Isomorphisms of the Unitriangular Groups and Associated Lie Rings for the Exceptional Dimensions

FERIDE KUZUCUOĞLU

Department of Mathematics, University of Hacettepe, 06532 Beytepe, Ankara, Turkey. e-mail: feridek@hacettepe.edu.tr

Abstract. Isomorphisms between finitary unitriangular groups and those of associated Lie rings are studied. In this paper we investigate exceptional cases.

Mathematics Subject Classifications (2000): 16W20, 20H25.

Key words: radical ring, adjoint group, unitriangular group, associated Lie ring, isomorphism.

Introduction

For an arbitrary chain Γ and associative ring K with identity 1_K , the ring NT(Γ , K) is generated by elements xe_{ij} ($x \in K$, $i, j \in \Gamma$, i > j) with the usual rules of the addition and multiplication of elementary matrices; if $|\Gamma| = n < \infty$, then we write NT(n, K). Let $R = \text{NT}(\Gamma, K)$. The adjoint group of the ring R is isomorphic to the unitriangular group UT(Γ , K). Structural connections between the adjoint group G(R) and associated Lie ring $\Lambda(R)$ of R are investigated in [4], see also [5].

Standard automorphisms and isomorphisms of the rings R, $\Lambda(R)$ and the adjoint group G(R) were distinguished in [2–4], see also [1]. Let $R' = \operatorname{NT}(\Omega, S)$ for a chain Ω and an associative ring S with identity. By [4] and [2], if either $2 < |\Gamma| < \infty$ or K is a ring with no zero-divisors, then every isomorphism between rings R and R' is standard; the same is true for their adjoint groups and associated Lie rings at $|\Gamma| > 4$. It was shown in [3], for $|\Gamma| \le 4$ there exist nonstandard automorphisms of G(R) and $\Lambda(R)$, even if the ring K is commutative. The aim of this paper is to investigate isomorphisms in the exceptional cases.

Note that for $\Gamma = \{1, 2\}$ the ring R has zero multiplication and the adjoint group G(R) is isomorphic to the additive group K^+ of K. It follows that every isomorphism θ of the additive group K^+ determines an isomorphism of the ring R by rule $xe_{21} \to x^{\theta}e_{21}$ ($x \in K$). For a finite chain Γ , the adjoint group G(R) and the associated Lie ring $\Lambda(R)$ are nilpotent of the class $|\Gamma| - 1$. Consequently, if either $G(R) \simeq G(R')$ or $\Lambda(R) \simeq \Lambda(R')$, then $|\Omega| = |\Gamma|$. Therefore our task is to

210 FERIDE KUZUCUOĞLU

investigate isomorphisms between the adjoint groups G(R), G(R') and associated Lie rings $\Lambda(R)$ and $\Lambda(R')$ at $\Omega = \Gamma$ and $|\Gamma| = 3$ or 4.

1. Certain Isomorphisms and the Case n = 3

First we need to define certain automorphisms and isomorphisms.

Let K and S be associative rings with identities $R = \operatorname{NT}(n, K)$ and $R_S = \operatorname{NT}(n, S)$. Evidently, every ring isomorphism $\theta \colon K \to S$ determines an isomorphism $\|a_{uv}\| \to \|\theta(a_{uv})\|$ of the ring R onto R_S which is called an "S-ring" or "ring" isomorphism as usual. The central automorphism of the ring R is an automorphism acting like the identity, modulo the center. (See also [1, Lemma 1.1].) Conjugation by unitriangular matrices and by invertible diagonal matrices over K give "inner" and "diagonal" automorphisms of the ring R, respectively. In [2] all isomorphisms between rings R and R_S are described and the following is proved.

LEMMA 1. Let K and S be associative rings with identities R = NT(n, K), $R_S = NT(n, S)$ and n > 2. If $R \simeq R_S$, then $K \simeq S$ and every isomorphism of the ring R onto R_S is a product of an inner, diagonal and central automorphisms of R and a S-ring isomorphism.

By [2], $G(R) \simeq G(R_S)$ or $\Lambda(R) \simeq \Lambda(R_S)$ for n > 4 iff the rings K and S are idempotent isomorphic, i.e. there exists some idempotent-ring isomorphism between them. According to [2], "idempotent-ring" isomorphisms between rings are a generalization of ring isomorphisms. However, every idempotent-ring isomorphism of a commutative ring is an isomorphism.

For n>4 every isomorphism of G(R) onto $G(R_S)$ (similarly, $\Lambda(R)$ onto $\Lambda(R_S)$) is a product of a diagonal automorphism, an automorphism of G(R) (resp. $\Lambda(R)$), acting like the identity modulo R^2 and an isomorphism of G(R) (resp. $\Lambda(R)$) which is induced by some idempotent-ring isomorphism of K onto S, see [2]. Automorphisms of G(R) and $\Lambda(R)$ acting like the identity modulo R^2 for all R are described in [3].

On the other hand, for exceptional cases n=3,4, there exist nonstandard automorphisms of G(R) and $\Lambda(R)$, by [3]. Note that each isomorphism of G(R) or $\Lambda(R)$ is uniquely determined by its actions on elementary matrices xe_{ij} in which the (i, j)-coefficient is equal to x and others are zero. Let K be a commutative ring and $\alpha = ||a_{ij}|| \in GL(2, K)$. Then the following map:

$$\pi_{\alpha}^{\star}$$
: $xe_{i+1i} \to x(a_{i1}e_{21} + a_{i2}e_{32}), \quad xe_{31} \to (\det(\alpha))xe_{31},$
 $i = 1, 2, x \in K,$

defines an automorphism of the Lie ring $\Lambda(R)$ at n=3. Similarly, the map

$$\pi_{\alpha}$$
: $xe_{i+1i} \to x(a_{i1}e_{21} + a_{i2}e_{32}) + x^{\psi_i}e_{31}$, $xe_{31} \to \det(\alpha)xe_{31}$, $i = 1, 2, x \in K$,

defines an automorphism of G(R) for maps ψ_i : $K \to K$ with the following condition:

$$(x+y)^{\psi_i} = x^{\psi_i} + y^{\psi_i} + a_{i1}a_{i2}xy, \quad x, y \in K, i = 1, 2.$$

The following theorem describes isomorphisms for the exceptional case n = 3.

THEOREM 2. Let $R = \operatorname{NT}(3, K)$ and $R_S = \operatorname{NT}(3, S)$. Let K and S be commutative rings. Then every isomorphism of $G(R_S)$ onto G(R) (resp. $\Lambda(R_S)$ onto $\Lambda(R)$) is a product of a ring isomorphism between them, a central automorphism and some automorphism π_{α} (resp. π_{α}^{\star}) of G(R) (resp. $\Lambda(R)$). In particular, $G(R) \simeq G(R_S)$ or $\Lambda(R) \simeq \Lambda(R_S)$ iff the rings K and S are isomorphic.

Proof. Recall that the adjoint multiplication \circ and the associated Lie multiplication * of an arbitrary associative ring are defined by

$$\alpha \circ \beta = \alpha + \beta + \alpha \beta, \qquad \alpha * \beta = \alpha \beta - \beta \alpha.$$

Consider an arbitrary isomorphism ϕ of $G(R_S)$ onto G(R) or of $\Lambda(R_S)$ onto $\Lambda(R)$. The action of ϕ on the set of generating elementary matrices

$$(xe_{i+1i})^{\phi} = x^{\phi_{i1}}e_{21} + x^{\phi_{i2}}e_{32} + x^{\phi_i}e_{31}$$
 $(x \in S), i = 1, 2,$

defines maps ϕ_{ij} , ϕ_i of the ring S onto K. Since $\phi(Se_{31}) = \phi((R_S)^2) = R^2 = Ke_{31}$ and the operations of addition and adjoint multiplication coincides on R^2 , there exists an isomorphism ϕ_0 of the additive group S^+ onto K^+ such that $\phi(xe_{31}) = \phi_0(x)e_{31}$ for all $x \in S$. We obtain $(xy)^{\phi_0} = x^{\phi_{22}}y^{\phi_{11}} - y^{\phi_{12}}x^{\phi_{21}}$ $(x, y \in S)$, since the operations of Lie multiplication in the ring R_S and the commutator in the adjoint group coincide.

Since K and S are commutative rings, we get $(xy)^{\phi_0}d = x^{\phi_0}y^{\phi_0}$ for $d = 1^{\phi_0}$. It follows that $S^{\phi_0} = K$ and d is an invertible element of the ring K. Hence, the map $\theta \colon x \to d^{-1}x^{\phi_0}(x \in S)$ is an isomorphism of the additive group S^+ onto K^+ . The equalities $(xy)^{\theta} = d^{-1}(xy)^{\phi_0} = d^{-2}x^{\phi_0}y^{\phi_0} = x^{\theta}y^{\theta}$ show that θ is an isomorphism of the ring S onto K. Therefore, up to multiplication of ϕ by a ring automorphism of the ring S, we may account that S = K and $\phi \in \operatorname{Aut} \Lambda(R)$ or $\phi \in \operatorname{Aut} G(R)$.

The equalities $dx^{\phi_{ij}} = x^{\phi_0}a_{ij}$ ($x \in S$) are satisfied for $a_{ij} = 1^{\phi_{ij}}$ and $d = \det ||a_{ij}||$. Thus, $\alpha = ||a_{ij}|| \in GL(2, K)$. Because of the choice of ϕ we obtain as in [3] that ϕ is a product of the automorphism π_{α} or π_{α}^{\star} (resp. of G(R) or $\Lambda(R)$) and a central automorphism of R. This completes the proof.

Note that by Theorem 2, if K is an arbitrary domain of characteristic 2, then all isomorphisms of $G(R_S)$ onto G(R) are standard.

212 FERIDE KUZUCUOĞLU

2. The Exceptional Case n = 4

Let K and S be associative rings with identities, R = NT(4, K) and $R_S = NT(4, S)$. In this section we describe all isomorphisms between the adjoint groups and associated Lie rings of the rings R and R_S .

Consider an arbitrary isomorphism ϕ of $G(R_S)$ onto G(R) or of $\Lambda(R_S)$ onto $\Lambda(R)$. It is not difficult to show that R^i and the centralizer $C(R^2) = N_{32} = Ke_{31} + Ke_{32} + Ke_{41} + Ke_{42}$ are characteristic in the adjoint group and associated Lie ring and also $\phi[C(R_S^2)] = C(R^2)$. Therefore there exists an isomorphism $\theta \colon S^+ \to K^+$ such that $(xe_{32})^{\phi} = x^{\theta}e_{32} \mod R^2$, $x \in S$. The element 1_S^{θ} is invertible in K, because $e_{32}^{\phi} \star R = R^2 \mod R^3$. Consequently, $e_{32}^{\phi} = e_{32}$, up to multiplication of ϕ by a diagonal, inner and central automorphisms of the ring R. Similarly, we define 2×2 matrix $||c_{ij}||$ over K by the equalities

$$e_{21}^{\phi} = c_{11}e_{21} + c_{12}e_{43}, \ e_{43}^{\phi} = c_{21}e_{21} + c_{22}e_{43} \pmod{N_{32}}.$$

By using the existence of the isomorphism ϕ^{-1} , we get that the system of equations

$$d_{i1}c_{11} + d_{i2}c_{21} = \delta_{i1}, \qquad c_{12}d_{i1} + c_{22}d_{i2} = \delta_{i2}, \quad i = 1, 2,$$
 (1)

can be solved in K for d_{ij} . (δ_{ij} is the Kronecker delta.) The ϕ -invariance of fundamental relations between elementary matrices shows that

$$2c_{i2}Kc_{i1} = 0, \quad i = 1, 2;$$

$$(xy)^{\theta}c_{11} = x^{\theta}y^{\theta}c_{11}, \qquad c_{12}(xy)^{\theta} = c_{12}y^{\theta}x^{\theta}, \quad 1_{S}^{\theta} = 1_{K},$$
(2)

$$(xy)^{\theta}c_{21} = y^{\theta}x^{\theta}c_{21}, \qquad c_{22}(xy)^{\theta} = c_{22}x^{\theta}y^{\theta} \quad (x, y \in S).$$
 (3)

Now, it is not difficult to verify that the map

$$xe_{21} \to x^{\theta}c_{11}e_{21} + c_{12}x^{\theta}e_{43}, \qquad xe_{32} \to x^{\theta}e_{32},$$

 $xe_{43} \to x^{\theta}c_{21}e_{21} + c_{22}x^{\theta}e_{43}, \quad x \in S,$ (4)

define an isomorphism of the Lie ring $\Lambda(R_S)$ onto $\Lambda(R)$ which acts like ϕ , modulo R_S^2 . If ϕ is an isomorphism of $G(R_S)$ onto G(R), then we get

$$c_{i2}(z^2 - z)[y^2 - y(d_{1i} + d_{2i})]c_{i1} = 0 \quad (z, y \in K), i = 1, 2.$$
 (5)

In this case, there exists the following isomorphism of the adjoint group $G(R_S)$:

$$xe_{21} \to x^{\theta}c_{11}e_{21} + c_{12}x^{\theta}e_{43}, \qquad xe_{43} \to x^{\theta}c_{21}e_{21} + c_{22}x^{\theta}e_{43},$$

 $xe_{32} \to x^{\theta}e_{32} + (x^2 - x)^{\theta}d_{22}c_{21}e_{31} + c_{12}d_{11}(x^2 - x)^{\theta}e_{42}, \quad x \in S.$ (6)

Note that if K is a commutative ring, then condition (2) coincides with $2c_{i2}c_{i1} = 0$ (i = 1, 2) and the system of equations (1) is consistent. This means that $||c_{ij}||$ is an invertible matrix. In this case θ is a ring isomorphism of K onto S, by (3) and (1). Therefore, $G(R) \simeq G(R_S)$ or $\Lambda(R) \simeq \Lambda(R_S)$ iff the rings K and S are isomorphic. Consequently, we have proved the following theorem:

THEOREM 3. Let R = NT(4, K) and $R_S = NT(4, S)$. If ϕ is an isomorphism of $\Lambda(R_S)$ onto $\Lambda(R)$ (resp. $G(R_S)$ onto G(R)) then there exist an isomorphism θ : $S^+ \to K^+$ and 2×2 matrices $||c_{ij}||$, $||d_{ij}||$ over K, satisfying the conditions (1)–(3) (resp. (1)–(3) and (5)), such that ϕ is equal to a product of the isomorphism (4) (resp. (6)), a diagonal automorphism and an automorphism of $\Lambda(R)$ (resp. G(R)), acting like the identity, modulo R^2 . In particular, $G(R) \simeq G(R_S)$ or $\Lambda(R) \simeq \Lambda(R_S)$ for a commutative ring K iff the rings K and K are isomorphic.

If either the annihilator of the element $2(1_K)$ in K is zero or K is a noncommutative ring without zero-divisors, then for n=4 each isomorphism ϕ of $G(R_S)$ onto G(R) or of $\Lambda(R_S)$ onto $\Lambda(R)$ is standard.

Acknowledgement

I would like to thank Prof. V. M. Levchuk for helpful conversations during the preparation of this work.

References

- Kuzucuoglu, F. and Levchuk, V. M.: The automorphism group of certain radical matrix rings, J. Algebra 243(2) (2001), 473–485.
- 2. Kuzucuoglu, F. and Levchuk, V. M.: Isomorphisms of certain locally nilpotent finitary groups and associated rings, *Acta Appl. Math.* **82** (2004), 169–181.
- 3. Levchuk, V. M.: Connections between the unitriangular group and certain rings. II. Groups of automorphisms, *Siberian Math. J.* **24**(4) (1983), 543–557.
- 4. Levchuk, V. M.: Some locally nilpotent matrix rings, Mat. Zametki 42(5) (1987), 631-641.
- 5. Merzlyakov, Yu. I.: Equisubgroups of unitriangular groups: A criterion of self normalizability, *Russian Acad. Sci. Dokl. Math.* **50**(3) (1995), 507–511.