by Proposition 4.2, E|X| <∞.

Now apply Proposition 4.6 to convex function θ(t) = t2n.

b) WlOG, suppose that MX(1) ≤ ∞. Then also EMX(0) ≤ ∞. Now apply Proposition 4.6 to convex

function θ(t) = exp(t).

Proof of c) and d) are similar. �

Proposition 4.7 (Markov’s inequality) Let X ≥ 0 be an RV,

then

P (X ≥ r) ≤ EX

r
(13)

for each r > 0.

Proof:

r · P (X ≥ r) = r ·
∫ ∞
r

pX(t)dt ≤
∫ ∞
r

tPX(dt) ≤
∫ ∞
−∞

tPX(dt) = EX. �

Corollary 4.2 (Chebyshev’s inequality) If VarY < ∞, then,

for every r > 0,

P (|Y − EY | ≥ r) ≤ VarY

r2
.

Proof: Applying Proposition 4.7 to the RV X = (Y − EY )2 ≥ 0, one gets

P (|Y − EY | ≥ r) = P (X ≥ r2) ≤ EX

r2
=

VarY

r2
. �

For the proof of the following proposition, we refer the reader to any

advanced textbook in analysis.
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Proposition 4.8 (Cauchy-Schwarz Inequality) If EX2 <∞ and

EY 2 <∞, then

(EXY )2 ≤ EX2 · EY 2 .

If (EXY )2 = EX2·EY 2, then Y = αX almost surely for some α ∈ R.

�

Definition 4.5 The covariance of the RVs X and Y is

Cov(X, Y ) ≡ E[(X − EX)(Y − EY )] = EXY − EXEY .

In particular, VarX = Cov(X,X).

If VarX · VarY 6= 0, then the number

ρ(X, Y ) ≡ Cov(X, Y )√
VarX · VarY

is called the correlation coefficient of X and Y .

Notice that the property VarX = Cov(X,X) has the following immediate

extension

Var

n∑
i=1

αiXi = E

( n∑
i=1

αiXi −
n∑
i=1

αiEXi

)2

=

E

( n∑
i=1

αi(Xi −EXi)

)2

= E

n∑
i=1

αi(Xi −EXi) ·
n∑
j=1

αj(Xj −EXj) =

n∑
i,j=1

αiαjE[(Xi − EXi)(Xj − EXj)] =

n∑
i,j=1

αiαjCov(Xj, Xj) .

Proposition 4.9 Let X, Y be two RVs with VarX · VarY 6= 0, then

|ρ(X, Y )| ≤ 1. If |ρ(X, Y )| = 1, then Y = aX + b almost surely for

some a, b ∈ R.
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Proof: By the Cauchy-Schwarz Inequality, the first property follows from

Cov(X,Y )2 = (E(X − EX)(Y − EY ))2 ≤ E(X − EX)2 · E(Y − EY )2 = VarX ·VarY .

For the second one, assume |ρ(X,Y )| = 1. Then

Cov(X,Y )2 = VarX ·VarY ,

and hence
(E(X − EX)(Y − EY ))2 = E(X − EX)2 · E(Y − EY )2 . (14)

By Proposition 4.8, the condition (14) implies that

Y − EY = α(X − EX)

almost surely for some α ∈ R. Then

Y = αX + (EY − αEX) (a.s.) .

Take a = α and b = EY − αEX. �

Proposition 4.10 If random variables X and Y are independent,

then Cov(X, Y ) = 0, but not conversely in general.

Proof:

Cov(X,Y ) = E((X −EX)(Y −EY )) = EXY −E(XEY )−E(Y EX) +EXEY = EXY −EXEY = 0 .

For the rest of the proof, consider the unit circle S = Γ in the complex plane with the standard probability
measure P on the σ-algebra of Lebesgue measurable subsets of Γ. Take RVs

X(exp(it)) = cos(t), Y (exp(it)) = sin(t); exp(it) ∈ Γ .

RV’s X and Y are not independent, since, for example,

P

(
X ≤ 1√

2

)
P

(
Y ≤ 1√

2

)
=

3

4

3

4
=

9

16
6= 1

2
= P

(
X ≤ 1√

2
, Y ≤ 1√

2

)
.

However,

EXY =
1

2π

2π∫
0

cos(t) sin(t)dt =
1

4π

2π∫
0

sin(2t)dt = 0 =
1

2π

2π∫
0

cos(t)dt · 1

2π

2π∫
0

cos(t)dt = EXEY .

In the proof of Cov(X,Y ) = 0, we have used only that EXY = EXEY . Thus, in our example, we have

Cov(X,Y ) = 0 without having independence of X and Y . �
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4.5 Random sequences

The sample space will be denoted by S, as usual. The space of all real valued sequences will be denoted
by m.

Given a countable system X = 〈X1, X2, . . . Xn, . . .〉 of random variables on our sample space S. We call
X a random sequence on S. The JDF of X is the function

FX(seq(x)) ≡ P ({X1 ≤ x1, X2 ≤ x2, . . . Xn ≤ xn, . . .}),

where seq(x) = (x1, x2, . . . xn, . . . ) ∈ m.

Given a random vector ~X = 〈X1, X2, . . . Xn〉, then the JDD of ~X is the following generalized function
p ~X : FS(Rn)→ R+, defined by:

(p ~X , IB) = P (F ~X ∈ B) (B ∈ B(Rn)).

It can be shown that p ~X(~x) = Dx1Dx2 . . . DxnF ~X(~x), where ~x = (x1, x2, . . . xn).

Given an independent random vector X = 〈X1, X2, . . . Xn〉, then the marginal distribution density of
Xk is the generalized function pk ∈ FS′(Rn) defined by pk = DxkFX . Clearly, the marginal distribution
density pk of X is the usual DD pXk

∈ FS′(R) of Xk, if Xj are not considered for j 6= k. Denoting
Qk = {~x|xk ≤ rk} ⊂ Rn for a ~r = (r1, r2, . . . rn) ∈ Rn, then

(p, I∩nk=1Qk
) = FX(~r) = FX1(r1) · FX2(r2) · . . . FXn(rn) =

(pX1 , I{x1≤r1}) · (pX2 , I{x2≤r2}) · . . . · (pXn , I{xn≤rn}) = (p1, IQ1) · (p2, IQ2) · . . . · (pn, IQn).

The approximation of functions in FS(Rn) by the step functions gives us the following formula

(p, φ(~x)) = (p1, φ1(x1)) · . . . · (pn, φn(xn)) = (p1 · . . . · pn, φ(~x)) (15)

for all φk(xk) ∈ FS(R), where φ(~x) = φ1(x1)·φ2(x2)·. . .·φn(xn). Taking the formula (15) as the definition
of the product of generalized functions pk depending only on xk and using the density of linear span of
all functions φ(~x) = φ1(x1) · φ2(x2) · . . . · φn(xn) in FS(Rn), obtain p = p1 · . . . · pn.

Let X = 〈X1, X2, . . . Xn〉 be an independent random vector. Then:

I. Given k ∈ N, then
E(Xk

1 · . . . ·Xk
n) = EXk

1 · . . . · EXk
n, (16)

provided that EXk
j are all finite. We know already this fact for two independent RVs and k = 2. Let us

prove the formula (16) for arbitrary n and k.

Proof: Denote by pXk
∈ FS′(R) the DD of Xk, by p ∈ FS′(Rn) the DD of X, and by pk ∈ FS′(Rn) the

marginal distribution density of Xk. By (15), we obtain

µk(X
k
1 · . . . ·Xk

n) = (p, xk1 · . . . · xkn) = (p1, x
k
1) · . . . · (pn, x

k
n) = µk(X1) · . . . · µk(Xn). �

It follows immediately from (13) that

II.
E(X1 ·X2 · . . . ·Xn) = EX1 · EX2 · . . . · EXn,

provided that EXj are all finite.

III.
MX1+...+Xn(t) = EetX1+...+tXn = EetX1 · . . . · EetXn = MX1(t) · . . . ·MXn(t), (17)

provided that MXj (t) are all well defined.

IV. If all our RVs Xj are central (that is EXk = 0), then

Var(X1 · . . . ·Xn) = µ2(X1) · . . . · µ2(Xn)− µ21(X1) · . . . · µ21(Xn) = µ2(X1) · . . . · µ2(Xn) =

(µ2(X1)− µ21(X1)) · . . . · (µ2(X2)− µ21(X2)) = VarX1 · . . . ·VarXn,

provided that VarXj are all well defined.
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4.6 Exercises

Exercise 4.1 Given a random variable X with density

pX(t) =
t3 + 1

2
· I[−1,1](t)

a) Find VarX.

b) Find the density pY (t) of Y = X2.

Solution:
a)

EX =

1∫
−1

1

2
(s4 + s)ds =

(
s5

10
− s2

4

)∣∣∣∣1
−1

=
1

5
; EX2 =

1∫
−1

1

2
(s5 + s2)ds =

1

3
.

VarX = EX2 − (EX)2 =
1

3
−
(

1

5

)2

=
22

75
.

b)

FY (t) = P (Y ≤ t) = P (X2 ≤ t) = P (−
√
t ≤ X ≤

√
t) =

√
t∫

−
√
t

pX(s)ds =


∫ √t
−
√
t
s3+1
2 · I[−1,1](s)ds for t ≥ 0,

0 for t < 0
1 for t ≥ 1

Hence pY (t) = I[0,1](t) · ∂∂tFY (t) =

I[0,1](t) ·
d

dt

√
t∫

−
√
t

s3 + 1

2
ds = I[0,1](t) ·

(
t3/2 + 1

2
+
−t3/2 + 1

2

)
· 1

2
t−1/2 = I[0,1](t) ·

1

2
t−1/2. �

Exercise 4.2 Seven fair dice are rolled. Denote by Sk, the score on k-th die. Given the following random
variables: X = S1 − S2, and Y = S5 + S6 + S7.

a) Find the expected value EX.

b) Find the expected value EY .

c) Find the variance VarX.

d) Find the covariance Cov(X,Y ).

Solution:
a)

ESk = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

7

2
; EX = E(S1 − S2) = ES1 − ES2 = 0.

b)

EY = ES5 + ES6 + ES7 = 3 · 7

2
=

21

2
.

45



c) Note that Sk is independent with Sj for k 6= j. Then we can write

EX2 = E(S1 − S2)2 = ES2
1 − 2ES1ES2 + ES2

2 = 2 · 91

6
− 2 · 7

2
· 7

2
=

35

6
.

We have used here the following:

ES2
k = 12 · 1

6
+ 22 · 1

6
+ · · ·+ 62 · 1

6
=

1 + 4 + 9 + 16 + 25 + 36

6
=

91

6
.

So

VarX = EX2 − (EX)2 =
35

6
− 02 =

35

6
.

d) X = S1 − S2 depends only on 1-st and 2-nd dice; Y = S5 + S6 + S7 depends only on 5-th, 6-th, and
7-th dice. Consequently X and Y are independent, hence Cov(X,Y ) = 0. �

Exercise 4.3 Given the following continuous distribution function

FX(t) =


0 if t < 3,
C(t− 3)2 if 3 ≤ t ≤ 5,
1 if 5 < t

of a random variable X.

a) Find the coefficient C.

b) Find the distribution density of the random variable X.

c) Find the probability of the event {X ∈ [3, 4)}.

d) Find the expected value EX.

e) Find the variance VarX.

Solution:
a)

lim
t→5+

FX(t) = 1 = lim
t→5−

C(t− 3)2 = C · 4⇒ C =
1

4
.

b)

p(t) =
∂

∂t
FX(t) =

{
0 if t 6∈ [3, 5],
1
4 · 2(t− 3) = t−3

2 if t ∈ [3, 5],

c)

P (X) = FX(4)− FX(3) =
1

4
(4− 3)2 − 0 =

1

4
.

d)

EX =

∞∫
−∞

tp(t)dt =

5∫
3

t(t− 3)

2
dt =

(
t3

6
− 3

4
t2
)∣∣∣∣5

3

=
125− 27

6
− 3

4
(25− 9) =

49

3
− 12 =

13

3
.

e)

EX2 =

5∫
3

t2
t− 3

2
dt =

(
t4

8
− t3

2

)∣∣∣∣5
3

=
625− 81

8
− 125− 27

2
=

544

8
− 98

2
= 68− 49 = 19.

VarX = EX2 − (EX)2 = 19−
(

13

3

)2

=
171

9
− 169

9
=

2

9
. �
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Exercise 4.4 Three fair dice are rolled. Denote by Sk, the score on k-th die. Given the following random
variables: X = S1 − S2, and Y = S1 − S2 + S3.

Find EX, EY , VarX, and VarY

Solution:

ESk = 1 · 1
6

+ 2 · 1
6

+ · · ·+ 6 · 1
6

=
3 · 7

6
=

7

2
; ES2

k =
1 + 4 + 9 + · · ·+ 36

6
=

91

6
; VarSk =

91

6
− 49

4
=

35

12
.

EX = ES1 − ES2 = 0− 0 = 0; EY = ES1 − ES2 + ES3 =
7

2
.

Sk are independent for different k. Therefore

VarX = VarS1 + VarS2 =
70

12
=

35

6
; VarY = VarS1 + VarS2 + VarS3 =

35

4
. �

Exercise 4.5 Let r > 1 be a real number. Consider a random variable X which takes values r with
probability p and 1/r with probability 1− p. Compute Var(2X + 1) for r = 2 and p = 1/2.

Solution:

EX = r · p+
1

r
(1− p); EX2 = r2 · p+

1

r2
(1− p).

VarX = EX2 − (EX)2 = r2 · p+
1

r2
(1− p)−

(
r · p+

1

r
(1− p)

)2

.

Var(2X + 1) = 4VarX = 4

[
4 · (1/2) +

1

4
(1/2)−

(
2 · (1/2) +

1

2
(1/2)

)2
]

=
39

4
. �

Exercise 4.6 Consider two random variables X and Y with joint probability distribution given in the
table:

X \ Y 0 1 2

0 1/6 1/4 1/8

1 1/8 1/6 1/6

(i) Find P (X = 0|Y > 0).

(ii) Are the random variables X and Y independent?

Solution:
(i)

P (X = 0|Y > 0) =
P (X = 0 & Y > 0)

P (Y > 0)
=

1/4 + 1/8

1/4 + 1/8 + 1/6 + 1/6
=

3/8

17/24
=

9

17
.

(ii)

P (X = 0|Y > 0) =
9

17
6= P (X = 0) = 1/6 + 1/4 + 1/8 =

13

24
.

Thus, X and Y are not independent. �
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Exercise 4.7 A fair coin is rolled 3 times. Let X be the number of heads in first 2 trials and Y be the
number of heads in first 3 trials. The corresponding joint probability distribution of < X,Y > is given in
the table

X \ Y 0 1 2 3

0 1/8 1/8 0 0 P (X = 0) = 1/4

1 0 1/4 1/4 0 P (X = 1) = 1/2

2 0 0 1/8 1/8 P (X = 2) = 1/4

P (Y = 0) = 1/8 P (Y = 1) = 3/8 P (Y = 2) = 3/8 P (Y = 3) = 1/8

a) Find E(XY ).

b) Find Var(X).

c) Find Var(X + Y ).

d) Find Var(XY ).

e) Find Cov(X,Y ).

f) Find the conditional expectation E(X|Y ≥
√

2).

Solution:
a)

EXY = 1 · 1 · 1

4
+ 1 · 2 · 1

4
+ 2 · 2 · 1

8
+ 2 · 3 · 1

8
= 2.

b)

EX = 1 · 1

2
+ 2 · 1

4
= 1. EX2 = 1 · 1

2
+ 4 · 1

4
=

3

2
. VarX = EX2 − (EX)2 =

3

2
− 1 =

1

2
.

c)

Var(X + Y ) = E(X + Y )2 − (E(X + Y ))2 = EX2 + 2EXY + EY 2 − (EX)2 − 2EXEY − (EY )2 =

VarX + VarY + 2(EXY − EX · EY ).

EY = 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

12

8
=

3

2
. EY 2 = 1 · 3

8
+ 4 · 3

8
+ 9 · 1

8
=

24

8
= 3. VarY = 3−

(
3

2

)2

=
3

4
.

Var(X + Y ) =
1

2
+

3

4
+ 2

(
2− 1 · 3

2

)
=

5

4
+ 2 · 1

2
=

9

4
.

d)

E(XY )2 = 12 · 12 · 1

4
+ 12 · 22 · 1

4
+ 22 · 22 · 1

8
+ 22 · 32 · 1

8
=

1

4
+ 1 + 2 +

9

2
= 3 +

19

4
=

31

4
.

VarXY = E(XY )2 − (EXY )2 =
31

4
− 22 =

15

4
.

e)

Cov(X,Y ) = E((X − EX)(Y − EY )) = E(XY )− EX · EY = 2− 1 · 3

2
=

1

2
. �

f)

E(X|Y ≥
√

2) =
E
(
X · I{Y≥√2}

)
P (Y ≥

√
2)

=
1 · 14 + 2 · 18 + 2 · 18

P (Y = 2) + P (Y = 3)
=

3
4

3
8 + 1

8

=
3

2
. �
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Exercise 4.8 Let X and Y be independent random variables, EX = 0, EY = 1, and VarX = VarY = 1.
Find the variance Var[(X − 1)(Y + 1)].

Solution:
Note that X − 1 is independent with Y + 1. Hence we have

Var[(X − 1)(Y + 1)] = Var(X − 1)Var(Y + 1) + Var(X − 1)(E(Y + 1))2 + Var(Y + 1)(E(X − 1))2 =

VarX ·VarY + VarX(1 + 1)2 + VarY (−1)2 = 1 + 4 + 1 = 6. �

Exercise 4.9 Given the following function

f(x) =


0 if x < 0,

λ(4x− x2) if 0 ≤ x ≤ 2,
0 if 2 < x.

a) Find a value of λ for which f is the distribution density of the distribution function FX of some random
variable X.

b) the correspondent λ and X find:
(i) FX ;
(ii) the probability of the event {X ∈ [1, 3)};
(iii) the expected value EX;
(iv) the variance VarX.

Solution:
a) f(x) ≥ 0,

1 =

∞∫
−∞

f(x)dx = λ

2∫
0

(4x− x2)dx = λ

(
2x2 − x3

3

)∣∣∣∣2
0

= λ(8− 8/3) = λ · 16

3
.

So, λ = 3
16 .

b)(i) FX(t) = 0 for t ≤ 0 and FX(t) = 1 for t ≥ 2. For t ∈ (0, 2):

FX(t) =

t∫
0

f(x)dx =
3

16

t∫
0

(4x− x2)dx =
3

16

(
2x2 − x3

3

)∣∣∣∣t
0

=
3

16
·
(

2t2 − t3

3

)
.

b)(ii)

P (0 ≤ X < 3) = FX(3)− FX(1) = 1− 3

16
(2 · 1− 1/3) = 1− 3

16
· 5

3
= 1− 5

16
=

11

16
.

b)(iii)

EX =

∞∫
−∞

tf(t)dt =
3

16

2∫
0

(4t2 − t3)dt =
3

16

(
4

3
t3 − 1

4
t4
)∣∣∣∣2

0

=
3

16
·
(

32

3
− 16

4

)
= 2− 3

4
=

5

4
.

b)(iv)

EX2 =
3

16

2∫
0

(4t3 − t4)dt =
3

16

(
t4 − 1

5
t5
)∣∣∣∣2

0

=
3

16
·
(

16− 32

5

)
= 3− 6

5
=

9

5
.

Hence

VarX = EX2 − (EX)2 =
9

5
− 25

16
=

144− 125

80
=

19

80
. �
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Exercise 4.10 Given two independent random variables X and Y with the moment generating functions

MX(t) = et
2/2 and MY (t) = (1 + et)/2.

a) Find EXY and E(X − Y ).

b) Find Var(X − Y ).

c) Find Var(X · (2Y − 1)).

Solution:
a) EX = M ′X(0) = tet

2/2
∣∣∣
t=0

= 0, EY = M ′Y (0) = 1
2e
t
∣∣
t=0

= 1/2. Hence EXY = 0 and E(X − Y ) =

EX − EY = −1/2..

b) µ2(X) = (et
2/2)′′

∣∣∣
t=0

= (t · et2/2)′
∣∣∣
t=0

= (et
2/2 + t2et

2/2)
∣∣∣
t=0

= 1.

µ2(Y ) =
(
1+et

2

)′′∣∣∣∣
t=0

=
(
et

2

)′∣∣∣∣
t=0

= et

2

∣∣∣
t=0

= 1
2 .

VarX = µ2(X)− (EX)2 = 1− 0 = 1.

VarY = µ2(Y )− (EY )2 = 1/2− (1/2)2 = 1/2− 1/4 = 1/4.

Var(X − Y ) = VarX + VarY = 1 + 1/4 = 5/4.

c) EX = 0 and E(2Y − 1) = 2EY − 1 = 2 · 1/2− 1 = 0.

Thus, both the factors a central random variables. Since they are independent, one gets

Var(X · (2Y − 1)) = VarX ·Var(2Y − 1) = VarX ·Var2Y = VarX · 4 ·VarY = 1 · 4 · 1/4 = 1. �

Exercise 4.11 Given two independent random variables X and Y with the expected values EX = 1,
EY = 2, and the variances V arX = V arY = 1.

a) Find the second moment µ2(X) = EX2.

b) Find the variance Var(X + 1)(Y + 2).

Solution:
a) VarX = EX2 − (EX)2 = 1, so

EX2 = VarX + (EX)2 = 1 + 12 = 2.

b) X + 1 and Y + 2 are independent too. Hence

Var(X + 1)(Y + 2) = Var(X + 1)Var(Y + 2) + Var(X + 1)(E(Y + 2))2 + Var(Y + 2)(E(X + 1))2 =

VarX ·VarY + VarX(E(Y + 2))2 + VarY (E(X + 1))2 = 1 + (2 + 2)2 + (1 + 1)2 = 1 + 16 + 4 = 21. �

Exercise 4.12 Moment generating functions of independent RVs X and Y are:

MX(t) =
1

1− t
& MY (t) = e

t2

2 .

a) Find Var(XY ).

b) Find Cov(X,Y ).
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Solution:
a) Since X and Y are independent, then VarXY = VarX ·VarY + VarX(EY )2 + VarY (EX)2.

EX = M ′X(t)
∣∣
t=0

=
1

(1− t)2

∣∣∣∣
t=0

= 1. EX2 = M ′′X(t)
∣∣
t=0

=
2

(1− t)3

∣∣∣∣
t=0

= 2. VarX = 2− 12 = 1.

EY =

(
e
t2

2

)′∣∣∣∣
t=0

= t · e
t2

2

∣∣∣∣
t=0

= 0. EY 2 =

(
t · e

t2

2

)′∣∣∣∣
t=0

=

(
e
t2

2 + t2 · e
t2

2

)∣∣∣∣
t=0

= 1. VarY = 1−02 = 1.

VarXY = 1 · 1 + 1 · 02 + 1 · 12 = 2.

b) Since X and Y are independent, then Cov(X,Y ) = 0. �

Exercise 4.13 Given a random variable X with the expected value: EX = 1; the variance: Var(X) = 2;
and the third moment µ3(X) = µ3 = 2.

a) Find the third centered moment µ03(X). [Hint: use the formula µ03 = µ3 − 3µ1µ2 + 2µ31].

b) Show that the random variables X + 1 and X2 are not independent.

c) Let a random variable Y be independent with X, and EY = −2, and VarY = 1. Find the variance
Var(X − 1)(Y + 2).

Solution:
a)

VarX = µ2 − µ21 ⇒ µ2 = VarX + µ21 = 2 + 12 = 3.

µ03 = µ3 − 3µ1µ2 + 2µ31 = 2− 3 · 1 · 3 + 2 · 12 = 4− 9 = −5.

b)
E[(X + 1)X2] = EX2 + EX3 = µ2 + µ3 = 3 + 2 = 5.

E(X + 1) · EX2 = (EX + 1) · µ2 = (1 + 1) · 3 = 6.

If X + 1 and X2 are independent, then

5 = E[(X + 1)X2] = E(X + 1)EX2 = 6, a contradiction.

Hence, X + 1 and X2 are not independent.

c) As X and Y are independent, then X−1 and Y +2 are independent too. Since E(X−1) = EX−1 = 0
and E(Y + 2) = EY + 2 = 0, then X − 1 and Y + 2 are both centered RV’s. Hence

Var(X − 1)(Y + 2) = Var(X − 1)Var(Y + 2) = VarX ·VarY = 2 · 1 = 2. �

Exercise 4.14 Given two independent random variables X and Y with the same distribution functions

FX(t) = FY (t) =

{
1− exp(−t) (t ≥ 0),

0 (t < 0).

a) Find the distribution density pX(t) of the random variable X.

b) Find the expected value EX.

c) Find the variance VarX.

d) Find the variance Var(X − 2Y ).
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Solution:
a)

pX(t) =
d

dt
FX(t) =

{
et (t ≥ 0),
0 (t < 0).

b)

EX =

∞∫
−∞

tpX(t)dt =

∞∫
0

te−tdt = [v := t, u′ := e−t] = vu|∞0 −
∞∫
0

v′udt =

t(−e−t)
∣∣∞
0
−
∞∫
0

1 · (−e−t)dt = 0 +

∞∫
0

e−tdt = −e−t
∣∣∞
0

= 0− (−1) = 1.

c)

EX2 =

∞∫
0

t2e−tdt = t2(−e−t)
∣∣∞
0
− 2

∞∫
0

t · (−e−t)dt = 0 + 2 · 1 = 2.

VarX = EX2 − (EX)2 = 2− 12 = 1.

d) Since X and Y are independent, then X and −2Y are independent too. So we have

Var(X − 2Y ) = VarX + Var(−2Y ) = VarX + 4VarY = 1 + 4 · 1 = 5. �

Exercise 4.15 Given a (1)-exponentially distributed random variable X.

a) Find the moment generating function MX(t) and its domain.

b) Find the variance of X.

c) Find the variance of X2.

Solution:
a)

pX(s) =

{
e−s (s ≥ 0);
0 (s < 0).

MX(t) = EetX =

∞∫
0

ets · e−sds =

∞∫
0

es(t−1)ds =
1

t− 1
· es(t−1)

∣∣∣∣∞
0

= 0− 1

t− 1
=

1

1− t
. (−∞ < t < 1)

b)

EX = M ′X(0) =

(
1

1− t

)′∣∣∣∣
t=0

=
1

(1− t)2

∣∣∣∣
t=0

= 1.

EX2 = M ′′X(0) =

(
1

1− t

)′′∣∣∣∣
t=0

=
2

(1− t)3

∣∣∣∣
t=0

= 2.

Hence VarX = EX2 − (EX)2 = 2− 1 = 1.

c) (
1

1− t

)′′′
=

6

(1− t)4
,

(
1

1− t

)IV
=

24

(1− t)5
⇒ EX4 = 24.

VarX2 = E(X2)2 − (EX2)2 = EX4 − (EX2)2 = 24− 22 = 20. �
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Exercise 4.16 The distribution of the system {X,Y } of random variables is given by:

X \ Y -2 0

0 1/4 1/6

1 1/3 1/4

(i) Find the covariance Cov(X,Y )

(ii) Find the conditional expectation E(X|X + Y ≥ 0)

Solution:
(i)

Cov(X,Y ) = E(XY )− EX · EY .

E(XY ) = 1 · (−2) · 1/3 = −2/3.

EX = 0 · (1/4 + 1/6) + 1 · (1/3 + 1/4) = 7/12.

EY = (−2) · (1/4 + 1/3) + 0 · (1/6 + 1/4) = −7/6.

Cov(X,Y ) = −2

3
− 7

12
·
(
−7

6

)
= −2

3
+

49

72
= −48

72
+

49

72
=

1

72
.

(ii)
E(X|X + Y ≥ 0) = E(X|Y = 0) = 0 · P (X = 0|Y = 0) + 1 · P (X = 1|Y = 0) =

P (X = 1|Y = 0) =
P (X = 1 & Y = 0)

P (Y = 0)
=

1/4

1/6 + 1/4
=

1/4

5/12
=

3

5
. �

Exercise 4.17 A point (R1, R2) is taken randomly in the parallelogram with vertices (0, 0), (2, 0), (3, 1),
and (1, 1). Find the function E(R2|R1 = x) of the conditional expectation of R2, given R1 = x.

Solution:
For 0 ≤ x ≤ 1:

E(R2|R1 = x) =

∫ x

0
y · p(y)dy =

1

x
· y
∣∣∣∣x
0

=
1

x
· x

2

2
=
x

2
.

For 1 ≤ x ≤ 2:

E(R2|R1 = x) =

∫ 1

0
y · p(y)dy =

∫ 1

0
ydy =

1

2
.

For 2 ≤ x ≤ 3:

E(R2|R1 = x) =

∫ 1

x−2
y · p(y)dy =

1

1− (x− 2)

∫ 1

x−2
y dy =

1

3− x
· y

2

2

∣∣∣∣1
x−2

=

1

2(3− x)
(1− (x− 2)2) =

1

2(3− x)
(−x2 + 4x− 3) =

(3− x)(x− 1)

2(3− x)
=
x− 1

2
. �
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5 Standard distributions

Here we consider several standard distributions.

5.1 Uniform, Exponential, and Normal distributions

I. A RV X is called (a, b)-Uniform (or Ua,b), where −∞ < a < b <∞, if

pX(t) =
I(a,b)(t)
b− a

.

EX =

b∫
a

x(b− a)−1dx =
x2

2(b− a)

∣∣∣∣t=b
t=a

=
b2 − a2

2(b− a)
=
b+ a

2
.

EX2 =

b∫
a

x2(b− a)−1dx =
x3

3(b− a)

∣∣∣∣t=b
t=a

=
b3 − a3

3(b− a)
=
b2 + ba+ a2

3
.

V arX = EX2 − (EX)2 =
b2 + ba+ a2

3
−
(
b+ a

2

)2

=
(b− a)2

12
. �

The MGF is given by

MX(t) = E(etX) =

b∫
a

etx(b− a)−1dx =
ebt − eat

(b− a)t
(t 6= 0).

II. A RV X is called λ-Exponential (or Eλ), where λ > 0, if

pX(t) = λ · e−λt · IR+(t).

The MGF is given by

MX(t) = E(etX) =

∞∫
0

etxλe−λxdx = λ

∞∫
0

e(t−λ)xdx = − λ

t− λ
=

1

1− t/λ
(−∞ < t < λ).

EX = M ′X(t)|t=0 =
1

λ(1− t/λ)2

∣∣∣∣
t=0

=
1

λ
.

EX2 = M ′′X(t)|t=0 =
2

λ2(1− t/λ)3

∣∣∣∣
t=0

=
2

λ2
.

V arX = EX2 − (EX)2 =
2

λ2
−
(

1

λ

)2

=
1

λ2
. �

III. A RV X is called (a, σ2)-Normal or (a, σ2)-Gaussian or just Na,σ2 , where a, σ ∈ R, if

pX(t) =
1√

2πσ2
· e−

(t−a)2

σ2 .
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The MGF is given by

MX(t) = E(etX) =
1√

2πσ2
·
∞∫
−∞

etxe−
(x−a)2

σ2 dx = exp(at+
1

2
σ2t2) (−∞ < t <∞).

EX = M ′X(t)

∣∣∣∣
t=0

= (a+ σ2t) · exp(at+
1

2
σ2t2)

∣∣∣∣
t=0

= a.

EX2 = M ′′X(t)

∣∣∣∣
t=0

= [(a+ σ2t)2 + σ2] · exp(at+
1

2
σ2t2)

∣∣∣∣
t=0

= a2 + σ2.

V arX = EX2 − (EX)2 = a2 + σ2 − a2 = σ2.

The next important property follows directly from Theorem 3.1.

Proposition 5.1 If RVs X and Y are independent, with X ∈ Na1,σ2
1

and Y ∈ Na2,σ2
2

then X + Y ∈
Na1+a2,σ2

1+σ
2
2
. �

Proof: It follows from (17) and Proposition 4.5. �

5.2 More on Dirac δ-function

Consider the space FS(Rn) of infinitely many times differentiable finitely supported real-valued functions
on Rn. Denote by FS′(Rn) the space of all [continuous w.r. to a “certain natural topology” in FS(Rn)].
The following functional δ = δ0 ∈ FS′(R):

δ(φ) = (δ, φ) ≡ φ(0) (φ ∈ FS(R))

is called the Dirac δ-function. Respectively,

δq(φ) = (δq, φ) ≡ φ(q) (φ ∈ FS(R))

Notice that any locally integrable function g (in symbols: g ∈ Loc(Rn)) is in FS′(Rn), indeed:

g(φ) = (g, φ) ≡
∫
Rn
g(t)φ(t)dt (φ ∈ FS(Rn)).

Definition 5.1 Given u ∈ FS′(R), the following functional u′ ∈ FS′(R):

u′(φ) = (u′, φ) ≡ −(u, φ′) (φ ∈ FS(R))

is said to be the generalized derivative of u and is denoted by Dt(u). Similarly, we define generalized
partial derivatives of v ∈ FS′(Rn).

By induction, (
u(m), φ

)
= (−1)m(u, φ(m)) (φ ∈ FS(R)),

for all u′ ∈ FS′(R), m ∈ N.

55



Remark that for a differentiable function f on a domain in Rn, the generalized derivative coincides with
the usual derivative. Consider only the one dimensional case, n = 1.(

∂f

∂t
, φ

)
=

∫ ∞
−∞

∂f

∂t
φ(t)dt =

∫ ∞
−∞

fφ(t)dt−
∫ ∞
−∞

f
∂φ

∂t
dt = −

∫ ∞
−∞

f
∂φ

∂t
dt = −

(
f,
∂φ

∂t
dt

)
=

(
Dtf, φ

)
for all test functions φ ∈ FS(R), and therefore ∂f

∂t = Dtf .

For example, the Heaviside function H ∈ Loc(R) ⊂ FS′(R) has the following derivative:

(H ′, φ) = −(u, φ′) = −
∫ ∞
−∞

H(t)
dφ

dt
(t)dt = −

∫ ∞
0

Hφ′dt = φ|∞0 = φ(0) = (δ, φ) (φ ∈ FS(R)).

In other words, H ′ = δ.

One can do many of usual analytic manipulations in generalized sense with functional from FS′(R). For
instance, if f : R→ R has countably many discontinuities with left and right limits at them, say

f(t) = f0(t) +
∞∑
n=1

hnH(t− tn),

where f0 is continuous. Then

Dtf = [f ′0(t)] +

∞∑
n=1

hnδ(t− tn) =

∞∑
n=1

hnδtn(t),

where f ′0(t) is the usual derivative of f(t) at t 6= tn.

5.3 Discrete distributions

Discrete RVs are given by distribution functions of the following form.

FX(x) =
∞∑
n=0

pnH(x− xn),

where
∞∑
n=0

pn = 1, and (xn)∞n=0 is a sequence in R. In most of cases, xn = n. Consider several standard

discrete distributions.

IV. (p)-Bernoulli (or Bp): 0 ≤ p ≤ 1, and the DF is given by

FX(x) =
1∑
i=0

pi(1− p)1−iH(x− i) = (1− p)H(x) + pH(x− 1).

The parameter p is interpreted as the probability of success in a Bernoulli trial. The “distribution density”
is given by

pX(x) = Dx

(
(1− p)H(x) + pH(x− 1)

)
= (1− p)δ0(x) + pδ1(x).

Given a (p)-Bernoulli distributed RV X, then

EX =

∞∫
−∞

xpX(x)dx = (1− p)
∞∫
−∞

xδ0(x)dx+ p

∞∫
−∞

xδ1dx =
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(1− p)(δ0, x) + p(δ1, x) = (1− p)x(0) + px(1) = (1− p) · 0 + p · 1 = p.

The k-th moment is:

EXk = (1− p)(δ0, xk) + p(δ1, x
k) = (1− p)x(0) + pxk(1) = p.

Thus,
VarX = µ2 − µ21 = p− p2 = p(1− p)

The MGF is given by

MX(t) =

∞∫
−∞

etxpX(x)dx = (1−p)(δ0, etx)+p(δ1, e
tx) = (1−p)etx|x=0+petx|x=1 = (1−p)+pet (t ∈ R). �

V. (n, p)-Binomial (or Bn,p): n ∈ N, 0 ≤ p ≤ 1, and the DF is given by

FX(x) =

n∑
i=0

(
n

i

)
pi(1− p)n−iH(x− i).

The “distribution density” is given by

pX(x) = Dx

( n∑
i=0

(
n

i

)
pi(1− p)n−iH(x− i)

)
=

n∑
i=0

(
n

i

)
pi(1− p)n−iδi(x).

Given a (n, p)-Binomial distributed RV X, then

EX = (pX, x) =
n∑
i=0

(
n

i

)
pi(1− p)n−i(δi, x) =

n∑
i=0

(
n

i

)
pi(1− p)n−ii = np.

The k-th moment is:

EXk = (pX, x
k) =

n∑
i=0

(
n

i

)
pi(1− p)n−iik, VarX = np(1− p), and MX(t) = ((1− p) + pet)n. �

VI. (p)-Geometric (or Gp): 0 < p < 1, and the DF is given by

FX(x) =

∞∑
i=1

p(1− p)i−1H(x− i).

The “distribution density” is given by

pX(x) = Dx

( ∞∑
i=1

p(1− p)i−1H(x− i)
)

=

∞∑
i=1

p(1− p)i−1δi(x).

Given an (p)-Geometric distributed RV X, then

EX = (pX, x) =
∞∑
i=1

p(1− p)i−1(δi, x) =
∞∑
i=1

p(1− p)i−1x(i) =
∞∑
i=1

p(1− p)i−1i =
1

p
.

EXk = (pX, x
k) =

∞∑
i=1

p(1− p)iik, VarX =
1− p
p2

,

and MX(t) = pet

1−(1−p)et for t < − log(1− p). �

Consider a sequence of (p)-Bernoulli trials. Then P (F.S. = k) = p(1− p)k is the probability of the event
that first success occurs in the k-th trial.
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Proposition 5.2 P (F.S. > n+ k|F.S. > n) = P (F.S. > k).

Proof:

P (F.S. > n+k|F.S. > n) =
P (F.S. > n+ k & F.S. > n)

P (F.S. > n)
=
P (F.S. > n+ k)

P (F.S. > n)
=

(1− p)n+k

(1− p)n
= (1−p)k = P (F.S. > k). �

Meaning of Proposition 5.2 is the following. Assume that we have a collection of devices of different age,
whose life-time are (p)-Geometric distributed. Then there is no reason to replace some of them unless
they are broken.

VII. (λ)-Poisson (or Pλ): 0 < λ <∞, and the DF is given by

FX(x) =
∞∑
i=0

e−λ
λi

i!
H(x− i).

The “distribution density” is given by pX(x) =
∞∑
i=0

e−λ λ
i

i! δi(x). Given an (λ)-Poisson distributed RV X,

then

EX =

∞∑
i=0

e−λ
λi

i!
(δi, x) =

∞∑
i=0

e−λ
λi

i!
i = e−λ

∞∑
i=1

λi

(i− 1)!
= e−λ

∞∑
m=0

λ(m+1)

m!
= e−λλ

∞∑
m=0

λm

m!
= λ,

EX(X − 1) =

∞∑
i=0

i(i− 1)
λi

i!
e−λ = λ2e−λ

∞∑
i=2

λi−2

(i− 2)!
= λ2e−λeλ = λ2,

VarX = EX2 − (EX)2 = [EX(X − 1) + EX]− (EX)2 = [λ2 + λ]− λ2 = λ,

and MX(t) = exp

(
λ(et − 1)

)
for t ∈ R. �

5.4 Exercises

Exercise 5.1 Let X and Y be two independent random variables. Find VarXY in each of the following
two cases.

a) X is B1/2 and Y is G1/2.

b) X is N−2,1 and Y is U−2,1.

Solution: a) VarX = 1/2(1− 1/2) = 1/4. VarY = 1−1/2
(1/2)2

= 2. EX = 1
2 . EY = 1

1/2 = 2.

Since X and Y are independent, then

VarXY = VarX ·VarY + VarX · (EY )2 + VarY · (EX)2 =
1

4
· 2 +

1

4
· 22 + 2 · (1/2)2 = 1/2 + 1 + 1/2 = 2.

b)

VarX = 1; VarY =
(1− (−2))2

12
= 9/12 = 3/4; EX = −2; EY =

1 + (−2)

2
= −1/2;

VarXY = 1 · 3

4
+ 1 ·

(
−1

2

)2

+
3

4
· (−2)2 = 3/4 + 1/4 + 12/4 = 4. �
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6 Laws of Large Numbers

Here we consider the limit behavior of sequences of independent random

variables.

6.1 Chebyshev’s Law of Large Numbers

We begin with the following proposition.

Proposition 6.1 Assume that RVs Xj are only pairwise indepen-

dent. Then

Var(X1 + X2 + . . . + Xn) = VarX1 + VarX2 + . . . + VarXn, (18)

provided that VarXj are all well defined for all 1 ≤ j ≤ n.

Proof: Since EXjXk = EXjEXk for j 6= k, we obtain

Var
n∑
j=1

Xj = E

( n∑
j=1

Xj−
n∑
j=1

EXj

)2

= E

( n∑
j=1

(Xj−EXj)

)2

=
n∑
j=1

E(Xj−EXj)
2−
∑
j 6=k

E(Xj−EXj)(Xk−EXk) =

n∑
j=1

VarXj−
∑
j 6=k

(EXjXk−EXjEXk−EXjEXk+EXjEXk) =

n∑
j=1

VarXj−
∑
j 6=k

(EXjXk−EXjEXk) =

n∑
j=1

VarXj . �

Now, let us remind the Markov’s inequality (cf., Proposition 4.7).

Given a non-negative RV R, then

P (R ≥ ε) ≤ ER

ε
(∀ε > 0). (19)

It follows from (19) that for any random variable Y and for any number

c ∈ R:

P (|Y −c| ≥ ε) = P (|Y −c|m ≥ εm) ≤ E|Y − c|m

εm
(∀ε > 0,m ∈ N).

(20)

In particular if m = 2, c = EY then

P (|Y − EY | ≥ ε) ≤ E(Y − EY )2

ε2
=

VarY

ε2
(∀ε > 0). (21)
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Theorem 6.1 (Chebyshev’s law of large numbers) Let (Xj)
∞
j=1

be a sequence of pairwise independent RVs having finite second mo-

ment. Assume also that VarXj ≤M for all j and denote Sn =
n∑
j=1

Xj.

Then, for any ε > 0,

lim
n→∞

P

{
1

n

∣∣∣∣Sn − ESn∣∣∣∣ ≥ ε

}
= 0.

Proof: Letting Y = 1
nSn in (21) and using independence, we get

P

{
1

n
|Sn − ESn| ≥ ε

}
≤ 1

ε2
Var

(
Sn
n

)
=

1

n2ε2

n∑
j=1

VarXj ≤
1

n2ε2
nM =

M

nε2
→ 0. (22) �

Corollary 6.1 Let X1,X2,...,Xj,... be the results of independent

trails in an experiment with m = EXj < ∞ and σ2 = VarXj < ∞.

Then, for any ε > 0,

lim
n→∞

P

{∣∣∣∣Snn −m
∣∣∣∣ < ε

}
= 1. �

Corollary 6.2 Consider a sequence of (p)-Bernoulli trails, and let

Xj be the number which appears on trail j. Then, for any ε > 0,

lim
n→∞

P

{∣∣∣∣Snn − p
∣∣∣∣ < ε

}
= 1. �

6.2 Central limit theorem

A sequence Xk of RVs is said to converge in distribution to an RV

X if

lim
n→∞

FXk(t) = FX(t),

for every t ∈ R, at which FX(t) is continuous. In this case, we write

Xk
d−→ X .
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Theorem 6.2 (Central limit theorem) Let (Xj)j be a sequence

of i.i.d. (independent identically distributed) RVs with EXj = m and

VarXj = σ2. Then, for every a < b

P

(
a <

Sn − nm
σ
√
n

< b

)
−→ FN

0,σ2(b)− FN
0,σ2(a) =

1√
2π

∫ b

a

e−t
2/2dt ,

where Sn =
n∑
j=1

Xj. In other words,

Sn − ESn√
VarSn

d−→ Z ∈ N0,1 (n→∞).

Proof: To be included later. �

A a special case of Theorem 6.2 is:

Theorem 6.3 (Moivre-Laplace’s theorem) Let (Xj)j be a se-

quence of independent (p)-Bernoulli distributed RVs. Then, for every

0 ≤ α < β

P (α < Sn < β) ≈ FN0,1

(
β − np√
np(1− p)

)
− FN0,1

(
α− np√
np(1− p)

)
, (23)

where FN0,1(x) = 1√
2π

∫ x
−∞ e

− t
2

2 dt.

Proof:

P (α < Sn < β) = P (α− np < Sn − np < β − np) = P

(
α− np
σ
√
n

<
Sn − np
σ
√
n

<
β − np
σ
√
n

)
=

P

(
α− np√
np(1− p)

<
Sn − np
σ
√
n

<
β − np√
np(1− p)

)
≈ FN0,1

(
β − np√
np(1− p)

)
− FN0,1

(
α− np√
np(1− p)

)
. �

6.3 Exercises

Exercise 6.1 Given a sequence Xn of independent identically distributed random variables with moment
generating functions MXn(t) = n−1+et

n . Are the conditions of Law of Large Numbers satisfied for the
following sequences.

a) For the sequence Xn.

b) For the sequence Yn =
∑2(n+1)2

i=1+2n2
Xi.

c) For the sequence Zn = X1 + (−1)nX2.
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Solution:
a) The sequence Xn is independent.

EXn = M ′Xn(t)
∣∣
t=0

=
1

n
et
∣∣∣∣
0

=
1

n
; EX2

n =

(
1

n
et
)′∣∣∣∣

0

=
1

n
; VarXn = EX2

n − (EXn)2 =
n− 1

n2
≤ 1.

So VarXn is uniformly bounded. Hence the conditions of LLN are satisfied for Xn.

b) The sequence Yn is independent, since the families {X
1+2n2

, . . . , X
2(n+1)2} are disjoint. But

VarYn =

2(n+1)2∑
i=1+2n2

VarXi =

2(n+1)2∑
i=1+2n2

i− 1

i2
≥

2(n+1)2∑
i=1+2n2

1

i
∼

2(n+1)2∫
2n2

1

t
dt = ln t|2(n+1)2

2n2
= ln 2(n+1)2−ln 2n

2
= ln 22n+1 →∞.

So VarYn are not uniformly bounded, and the conditions of LLN are not satisfied.

c) The sequence (Zn)n contains the same RV on odd places, so (Zn)n is not pairwise independent, and
hence the conditions of LLN are not satisfied. �

Exercise 6.2 1000 fair dice are rolled. Consider the following event:

A = {290 < sum of scores on first 100 dice < 410}; B = {3400 < sum of scores on all 1000 dice < 3600}.

a) Show that P (A) > 91%.

b) Show that P (B) > 2/3.

Solution:
a) Consider random variables Xj that are the scores of j-th die for j = 1, . . . , 1000.

EXj =
1

6
(1+2+· · ·+6) =

7

2
; EX2

j =
1

6
(1+4+· · ·+36) =

91

6
; VarXj = EX2

j −(EXj)
2 =

91

6
− 49

4
=

35

12
.

Denote S100 =
100∑
j=1

Xj . Then

P (A) = P

∣∣∣∣∣∣
100∑
j=1

Xj − 350

∣∣∣∣∣∣ < 60

 = P

(
1

100
|S100 − ES100| < 0.6

)
= 1−P

(
1

100
|S100 − ES100| ≥ 0.6

)
≥

1− VarS100
(100)2 · (0.6)2

= 1− 100VarXj

3600
= 1− 1

36
· 35

12
> 1− 1

12
=

11

12
>

91

100
= 91%.

b)

P (B) = P

∣∣∣∣∣∣
1000∑
j=1

Xj − 3500

∣∣∣∣∣∣ < 100

 = P

(
1

1000
|S1000 − ES1000| < 0.1

)
= 1−P

(
1

1000
|S1000 − ES1000| ≥ 0.1

)
≥

1− VarS1000
(1000)2 · (0.1)2

= 1− 1000 · 35/12

(1000)2 · 0.01
= 1− 1

10
· 35

12
= 1− 35

120
=

85

120
=

17

24
>

16

24
=

2

3
. �

Exercise 6.3 Given a sequence (Xn)∞n=1 of independently distributed random variables with the moment

generating functions MXn(t) = et

2−et , −∞ < t < ln 2.
a) What is the expected value EXn and the variance VarXn?

b) Show that P ({1900 <
∑n=1000

n=1 Xn < 2100}) ≥ 80%.
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Solution: a)

M ′Xn(t) =
2et

(2− et)2
⇒ EXn = M ′Xn(0) = 2.

M ′′Xn(t) =

[
2et

(2− et)2

]′
=

2et(2− et)2 + 4e2t(2− et)
(2− et)4

.

So EX2
n = M ′′Xn(0) = 6 and VarXn = EX2

n − (EXn)2 = 6− 22 = 2.

b)

P = P

(∣∣∣∣∣
1000∑
n=1

Xn −
1000∑
n=1

EXn

∣∣∣∣∣ < 100

)
= [since = EXn = 2] = 1− P

(
1

1000

∣∣∣∣∣
1000∑
n=1

Xn − 2000

∣∣∣∣∣ ≥ 0.1

)
≥

1−
Var

∑1000
n=1 Xn

(1000)2 · (0.1)2
= 1− 2000

10000
= 1− 0.2 = 80%. �

Exercise 6.4 Given a sequence (Xn)∞n=1 of independent equally distributed random variables with the
moment generating function: MXn(t) = 1

1− t
2

.

a) Find the expected value EXn and the variance VarXn.
b) Show that P ({100 <

∑n=400
n=1 Xn < 300}) ≥ 99%.

Solution: a)

M ′Xn(t) = − 1

(1− t
2)2
·
(

1− t

2

)′
=

1

2
· 1

(1− t
2)2
⇒ EXn = M ′Xn(0) =

1

2
.

M ′′Xn(t) =
1

2
(−2) · 1

(1− t
2)3
·
(
−1

2

)
=

1

2
· 1

(1− t
2)3
⇒ EX2

n = M ′′Xn(0) =
1

2
.

VarXn = EX2
n − (EXn)2 =

1

2
−
(

1

2

)2

=
1

4
.

b) EXn = 1
2 , VarXn = 1

4 .

P

(
100 <

400∑
n=1

Xn < 300

)
= P

(∣∣∣∣∣
400∑
n=1

Xn − 200

∣∣∣∣∣ < 100

)
= P

(∣∣∣∣∣
∑400

n=1Xn

400
−
E(
∑400

n=1Xn)

400

∣∣∣∣∣ < 1

4

)
=

1− P

(
1

400

∣∣∣∣∣
400∑
n=1

Xn − 200

∣∣∣∣∣ ≥ 1

4

)
≥ 1−

Var
(∑400

n=1Xn

)
4002 ·

(
1
4

)2 = 1−
400 · 14

4002 ·
(
1
4

)2 = 1− 1

100
= 99%. �

Exercise 6.5 Given a sequence (Xn)∞n=1 of independent (p)-geometrically distributed random variables
for 0 < p < 1.

a) What is the expected value EXn and the variance VarXn? [Hint: You may use the fact that M ′Xn(t) =
pet

(1−et+pet)2 for t < − ln (1− p), where MXn(t) is the moment generating function of Xn.]

b) Assume that p = 1/2. Estimate the probability P (B) of the following event: B = {800 <
∑n=500

n=1 Xn <
1200}.
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Solution:
a)

M ′Xn(0) =
p · 1

(1− 1 + p)2
=

p

p2
=

1

p
.

M ′′Xn(t) =
pet(1− et + pet)2 − pet · 2(1− et + pet)(−et + pet)

(1− et + pet)4
.

M ′′Xn(0) =
p · 1(1− 1 + p)2 − p · 1 · 2(1− 1 + p)(−1 + p)

(1− 1 + p)4
=
p3 − 2p2(p− 1)

p4
=

2− p
p2

.

EXn = M ′Xn(0) =
1

p
.

VarXn = M ′′Xn(0)− (M ′Xn(0))2 =
2− p
p2
−
(

1

p

)2

=
1− p
p2

.

b)

p = 1/2⇒ EXn =
1

1/2
= 2 and VarXn =

1− 1/2

(1/2)2
=

1

1/2
= 2.

P (B) = P

(∣∣∣∣∣
500∑
n=1

Xn − 1000

∣∣∣∣∣ < 200

)
= P

(∣∣∣∣∣
∑500

n=1Xn

500
− 2

∣∣∣∣∣ < 2

5

)
= 1− P

(∣∣∣∣∣ 1

500

500∑
n=1

Xn − 2

∣∣∣∣∣ ≥ 2

5

)
≥

1− 1

5002 ·
(
2
5

)2 ·Var
500∑
n=1

Xn = 1− 25

4 · 250000
· 500 · 2 = 1− 25

2 · 500
= 1− 2.5% = 97.5%. �

Exercise 6.6 Given a sequence (Xk)
∞
k=1 of independent random variables with the moment generating

functions MXk(t) = 1
1−t , |t| < 1.

a) What is the expected value E(X2
k) and the variance Var(X2

k)?

b) Show that P (1500 <
∑k=1000

k=1 X2
k < 2500) > 91%.

Solution:
a)

MXk(t) =

∞∑
j=0

tj , EX2
k = M ′′Xk(t)|t=0 = 2! = 2.

EX4
k = M

(4)
Xk

(t)
∣∣∣
t=0

= 4! = 24.

Var(X2
k) = E(X2

k)2 − (EX2
k)2 = 24− 22 = 20. �

b)

P (1500 <

1000∑
k=1

X2
k < 2500) = 1− P (|S1000 − 2000| ≥ 500) =

1− P
(
|S1000 − ES1000|

1000
≥ 0.5

)
1000=n,0.5=ε

≥ 1− 1

ε2
Var

(
Sn − ESn

n

)
=

1− 1

0.25
· 1

n2
VarSn = 1− 1

250 000
· 1000 · 20 = 1− 2

25
= 0.92 > 91%. �
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Exercise 6.7 A market every day gets from a farm chicken eggs in boxes. Each box contains 300 eggs.
The standard percentage of the crashing is 15%. How many (in %) boxes of usual day purchase contain
less than 40 crashed eggs?

Solution:
Clear, we need only to find the probability of the event {there are 0 ≤ S300 ≤ 40 crashed eggs in a box}.
We apply the Moivre-Laplace for independent (p)-Bernoulli distributed RVs Xj , j = 1, . . . , 300, where
p = 0.15.

EXj = p = 0.15, VarXj = p(1− p) = 0.15 · 0.85 = 0.1275, α = 0, β = 40, n = 300.

By (23),

P (α < Sn < β) ≈ FN0,1

(
β − np√
np(1− p)

)
− FN0,1

(
α− np√
np(1− p)

)
.

Therefore,

P (0 < S300 < 40) ≈ FN0,1

(
40− 300 · 0.15√

300 · 0.1275

)
−FN0,1

(
0− 300 · 0.15√

300 · 0.1275

)
= FN0,1

(
40− 45√

38.25

)
−FN0,1

(
0− 45√

38.25

)
=

FN0,1

(
−5

6.18

)
− FN0,1

(
−45

6.18

)
= FN0,1(−0.81)− FN0,1(−7.28) = 1− FN0,1(0.81)− 1 + FN0,1(7.28) =

[use the table 8.1 from Appendix] = 1− 0.7910− 1 + 1 = 0.209.

Thus, ≈ 21% of boxes contain less than 40 crashed eggs. �

Exercise 6.8 The probability p of the event A is 0.8 for each trial. How many times we have to repeat
the trial, if we want to expect with the probability 90% that the frequency of occurrence of the event will
deviant from p less than by 0.05?

Solution: ∣∣∣∣Snn − 0.8

∣∣∣∣ < 0.05 ⇒ 0.75n < Sn < 0.85n.

Put in Theorem 6.3 α = 0.75n and β = 0.85n. So, by (23),

P (0.75n < Sn < 0.85n) ≈ FN0,1

(
0.85n− 0.8n√
n · 0.8 · 0.2

)
−FN0,1

(
0.75n− 0.8n√
n · 0.8 · 0.2

)
= FN0,1

(
0.05n√
n · 0.16

)
−FN0,1

(
−0.05n√
n · 0.16

)
=

FN0,1

(
0.125

√
n
)
− FN0,1

(
−0.125

√
n
)

= FN0,1

(
0.125

√
n
)
− 1 + FN0,1

(
0.125

√
n
)

=

2FN0,1

(
0.125

√
n
)
− 1 = 0.9⇒ FN0,1

(
0.125

√
n
)

= 0.95.

Using the table 8.1 from Appendix, we get

0.125
√
n = 1.64 ⇒ n =

(
1.64

0.125

)2

= 13.122 = 172.1344

Thus it will be enough 172 trials. �

Exercise 6.9 A fair coin is tossed 400 times. By using of the Moivre – Laplace theorem, calculate.

a) The probability of getting the tails strictly between 190 and 210 times?

b) The probability of getting the heads strictly between 180 and 200 times?
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Solution:
a)

EXj = p = 0.5, EX2
j = p = 0.5, VarXj = p− p2 = 0.25.

P (190 < S400 < 210) ≈ FN0,1

(
210− 400 · 0.5√

400 · 0.25

)
− FN0,1

(
190− 400 · 0.5√

400 · 0.25

)
=

FN0,1(1)− FN0,1(−1) = FN0,1(1)− 1 + FN0,1(1)
use the table

= 2 · 0.8413− 1 = 0.6826 ≈ 68%. �

b)

P (180 < S400 < 200) ≈ FN0,1

(
200− 400 · 0.5√

100

)
− FN0,1

(
180− 400 · 0.5√

100

)
=

FN0,1(0)− FN0,1(−2) = 0.5− 1 + FN0,1(2)
use the table

= 0.9772− 0.5 = 0.4772 ≈ 48%. �

Exercise 6.10 To get the result of an experiment, one needs to add 2500 numbers. The rounding preci-
sion of each number is 10−4. Suppose that occurred (by rounding) errors are independent and uniformly
distributed in the interval (−0.5 · 10−4, 0.5 · 10−4). Find the interval (−r, r) that contains the total (sum)
error of this counting with the probability 0.99.

Solution:
We need to find r > 0 such that P (−r < Sn < r) ≈ 0.99, where n = 2500, Sn = X1 + · · · + Xn, and Xj

are independent RVs with the uniform distribution in the interval (−0.5 · 10−4, 0.5 · 10−4). [For uniform
distribution, we have math expectation is the middle of the interval and variance is equal to d2/12, where

d is a length of the interval.] m = EXj = 0 and σ2 = VarXj = 10−8

12 , σ = 1
2
√
3·104 .

By Theorem 6.2,

P (−r < Sn < r) ≈ FN0,1

(
r

σ
√
n

)
− FN0,1

(
− r

σ
√
n

)
= FN0,1

(
2
√

3 · 104r

500

)
− FN0,1

(
−2
√

3 · 104r

500

)
=

FN0,1

(
40
√

3r
)
− FN0,1

(
−40
√

3r
)

= 2FN0,1

(√
3r
)
− 1.

Using the table from Appendix, we find u such that that

2FN0,1(u)− 1 = 0.99 ⇔ FN0,1(u) = 0.995.

That is u = 2.58. After solving the following equation

40
√

3r = 0.995 ⇒ r =
0.995

40
√

3
=

0.995

40 · 1.732
=

0.995

69.28
= 0.014,

we get that the the total error will be in the interval (−1.4 · 10−4, 1.4 · 10−4) �
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7 Markov chains with finite number of states

A stochastic process is an ordered setX = { ~Xi}i∈I of random vectors.

When the indexing set I is countable, X is called a discrete time

stochastic process. When the indexing set I is a nontrivial interval

in R, X is called a continuous time stochastic process.

In this section, X = (Xn)∞n=0 is a sequence of N-valued RVs

on a probability space (S,A, P ). Instead of saying P (Xn = k) = α we

also say that Xn is in state k with probability α. The collection

E = {k}∞k=1 is called the state space of the random process (or,

stochastic process) (Xn)∞n=0.
Example 7.1 Let Xn be the number of students who planning to be graduated from ODTU in (2018+n)-th
year. A probability space (S,A, P ) can be arbitrary. Notice that, in general

P (Xn+1 = n+ 1|X0 = k0, . . . , Xn−1 = kn−1, Xn = kn) 6= P (Xn+1 = n+ 1|Xn = kn). �

7.1 Markov chains

If the process , given the present, the future is independent of the past,

the process is called a Markov chain.

Definition 7.1 X = (Xn)∞n=0 is said to be a Markov chain when-

ever

P (Xn+1 = n + 1|X0 = k0, . . . , Xn = kn) = P (Xn+1 = n + 1|Xn = kn)

(24)

for every n ≥ 0 and every states k0, . . . , k + 1.

A Markov chain X is said to be homogeneous whenever

P (Xn+1 = k2|Xn = k1) = P (Xn+l+1 = k2|Xn+l = k1) (25)

for every n, l ≥ 0 and every states k1, k2.
Example 7.2 Any independent N-valued stochastic process (Xn)∞n=0 is a homogeneous Markov chain.
�

In what follows X is a homogeneous Markov chain with the

finite state space E = {1, 2, . . . ,m}, and we shall say that X is just

a Markov chain.
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7.2 Transition matrices

Let n ∈ N, 1 ≤ i, j ≤ m. Denote by

p
(n)
ij = P (Xn = j|X0 = i) (26)

the n-step transition probability from state i to state j. The

1-step transition probabilities will be simple denoted by pij and called

by the transition probabilities of the Markov chain (Xn)∞n=0. The

m×m-matrix

P (n) =


p

(n)
11 p

(n)
12 . . . p

(n)
1m

p
(n)
21 p

(n)
22 . . . p

(n)
2m

... ... ...

p
(n)
m1 p

(n)
m2 . . . p

(n)
mm


is called the n-step transition matrix. The 1-step transition matrix

will be simple denoted by P and called the transition matrix of the

Markov chain.

Clearly, every matrix P (n) satisfies

P (n) ·


1

1
...

1

 =


1

1
...

1

 .
Therefore, P (n) is stochastic (that is: p

(n)
ij ≥ 0 for all 1 ≤ i, j ≤ m,

and
∑m

j=1 p
(n)
ij = 1 for every 1 ≤ i ≤ m).

Since

p
(n)
ij =

m∑
k=1

P (Xn = j|Xn−1 = k)·P (Xn−1 = k|X0 = j) =

m∑
k=1

p
(n−1)
ik ·p1

kj,

we obtain

P (n) = P (n−1) · P = P (n−2) · P 2 = . . . = P n. (27)
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7.3 Probability distribution of a Markov chain

The number

pk(n) := P (Xn = k)

is called the probability of state k at time n ≥ 0. The vector

~p(n) := (p1(n), p2(n), . . . , pm(n))

is called the probability distribution of the Markov chain (Xj)
∞
j=0

at time n ≥ 0. Clearly,

~p(n + l) := ~p(n) · P l (∀n, l ≥ 0). (28)

The vector

~p := (p1(1), p2(1), . . . , pm(1))

is called the probability distribution of (Xj)
∞
j=0.

7.4 Classification of states

We say that the state j is accessible from i if p
(n)
ij > 0 for some

n ≥ 1. Then we write i→ j. If p
(n)
ij = 0 for all n ≥ 1, we write i9 j.

We say that i communicates with j if i → j and j → i. In this case

we write i↔ j. Otherwise, we write i= j. Clearly,↔ is an equivalence

relation on the state spaceE. A state i is said to be absorbing if pii = 1.

Definition 7.2 A Markov chain is said to be irreducible if every

two of its states communicate.

Notice that a Markov chain is irreducible iff the state space E is the only

one equivalence class of the relation ↔.

Definition 7.3 The period Per(i) of a state i is the greatest com-

mon divisor of all n ≥ 1 such that p
(n)
ii > 0. If p

(n)
ii = 0 for all n ≥ 1,

we say that Per(i) is undefined. The state i is called aperiodic if

Per(i) = 1.
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Notice that if i↔ j then Per(i) = Per(j).

Example 7.3 Given a transition matrix P =

[
1
2

1
2

0 1

]
The correspondent Markov chain is not irreducible,

since 2 9 1. Indeed, P (n) = Pn =

[
1
2n gn
0 1

]
for every n, and hence p

(n)
21 = [P (n)]2,1 = 0 for all n. Both

states 1 and 2 are aperiodic, but only state 2 is absorbing. �

Example 7.4 Given a transition matrix P =

0 1 0
0 0 1
1 0 0

 The correspondent Markov chain is irreducible,

since i↔ j for every i and j. Moreover, Per(i) = 3 for i = 1, 2, 3. �

Denote

f
(n)
ii := P (Xn = i|Xk 6= i[k = 1, 2, . . . , n− 1]|X0 = i)

and

f ∗ii :=

∞∑
n=1

f
(n)
ii .

Thus, the number f ∗ii is the probability of the event that the process

starting from state i would return to i in a finite time.

Definition 7.4 A state i is called recurrent if f ∗ii = 1 (in other

words, if starting from i, eventual return to i is certain). A state i

is called transient if f ∗ii < 1.

In Example 7.4 all states are recurrent.

Theorem 7.1 A state i is recurrent if and only if
∑∞

n=1 p
(n)
ii =∞.

Proof: To be included later. �

As an application of Theorem 7.1, one may easily obtain that in Example

7.3 the state 1 is transient and the state 2 is recurrent.
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7.5 Limiting behavior

Theorem 7.2 If a Markov chain with the transition matrix P is

irreducible and every state is aperiodic, then there exists N ∈ N such

that for every n ≥ N , the matrix P n has no nonzero elements.

Proof: To be included later. �

Theorem 7.3 (A.A. Markov) Suppose that for some k all entries

of P k are nonzero. Then there are strictly positive numbers p1, p2, . . . , pm
such that

lim
n→∞

p
(n)
ij = pj,

m∑
j=1

pj = 1.

in other words the sequence (P (n))n of n-step transition matrices entries-

wise converges to a matrix with constant nonzero columns.

Proof: To be included later. �

Definition 7.5 A probability distribution ~p of (Xj)
∞
j=0 is called sta-

tionary if ~p = ~p · P .

It follows from Theorem 7.3 that if for some k all entries of P k are

nonzero then ~p := (p1, p2, . . . , pm) is a stationary probability distribu-

tion of (Xj)
∞
j=0.

Definition 7.6 If for some k all entries of P k are nonzero, then the

Markov chain is said to be ergodic.

Example 7.5 If a student did not took a course last semester then he would take the course this semester
with probability 30%. If he took the course last semester then he would not take the course this semester
with probability 60%. Find the probability that the student take the course.

Consider a Markov chain with states: 1 that the student fails to pass a course this year and 2 that he

passes the course this year. The corresponding transition matrix P =

[
0.7 0.3
0.6 0.4

]
is ergodic. Hence,

p1 + p2 = 1, 0.7p1 + 0.6p2 = p1; ⇒ p1 = 2p2 = 1/3.

Therefore, the probability that the student the course is 1/3. �
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Theorem 7.2 and Theorem 7.3 imply that every irreducible Markov

chain, in which all states are aperiodic, has a strictly positive sta-

tionary distribution. Indead¡ it is true even more, namely.

Theorem 7.4 A Markov chain is ergodic if and only if it is irre-

ducible and all its states are aperiodic.

Proof: To be included later. �

7.6 Exercises

Exercise 7.1 Given a Markov chain with the state space E = {1, 2, 3, 4, 5, 6, 7} and the transition matrix:

P =



0 1 0 0 0 0 0
1
2

1
2 0 0 0 0 0

0 0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2 0

0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


Draw the corresponding directed graph and

a) find an equivalence class of E consisting of intercommunicating recurrent states;

b) find an equivalence class of E consisting of intercommunicating transient states;

c) Find the period of each state in E;

d) Find a stationary probability distribution ~p = (p1, p2, . . . , p7) for the Markov chain.

Solution:

1

t
I1

2t��
��
?12

R
1
2

3t

R
1
2

-
1
2

4t
�

�
�

�
�	

1
2

?

1
2

5

t
I1

6

t 	
1

7

t
� 1

a) E1 = {6, 7} is a class consisting of intercommunicating recurrent states.

b) E2 = {3, 4, 5} is a class consisting of intercommunicating transient states.

c) Per(1) = Per(2) = 1.

Per(3) = Per(4) = Per(5) = 1.
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Per(6) = Per(7) = 2.

d) It can be done inside of any of our 3 classes. Let us do this in E1 = {6, 7}, so p1 = p2 = p3 = p4 =
p5 = 0.

~p = ~p · p⇒ (p6, p7) = (p6, p7) ·
[
0 1
1 0

]
⇒ (p6, p7) = (p7, p6)⇒ p6 = p7.

Since
7∑

k=1

pk = 1, we have ~p = (0, 0, 0, 0, 0, 12 ,
1
2). �

Exercise 7.2 Given P =

α α 0
0 α α
α 0 α

.

a) Find the value of α such that P is a transition matrix of a Markov chain (Xn)∞n=0.

b) Denote by {1, 2, 3} the state space of the Markov chain (Xn)∞n=0 from a).

(i) Is the Markov chain (Xn)∞n=0 ergodic?

(ii) Find the conditional probability of X2 = 3 given X0 = 1.

Solution:
a)

α+ α = 1⇒ α =
1

2
.

b) (i)

P 2 =

α α 0
0 α α
α 0 α

 ·
α α 0

0 α α
α 0 α

 =

 α2 2α2 α2

α2 α2 2α2

2α2 α2 α2

 .
P (2) = P 2 has all entries nonzero, hence (Xn)n is ergodic.

b) (ii)

P (X2 = 3|X0 = 1) = P
(2)
13 = [P 2]13 = α2 =

1

4
. �

Exercise 7.3 Given a Markov chain with the state space E = {1, 2, 3, 4, 5, 6, 7} and the transition matrix:

P =



0 1 0 0 0 0 0
1
2 0 1

2 0 0 0 0
0 0 0 1

2
1
2 0 0

0 0 0 0 1
2

1
2 0

0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


.

Draw the corresponding directed graph and then:

a) Find an equivalence class of E consisting of intercommunicating recurrent states.

b) Find two equivalence classes of E consisting of intercommunicating transient states.

c) Find the period of every state in E.

d) Find a stationary probability distribution ~p = (p1, p2, . . . , p7) for the Markov chain.
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Solution:

1

t
I

2t

R

-
3t

R

-
4t

�
�
�

�
�	 ?

5

t
I

6

t 	

7

t
�

a) For example, C1 = {6, 7}.

b) For example, C2 = {1, 2}, C3 = {3, 4, 5}.

c) Per(1) = Per(2) = 2.

Per(3) = Per(4) = Per(5) = 1.

Per(6) = Per(7) = 2.

d) C1 = {6, 7} is recurrent, so we may take a stationary state (p6, p7) of C1 which is (12 ,
1
2) and complement

it by p1 = p2 = p3 = p4 = p5 = 0, that is ~p = (0, 0, 0, 0, 0, 12 ,
1
2). �

Exercise 7.4 A homogeneous Markov chain is given by the following directed graph:

1

t
@
@
@
@
@R

1
2

-
1
2

2

t -
1
4��

��
?α

3

t
�

�
�

�
�	

α− 1
4

?

β

6

t 	
1

5

t
� 1 4

t�
γ ��
��

?1
2

a) Find values of α, β, and γ.

b) Write down the transition matrix of the Markov chain.

c) Find P (X2018 = 3|X2015 = 1).

d) Find periods of all 6 states.

e) Find a stationary probability distribution of the Markov chain.

Solution:
a)

α = 1− 1

4
=

3

4
; β = 1− (α− 1

4
) = 1− 1

2
=

1

2
; γ = 1− 1

2
=

1

2
. �

b)

P =



0 1
2 0 0 1

2 0
0 3

4
1
4 0 0 0

0 0 0 1
2

1
2 0

0 0 0 1
2

1
2 0

0 0 0 0 0 1
0 0 0 0 1 0

 �
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c)

P (X2018 = 3|X2015 = 1) =
1

2
· α · 1

4
=

1

2
· 3

4
· 1

4
=

3

32
. �

d) Since for all n we have p
(n)
11 = p

(n)
33 = 0, then Per(1) and Per(3) are undefined. Next, Per(2) = Per(4) = 1

and Per(5) = Per(6) = 2. �

e) C1 = {5, 6} is an equivalence class with respect to ←→, so we may take a stationary state (p5, p6) of
C1, that is (1/2, 1/2), and complement it by p1 = p2 = p3 = p4 = 0, obtaining

~p =

(
0, 0, 0, 0,

1

2
,
1

2

)
. �

Exercise 7.5 Given a directed graph:

1t��
��
?

α− 1
4

?

1
4

�

1
2 2t	

1
4

?

1
2

3

t�
1
4 ��
��

6α
4

t��
��
?1

a) Find the value of the parameter α for which the graph represents a Markov chain (Xn)∞n=0 with the
state space E = {1, 2, 3, 4}.

b Write the transition matrix P of the Markov chain (Xn)∞n=0 from a).

c Find the periods of states 1, 2, 3 and 4.

d Find the conditional probability of X2017 = 3 given X2015 = 2.

Solution:
a)
P (X1 = 1|X0 = 3) + P (X1 = 2|X0 = 3) + P (X1 = 3|X0 = 3) + P (X1 = 4|X0 = 3) = 1

‖ ‖ ‖ ‖
0 + 0 + α + 1/4 = 1

Hence α+ 1/4 = 1 and then α = 3
4 . �

b)

P =


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 =


1/2 1/4 0 1/4
1/2 0 1/2 0
0 0 3/4 1/4
0 0 0 1

 . �
c)

Per(1) = Per(2) = Per(3) = Per(4) = 1.

[Per(2) = GCD{2, 3, . . . } = 1]. �

d)

P (X2017 = 3|X2015 = 2) = P (X2 = 3|X0 = 2) = p
(2)
23 = [p2]13 =

1

2
· 0 + 0 · 1

2
+

1

2
· 3

4
+ 0 · 0 =

1

2
· 3

4
=

3

8
. �
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Exercise 7.6 A Markov chain (Xn)∞n=0 with a state space E = {1, 2, 3} is given by the following directed
graph:

1t��
��
6

α

J
J
J
J
Ĵ

1−α
2

	 α
2 t��
��

?13t��
��
6
1
2

�
1
2

a) Find the value of α.

b) Is the Markov chain ergodic? Explain

c) Calculate the 2-step transition matrix P (2) and find the conditional probabilities of X401 = 1 given
X399 = 2 and of X2017 = 3 given X2015 = 1.

Solution:
a)

α+
1− α

2
+ α = 1 ⇒ 2α+

1

2
− α

2
= 1 ⇒ 3

2
α =

1

2
⇒ α =

1

3
. �

b) There is no pass from 1 to 2. Hence p
(n)
21 = 0 for all n ≥ 1.

Therefore the Markov chain is not ergodic. �

c)

P =

1/3 1/3 1/3
0 1 0

1/2 0 1/2

 P (2) = P =

 5
18

4
9

5
18

0 1 0
5
12

1
6

5
12

 .
P (X401 = 1|X399 = 2) = P (X2 = 1|X0 = 2) = p

(2)
21 = 0.

P (X2017 = 3|X2015 = 1) = P (X2 = 3|X0 = 1) = p
(2)
12 =

5

18
. �
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8 Appendix

8.1 N0,1-distribution

Since pN0,1(t) is even, then FN0,1(−r) = 1 − FN0,1(r) for every r ∈ R.

So, we only include dates FN0,1(r) for r ≥ 0.
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PPPPPPPPPr
k ·∆r

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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