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Introduction

For an arbitrary chain I" and associative ring K with identity 1, the ring NT(I", K)
is generated by elements xe;; (x € K, i, j € I',i > j) with the usual rules of the
addition and multiplication of elementary matrices; if |I'| = n < oo, then we write
NT(n, K). Let R = NT(I', K). The adjoint group of the ring R is isomorphic
to the unitriangular group UT(I", K'). Structural connections between the adjoint
group G (R) and associated Lie ring A (R) of R are investigated in [4], see also [5].

Standard automorphisms and isomorphisms of the rings R, A(R) and the ad-
joint group G(R) were distinguished in [2-4], see also [1]. Let R’ = NT(, S)
for a chain 2 and an associative ring S with identity. By [4] and [2], if either
2 < |I'| < ooor K is aring with no zero-divisors, then every isomorphism between
rings R and R’ is standard; the same is true for their adjoint groups and associated
Lie rings at || > 4. It was shown in [3], for |['| < 4 there exist nonstandard
automorphisms of G(R) and A(R), even if the ring K is commutative. The aim of
this paper is to investigate isomorphisms in the exceptional cases.

Note that for I' = {1, 2} the ring R has zero multiplication and the adjoint
group G(R) is isomorphic to the additive group Kt of K. It follows that every
isomorphism @ of the additive group K determines an isomorphism of the ring R
by rule xe;; — x%es; (x € K). For a finite chain I, the adjoint group G(R) and
the associated Lie ring A(R) are nilpotent of the class |I'| — 1. Consequently, if
either G(R) >~ G(R') or A(R) >~ A(R’), then |2| = |I"|. Therefore our task is to
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investigate isomorphisms between the adjoint groups G(R), G(R’) and associated
Lie rings A(R) and A(R") at Q =T and [T'| = 3 or 4.

1. Certain Isomorphisms and the Case n = 3

First we need to define certain automorphisms and isomorphisms.

Let K and S be associative rings with identities R = NT(n, K) and Ry =
NT(n, S). Evidently, every ring isomorphism #: K — S determines an isomor-
phism ||a,,|| — [10(ayu)]| of the ring R onto Rg which is called an “S-ring” or
“ring” isomorphism as usual. The central automorphism of the ring R is an auto-
morphism acting like the identity, modulo the center. (See also [1, Lemma 1.1].)
Conjugation by unitriangular matrices and by invertible diagonal matrices over K
give “inner” and “diagonal” automorphisms of the ring R, respectively. In [2] all
isomorphisms between rings R and Ry are described and the following is proved.

LEMMA 1. Let K and S be associative rings with identities R = NT(n, K),
Rs = NT(n, S)andn > 2. If R >~ Ry, then K >~ S and every isomorphism of the
ring R onto Ry is a product of an inner, diagonal and central automorphisms of R
and a S-ring isomorphism.

By [2], G(R) =~ G(Rs) or A(R) >~ A(Rys) for n > 4 iff the rings K and
S are idempotent isomorphic, i.e. there exists some idempotent-ring isomorphism
between them. According to [2], “idempotent-ring” isomorphisms between rings
are a generalization of ring isomorphisms. However, every idempotent-ring iso-
morphism of a commutative ring is an isomorphism.

For n > 4 every isomorphism of G(R) onto G(Rs) (similarly, A(R) onto
A(Ry)) is a product of a diagonal automorphism, an automorphism of G(R) (resp.
A(R)), acting like the identity modulo R? and an isomorphism of G(R) (resp.
A(R)) which is induced by some idempotent-ring isomorphism of K onto S, see
[2]. Automorphisms of G(R) and A (R) acting like the identity modulo R? for all
n are described in [3].

On the other hand, for exceptional cases n = 3,4, there exist nonstandard
automorphisms of G(R) and A(R), by [3]. Note that each isomorphism of G (R)
or A(R) is uniquely determined by its actions on elementary matrices xe;; in which
the (i, j)-coefficient is equal to x and others are zero. Let K be a commutative ring
and o = [|a;;|| € GL(2, K). Then the following map:

my xeipi —> x(ajiex + appex),  xez — (det(a))xes,
i=1,2,x e K,

defines an automorphism of the Lie ring A(R) at n = 3. Similarly, the map

Mot Xeis1; — X(ajen + apen) +xVeyr,  xey — det(a)xes,
i=1,2,x€eKkK,



ISOMORPHISMS OF THE UNITRIANGULAR GROUPS 211

defines an automorphism of G(R) for maps ;: K — K with the following
condition:

(x + y)‘p” =xVi + y‘”" + aj1aipxy, x,yeK,i=1,2.
The following theorem describes isomorphisms for the exceptional case n = 3.

THEOREM 2. Let R = NT(@3, K) and Rs = NT(3, S). Let K and S be commuta-
tive rings. Then every isomorphism of G(Rs) onto G(R) (resp. A(Rs) onto A(R))
is a product of a ring isomorphism between them, a central automorphism and
some automorphism my (resp. 7)) of G(R) (resp. A(R)). In particular, G(R) =~
G(Rs) or A(R) >~ A(Ry) iff the rings K and S are isomorphic.

Proof. Recall that the adjoint multiplication o and the associated Lie multipli-
cation * of an arbitrary associative ring are defined by

aofB=ua+ B+ ap, ax B =aBf — Ba.

Consider an arbitrary isomorphism ¢ of G(Rg) onto G (R) or of A(Rg) onto A(R).
The action of ¢ on the set of generating elementary matrices

(xei11)? = x¥ey +x%ep +x%ey (x €8),i=1,2,

defines maps ¢;;, ¢; of the ring S onto K. Since ¢ (Se3;) = d((Rs)?) = R?> = Ke3
and the operations of addition and adjoint multiplication coincides on R?, there
exists an isomorphism ¢y of the additive group S onto K™ such that ¢ (xe3;) =
¢o(x)es; forall x € S. We obtain (xy)?0 = x?2yf1 _yb12x®1 (x y e ), since the
operations of Lie multiplication in the ring Rg and the commutator in the adjoint
group coincide.

Since K and S are commutative rings, we get (xy)?d = x%y® ford = 1% It
follows that S? = K and d is an invertible element of the ring K. Hence, the map
0: x — d~'x%(x € S) is an isomorphism of the additive group S* onto K*. The
equalities (xy)? = d~'(xy)? = d2x% y? = x%y? show that @ is an isomorphism
of the ring S onto K. Therefore, up to multiplication of ¢ by a ring automorphism
of the ring R, we may account that S = K and ¢ € Aut A(R) or ¢ € Aut G(R).

The equalities dx? = x™qa;; (x € S) are satisfied for a;; = 199 and d =
det||a;;||. Thus, o = ||a;;|| € GL(2, K). Because of the choice of ¢ we obtain as
in [3] that ¢ is a product of the automorphism 7, or r; (resp. of G(R) or A(R))
and a central automorphism of R. This completes the proof. O

Note that by Theorem 2, if K is an arbitrary domain of characteristic 2, then all
isomorphisms of G (Rg) onto G (R) are standard.



212 FERIDE KUZUCUOGLU

2. The Exceptional Case n = 4

Let K and S be associative rings with identities, R = NT(4, K) and Rg = NT(4, S).
In this section we describe all isomorphisms between the adjoint groups and asso-
ciated Lie rings of the rings R and Rg.

Consider an arbitrary isomorphism ¢ of G(Rg) onto G(R) or of A(Rgs) onto
A(R). Itis not difficult to show that R’ and the centralizer C(R?) = N3, = Kes +
Kes, + Key + Keyy are characteristic in the adjoint group and associated Lie ring
and also ¢[C(R§)] = C(R?). Therefore there exists an isomorphism #: ST — K+
such that (xe3)? = x’e;; mod R?,x € S. The element 1§ is invertible in K,
because efz * R = R?> mod R3. Consequently, e;bz = e3y, up to multiplication of ¢
by a diagonal, inner and central automorphisms of the ring R. Similarly, we define
2 x 2 matrix ||c;;|| over K by the equalities

6351 = cr1ez1 + Ci2e43, €f3 = 1621 + cpe43 (mod N3p).
By using the existence of the isomorphism ¢!, we get that the system of equations
dirc11 + dipcar = 8;1, cidin + cndin =8, i=1,2, (1)

can be solved in K for d;;. (;; is the Kronecker delta.) The ¢-invariance of funda-
mental relations between elementary matrices shows that

2¢ipKcip =0, i=1,2; (2)
e = x%yen, cn(xy)? = cpy’x?, 1§ =1k,
@)en =yx%n. en@y)’ =cnx’y? (x.y €. 3)

Now, it is not difficult to verify that the map
0 0 0
Xeyp —> X' Cr1€z1 + C12X " €43, Xez —> X ez,
xeg; — x'cyrear +cpxless, x €S, “4)

define an isomorphism of the Lie ring A (Rg) onto A (R) which acts like ¢, modulo
Rg. If ¢ is an isomorphism of G (Rg) onto G(R), then we get

ci2(2® =D = y(dii + d)lein =0 (2, y € K), i =12, (5)
In this case, there exists the following isomorphism of the adjoint group G (Ry):

0 0 0 60
Xey — X C1e1 + C12X eq3, Xeq3 —> X C1€21 + X eqs,

0 2 0 2 0
xe3p —> x'eyn + (x° —x)dncaes +cppdi (x° —x) e, x €8S. (6)

Note that if K is a commutative ring, then condition (2) coincides with 2¢;r¢;; =
0 (i = 1, 2) and the system of equations (1) is consistent. This means that ||c;;||
is an invertible matrix. In this case 6 is a ring isomorphism of K onto S, by (3)
and (1). Therefore, G(R) >~ G(Rs) or A(R) ~ A(Ry) iff the rings K and S are
isomorphic. Consequently, we have proved the following theorem:
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THEOREM 3. Let R = NT(4, K) and Rs = NT(4, S). If ¢ is an isomorphism
of A(Rg) onto A(R) (resp. G(Rs) onto G(R)) then there exist an isomorphism
0: ST — K% and 2 x 2 matrices ||c;j||, |d;;|| over K, satisfying the conditions
(1)—3) (resp. (1)-(3) and (5)), such that ¢ is equal to a product of the isomor-
phism (4) (resp. (6)), a diagonal automorphism and an automorphism of A(R)
(resp. G(R)), acting like the identity, modulo R*. In particular, G(R) ~ G(Rs) or
A(R) >~ A(Ry) for a commutative ring K iff the rings K and S are isomorphic.

If either the annihilator of the element 2(1x) in K is zero or K is a noncom-
mutative ring without zero-divisors, then for n = 4 each isomorphism ¢ of G (Ry)
onto G(R) or of A(Rg) onto A(R) is standard.
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