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Abstract. For any chain � the ring NT(�,K) of all finitary �-matrices ‖aij ‖i,j∈� over an asso-
ciative ring K with zeros on and above the main diagonal is locally nilpotent and hence radical. If
R′ = NT(�′,K ′), R = NT(�,K) and either |�| < ∞ or K is a ring with no zero-divisors, then
isomorphisms between rings R and R′, their adjoint groups and associated Lie rings are described.
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Introduction

Let K be an associative ring with identity and � be a chain (or linearly ordered
set) by the order relation �. The finitary unitriangular group UT(�,K) is always
locally nilpotent, however it coincides with the commutator subgroup for any dense
chain � and also it does not satisfy the normalizer condition for every infinite
chain �, see [13] and [21]. The aim of this paper is to investigate isomorphisms of
the groups UT(�,K) and the associated rings.

The ring NT(�,K) is generated by elements xeij (x ∈ K, i, j ∈ �, i > j)

with the usual rules of the addition and multiplication of elementary matrices. Set
R = NT(�,K). In [11–13] the unitriangular group UT(�,K) is considered as the
adjoint group G(R) of the ring R. (The map α → e + α (α ∈ R) for the identity
�-matrix e is a well-known isomorphism between them.) Automorphisms of G(R)

and those of the associated Lie ring �(R) of R are described if either |�| < ∞ or
K is arbitrary ring with no zero-divisors, see [10, 12, 13]. In Remark 2.7 we define
a standard isomorphism of G(R) (similarly, �(R)) as a product of some main
isomorphisms. Let f be an idempotent in the center of K and S be a ring. Any
isomorphism θ of the additive group K+ of K onto S+ with θ(1K) = 1S inducing
an isomorphism of the ideal f K and an anti-isomorphism of (1K − f )K will be
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called an f -isomorphism or idempotent isomorphism of the ring K. It determines
an ‘idempotent S-ring isomorphism’ of G(R) (resp. �(R)) by

xeij �→ θ(xf )eij − θ(x − xf )ej ′i′ (x ∈ K, i, j ∈ �, i > j) (1)

for any anti-automorphism ′ of the chain �, see [10] and [12]. Rings K and S are
called idempotent isomorphic, if there exists some idempotent isomorphism be-
tween them. Evidently, every ring isomorphism θ : K → S and chain isomorphism
(or isometry) ′: � → � induce, respectively, a ‘S-ring isomorphism’ xeij → xθeij

and ‘�-chain isomorphism’ xeij → xei′j ′ (x ∈ K, i, j ∈ �, i > j) of the ring R.
Also, the opposite isomorphism, a central (which acts like the identity, modulo the
center), hypercentral of height � 3 and triangular automorphisms of G(R) (resp.
�(R)) will be use in the paper. We now formulate the main result.

MAIN THEOREM. Let K and S be associative rings with identities, � and � be
chains, R = NT(�,K), RS = NT(�, S) and |�| > 2. Then the following hold:

(i) If R � RS and either |�| < ∞ or K is a ring with no zero-divisors, then
K � S, � � � and every isomorphism of the ring R onto RS is a product of a
triangular and central automorphisms of R, an �-chain and S-ring isomorphisms.

(ii) If K is a ring with no zero-divisors, |�| > 4 and there exists an isomorphism
ψ of G(R) onto G(RS) or of �(R) onto �(RS), then ψ is a standard isomorphism
and either � � �, K � S or � � �op, K � Sop.

(iii) For 4 < |�| < ∞ the adjoint groups G(R) and G(RS) or associated Lie
rings �(R) and �(RS) are isomorphic if and only if rings K and S are idempotent
isomorphic and |�| = |�|; every isomorphism between them is standard.

Note that for � = {1, 2} rings R and �(R) have zero multiplication, G(R) �
R+ � K+ and every isomorphism θ of the additive group K+ determines an
isomorphism of the ring R by rule xe21 → xθe21 (x ∈ K). By Remark 3.4, for
|�| = 3, 4 there exist nonstandard automorphisms of G(R) and �(R).

In the case � = � and K = S main theorem describes Aut R, Aut G(R) and
Aut �(R). Automorphisms and isomorphisms of classical linear groups have been
under active research for a long time, see surveys [20, 2, 4, 1, 17]. The unitriangular
group UT(�,K) (it is a π -group for char K �= 0 and π = π(char K)) of any finite
degree |�| over any finite field is a Sylow subgroup of the general linear group
and its automorphisms were studied in [22, 23, 10, 12, 19, 24, 18]. Main results
of [12, 13] are obtained by using close structural connections between G(R) and
�(R), see also [11], [8, §1] and [25]. Methods and results of [12] were extended to
all Chevalley groups in [14, 15] and to certain radical matrix rings in [9, 16]. In the
present paper this approach is also used to investigate of isomorphisms of G(R)

and �(R) for R = NT(�,K).
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1. Automorphisms and the Central Series

In this section we introduce certain automorphisms and terminology. Henceforth,
K denotes an associative ring with identity 1K and � a chain of order > 2. Denote
by j+, the direct successor of j in �, i.e. the first element of the subset {y ∈ � |
j < y}; if it does not exist, then we set j+ = j . Similarly, by using the direct
predecessor of j , the element j− is also defined. If j < i, then we write j � i for
i = j+, and otherwise j 	 i. By [7, p. 209], a proper subset X of � is said to be
an initial segment if for every x ∈ X and y ∈ � with y < x we have y ∈ X. We
denote by [i, j ], the segment {k ∈ � | i � k � j}, by p and q, the first and the
last element of � (if they exist), respectively. For �-matrices ‖aij ‖ with i, j ∈ �

we use the standard matrix notation.
Recall that the adjoint multiplication ◦ and the associated Lie multiplication ∗

of an arbitrary associative ring are defined by α ◦ β = α + β + αβ and α ∗ β =
αβ − βα, respectively. Let R = NT(�,K) and �(R) be the associated Lie ring
of R. Since the ring R is locally nilpotent, (e − β)−1 = e + β + β2 + β3 + · · ·
for all β ∈ R. Thus, (R, ◦) is a group (the adjoint group of R) which we denote
by G(R). The adjoint conjugation by an element −β of R coincides with ordinary
conjugation

(e − β)α(e − β)−1 = α + (α ∗ β)(e − β)−1, α ∈ R.

This gives an inner automorphism of R. We now consider its generalization. It
is easy to see that all triangular �-matrices ‖aij ‖ (with aij = 0 for i < j ) over
K having a finite number of nonzero elements in each row and column form a
ring with identity with respect to the usual matrix addition and multiplication. For
arbitrary invertible �-matrix γ of this ring the conjugation α → γ αγ −1 (α ∈ R)

is a ‘triangular’ automorphism of the ring R or a ‘diagonal’ automorphism, if γ is
a diagonal �-matrix. If γ − e has zero main diagonal, then the conjugation by γ

is an automorphism which acts like an inner automorphism of R on each finite set
and, therefore, it is a ‘locally inner’ automorphism of R in according to [3].

We now describe the central series and the central automorphisms.

LEMMA 1.1. The center of the ring R is nonzero if and only if the chain �

contains the first element p and the last element q. If p, q ∈ � and m is a pos-
itive integer, then mth hypercenter of G(R) and �(R) are generated by the sets
Keij (j < i) with |[p, j ]| + |[i, q]| � m + 1.

Proof. It is clear for a finite chain �. In general case we assume that the center
of R contains nonzero element α. Then there exists a finite subchain �1 of �

satisfying α ∈ NT(�1,K). For every such subchain the element α is in the center
of NT(�1,K) which has form Keij . Evidently, it is possible only if p, q ∈ � and
equalities i = q and j = p are satisfied. In particular, the center of R is zero if and
only if the chain � has no first or last element. By induction on m we obtain the
second statement of the lemma. The lemma is proved. �

Let �0 = {j ∈ � | j+ �= j}. Clearly, �0 = ∅ if and only if the chain � is dense.
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LEMMA 1.2. The subgroup of the central automorphisms of the ring R is non-
identity if and only if p, q ∈ � and �0 �= ∅. It has a decomposition in the Cartesian
product of |�0| subgroups which are isomorphic to the additive group (End(K+))+.

Proof. Suppose that p, q ∈ � and, therefore, the center of the ring R coincides
with Keqp. It coincides also with the annihilator {α ∈ R | αR = Rα = 0} of R.
Consequently, the restriction on R2 of an arbitrary central automorphism σ of R

is identity. For every j ∈ �0 the equalities (σ − 1)(xej+,j ) = σj (x)eqp (x ∈ K)

defines an additive map σj : K → K. It is clear that (σ + µ)j = σj + µj .
Conversely, for every collection of endomorphisms σj of K+ with j ∈ �0 the map

α → α +
∑
j∈�0

σj (aj+,j )eqp (α = ‖akm‖ ∈ R)

determines an automorphism of R by [9, Lemma 1.1]. This completes the proof. �
Consider hypercentral automorphisms of G(R) and �(R). Let m be a positive

integer and mth hypercenter does not coincide with R. According to [14, 15], an
automorphism is called hypercentral of height � m if it acts like the identity,
modulo the mth hypercenter. By [12, 13], in the conditions of Main Theorem on K

and �, every hypercentral automorphism of �(R) is a product of certain inner and
central automorphisms and the following automorphisms:

xekp → (ekp + aeqk)x (x ∈ K) and
xeqt → x(eqt + betp) (x ∈ K),

(2)

for p � k < q, a(K ∗ K) = 0 and p < t � q, (K ∗ K)b = 0, respectively (the
remaining elements xeuv are fixed);

xekp → (ekp + ceqm)x, xemp → (emp + ceqk)x (x ∈ K)

and xeqt → x(eqt + desp), xeqs → x(eqs + detp) (x ∈ K),
(3)

for p � k � m < q, 2c = c(K ∗ K) = 0 and p < s � t � q, 2d = (K ∗ K)d = 0,
respectively. Also, the same is true for the adjoint group G(R), however, the main
hypercentral automorphisms of G(R) act like an automorphism (2), modulo the
center, or (3), modulo second hypercenter, and elements a, b, c and d of K have
additional restrictions.

The following lemma describes the lower central series.

LEMMA 1.3. The lower central series of G(R) and of �(R) coincide with the
series R ⊃ R2 ⊃ R3 ⊃ · · ·. The intersection of all members of this series is
generated by the sets Keij (j < i) with an infinite segment [j, i]. In particular, the
equality R = R2 is satisfied if and only if the chain � is dense.

Proof. Straightforward. We note only that the inclusion eij ∈ R2 for i, j ∈ � is
satisfied if and only if there exists k ∈ � such that j < k < i. �
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2. Certain Ideals and Isomorphisms

Let G(RS) � G(R) or �(RS) � �(R) for the ring RS = NT(�, S) with some
chain � and associative ring S with identity. The adjoint group and the associated
Lie ring of R are generated by subsets Keij , i, j ∈ �, j < i. The normal closure
of Keij in G(R) and the minimal Lie ideal in �(R) containing Keij coincide with

Nij = 〈Keuv | v < u, i � u, v � j〉 (i, j ∈ �).

The analoguos ideal of the ring RS for k,m ∈ � is denoted by Nkm(S). Its ψ-
image relative to any isomorphism ψ of G(RS) onto G(R) or of �(RS) onto �(R)

is an ideal of the Lie ring �(R). It shows

LEMMA 2.1. A subset of R is a normal subgroup of the adjoint group G(R) if
and only if it is an ideal of the associated Lie ring �(R).

Proof. It is proved in [13, Corollary 1] even for arbitrary associative ring K with
K = K2, in particular, for a ring K with identity. (See also [8, §1].) �

Denote by �̃, the set of initial segments of �. Putting T = � \ T we set

NV T = 〈Kekm | k ∈ V, m ∈ T , m < k〉, NT = NT T , V , T ∈ �̃.

LEMMA 2.2. Let R = NT(�,K), RS = NT(�, S) and ψ be an isomorphism
of G(RS) onto G(R) or of �(RS) onto �(R). Let [NT (S)]ψ = NT ‘, T ∈ �̃,
for some bijective map ‘ of �̃ onto �̃. Then there exists an isomorphism or an
anti-isomorphism ‘ of the chain � onto � such that the ideal [Nij (S)]ψ coincides,
respectively, with Ni‘j ‘ or Nj ‘i‘ for all i, j ∈ �, j < i. If ψ is an isomorphism of
the ring R, then ‘ is an isomorphism of the chain �.

Proof. Choose arbitrary segments V, T ,L ∈ �̃ with V ⊂ T ⊂ L. The ψ-
invariance of the inclusion NT (S) ⊃ NV (S) ∩ NL(S) gives NT ‘ ⊃ NV ‘ ∩ NL‘ and,
therefore, V ‘ ⊂ T ‘ ⊂ L‘ or V ‘ ⊃ T ‘ ⊃ L‘, see Figure 1.

The relation ⊂ for segments determines a linear ordering of �̃ and �̃. Fixing
two of three segments V, T ,L and varying the third one in �̃, we easily deduce
that ‘ is an isomorphism or an anti-isomorphism of the chain �̃ onto �̃. If ψ is an
isomorphism of the ring R, then the ψ-invariance of relations NT (S)NL(S) = 0
and NL(S)NT (S) = NT (S) ∩ NL(S) for T ⊂ L shows that ‘ is an isomorphism of
the chain �̃ onto �̃. The segment {p} for p ∈ � is the first element of �̃. Therefore
there exists the first or last element r of � such that [Nrr(S)]ψ = Npp and we set
r‘ = p. Similarly, we define inverse image of the last element of �.

Note that the centralizer C(NV T ) of NV T in R can be written in the form

C(NV T ) = NT V , T , V ∈ �̃.

Let T be the initial segment of � with the last element i which is not first or last
in �. Then there exists the predecessor L of T in �̃ with L ∩ T = {i} and

Nii = NL ∪ NT = NLT = C(NL ∩ NT ), C(Nii) = NL ∩ NT = NT L.
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Figure 1.

Also, the intersection of inverse images of L and T in � consist of unique element
m and we set m‘ = i. Evidently, ‘ is an isomorphism or an anti-isomorphism of
the chain � onto � and [Nmm(S)]ψ = Nm‘m‘ for all m ∈ �. It remains to note that
Nij = Nii ∩ Njj for j < i. The lemma is proved. �
LEMMA 2.3. Let RS = NT(�, S) and ψ be an isomorphism of G(RS) onto G(R)

or of �(RS) onto �(R). If ψ[Nij (S)] = Nij for all i, j ∈ �, j < i, then ψ

is an isomorphism of the ring RS which is equal to a product of some K-ring
isomorphism of RS onto R, triangular and central automorphisms of R.

Proof. The ideals Nij and Nij (S) with j < i have zero mulltiplication and,
therefore, ψ is additive on Nij (S). Consequently, ψ preserves the relations

xeij ◦ yeij = xeij + yeij = (x + y)eij (i, j ∈ �, x, y ∈ S)

of RS . Choose arbitrary matrices α ∈ Nij (S) and β ∈ Nkm(S), m < k. Evidently,
the annihilator of the intersection Nij ∩Nkm in R contains Nij and Nkm; the same is
true for RS . Therefore the commutator [α, β] in the adjoint group G(RS) coincides
with the Lie product α ∗ β. Also, they coincide with αβ for k � i (because we
have NkmNij = 0 in R and the same in RS) and with −βα for i � k. It follows the
equality αψβψ = (αβ)ψ , in particular, (xeij )

ψ(yekm)ψ = [(xeij )(yekm)]ψ . Since
ψ preserves all basic relations between elementary matrices of the ring RS , it is an
isomorphism of RS onto the ring R.

Let Qij be the ideal R∗Nij of the ring R; similarly, the ideal Qij (S) of RS is de-
fined. Since ψ[Qij (S)] = Qij , the equalities (xeij )

ψ = xσij eij (mod Qij ), x ∈ S,
define some isomorphisms σij (i, j ∈ �, j < i) of S+ onto K+. The ψ-invariance
of relations xyeik = (xeij )(yejk) (mod Qik) of RS implies that (xy)σik = xσij yσjk .
In particular, K = Kσik = dij K = Kdjk for dij = (1S)

σij (j < i) and hence all
elements dij of K are invertible. Fixing m ∈ � we may assume, up to multiplication
of ψ by a diagonal automorphism of R, that dim = dmk = 1K . It follows that all
elements dij coincide with 1K . Therefore all maps σij coincide between them, and
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also σij is an isomorphism of the ring S which induces a K-ring isomorphism τ

of the ring RS . Then τ−1ψ is an automorphism of the ring R having the identity
restriction on every ideal Nij , modulo Qij . By (e) in the proof of Theorem 3 [13],
such automorphism is a product of some locally inner and central automorphisms
of R. The lemma is proved. �

We now need a description of maximal Abelian ideals of �(R). Since C(NT ) =
C(NT T ) = NT , the ideal NT of R for any T ∈ �̃ (in particular, Nij for j � i) is
maximal Abelian.

Let (K,K) be the ring of all 1 × 2 matrices over K with the multiplication
(a, b)(c, d) = (bc, da) and usual addition. (This ring is simple for any simple ring
K.) Every maximal commutative subset of the ring (K,K), different from (K, 0)

and (0,K), can be written in the form {(x, xν) | x ∈ F } for some nonzero additive
subgroup F of K and an isomorphism ν of F into K+ with xνy = yνx (x, y ∈ F).
If p, q ∈ �, then

C(Nii) + {xeip + xνeqi | x ∈ F }, p < i < q, (4)

is a maximal abelian ideal of R by [11, Lemma 8]. Analogously, if maps λ,µ and
an isomorphism ν of an additive subgroup F of K into K+ satisfy the conditition
yνxz + zνxy = 0, x ∈ K, y, z ∈ F (in particular, 2K = 0), then

C(Nmk) + {yemp + (yλ + xz)ekp + (yµ − zνx)eqk + yνeqm |
x ∈ K, y, z ∈ F } (5)

is an Abelian ideal of the Lie ring �(R) for p < k � m < q by [11, Lemma 10].

LEMMA 2.4. Let K be a ring with no zero-divisors. Then every maximal Abelian
ideal of the ring R coincides with NT for T ∈ �̃ or with (4). A maximal Abelian
ideal of the Lie ring �(R) is either an ideal of the ring R or |�| > 3, 2K = 0 and
it has the form (5).

Proof. It had been shown in [11, §3] and [13, Theorem 2]. �
COROLLARY 2.5. The ideals NT (T ∈ �̃) of the ring R exhaust all maximal
Abelian ideals of R with zero multiplication.

LEMMA 2.6. Let R = NT(�,K), RS = NT(�, S) and ψ be an isomorphism of
G(RS) onto G(R) (or of �(RS) onto �(R)). If K is a ring with no zero-divisors
and |�| > 4, then [NT (S)]ψ = N

χ

T ‘ (T ∈ �̃) for some bijective map ‘ of �̃ onto �̃

and hypercenter automorphism χ of height � 3 of G(R) (resp. �(R)).
Proof. If the center of R is zero, then [NT (S)]ψ = NT ‘ (T ∈ �̃) for some

bijective map ‘: �̃ → �̃, by Lemmas 1.1 and 2.4. Therefore we may assume that
the center of R is nonzero and hence the chain � contains first and last elements by
Lemma 1.1; of course, the same is true for the ring RS .
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The mth hypercenter of R is denoted by Zm. Let {r, t} be the subset of � con-
sisting of the first and last elements of �. Then [Nrr(S) + Ntt(S)]ψ = Npp + Nqq

because the Lie ideal Npp + Nqq of R (similarly, Nrr(S) + Ntt(S) of RS) which
is generated by two maximal Abelian ideals with the intersection coinciding with
the center is unique, by Lemma 2.4. Putting B = [Nrr(S)]ψ we may assume that
every (i, p)-projection of B (i ∈ �,p < i) is nonzero. By Lemma 2.4, it follows
the equality B = Npp, modulo Z3 ∩ (Npp + Nqq). If Npp + Z2 does not contain
B, then Z3 �= Z2 and B has the form (5) with an isomorphism ν of an additive
subgroup F of K into K+ and p � k � m < q. Since ψ induces an isomorphism
of the quotient-ring RS/R

2
S and |�| > 4, we get F = K, yν = cy (y ∈ K)

and 2c = c(K ∗ K) = 0 for c = 1ν . Therefore hypercentral automorphism (3) of
�(R) is determined. If ψ is an isomorphism of G(R), then the additional condition
c(x2 − x)(y2 − y) = 0 (x, y ∈ K) is satisfied; conversely, for such element c of K

the map

xekp → (ekp + ceqm)x, xemk → xemk + c(x2 − x)eqk,

xemp → cxemp + cxeqk + cx2eqp (x ∈ K)

is a hypercentral automorphism of G(R) [12, §1]. Up to multiplication of ψ by a
hypercenter automophism of height � 3, we obtain B = Npp, modulo Z2. Also,
up to multiplication of ψ by a hypercenter automophism of height � 2 (of the
form (2) for �(R)), we obtain [Nrr(S)]ψ = Npp and similarly, [Ntt(S)]ψ = Nqq .
Consequently, by Lemma 2.4 there exist some bijective map ‘ of �̃ onto �̃ such that
the equality [NT (S)]ψ = NT ‘ are satisfied for all T ∈ �̃. The lemma is proved. �

Remark 2.7. Every chain � is anti-isomorphic to the ‘opposite’ chain �op, i.e.
the set � by the order relation which is opposite to one in the chain �. Denote
by Sop, the opposite ring of S, see Exercise 17 in [5, p. 122]. It is clear that the
map xeij → −xeji (x ∈ S, i, j ∈ �, j < i) admits extension to an isomor-
phism of G(RS) onto G[NT(�op, Sop)] and to an isomorphism of �(RS) onto
�[NT(�op, Sop)]. This isomorphism is said to be opposite. Set (�1, S1) = (�, S)

for � � � and otherwise (�1, S1) = (�op, Sop). An isomorphism of G(R) (simi-
larly, �(R)) is said to be standard if it is a product of some hypercentral of height
� 3 and triangular automorphisms and an idempotent S1-ring isomorphism of
G(R) (resp. �(R)), an �1-chain isomorphism of the ring NT(�, S1) and, finally, an
isomorphism τ of G[NT(�1, S1)] onto G(RS) (resp. �[NT(�1, S1)] onto �(RS)),
which is the identity map for � � � and otherwise it is the opposite isomorphism.

EXAMPLE 2.8. Let � = [a, b) and � = (c, d] be nonempty subchains of the
usual chain of rational or real integers. Evidently that the chains � and � are anti-
isomorphic but not isomorphic. Therefore there exists a standard isomorphism
between the adjoint groups G(R) and G(RS) or between Lie rings �(R) and
�(RS) if and only if K � Sop.

We now consider the case of a ring K with no zero-divisors in the main theorem.
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THEOREM 2.9. Let R = NT(�,K), RS = NT(�, S), K be a ring with no
zero-divisors and |�| > 4. If there exists an isomorphism ψ of G(R) onto G(RS)

or of �(R) onto �(RS), then � � �, K � S or � � �op, K � Sop, and the
isomorphism ψ is standard.

Proof. Assume that there exists an isomorphism ψ of G(R) onto G(RS) (resp.
of �(R) onto �(RS)) and, therefore, � � � or � � �op by Lemmas 2.6 and 2.2.
Let (�1, S1) and τ be as in Remark 2.7, so � � �1. By Lemmas 2.6 and 2.2,
there exists �1-chain isomorphism σ of the ring NT(�, S1) such that the ideal
στψ−1[Nij (S1)] (i, j ∈ �, j < i) of �(R) coincides with the image of Nij relative
to some hypercentral automorphism of G(R) (resp. of �(R)). By Lemma 2.3,
στψ−1 = θ−1λ−1χ−1 for a hypercentral automorphism χ of heihgt � 3, a tri-
angular automorphism λ and a S1-ring isomorphism θ of G(R) (resp. �(R)). To
complete the proof it remains to note that the following diagram is commutative:

G(R)
χ−→ G(R)

λ−→ G(R)� ψ

� θ

G(RS)
τ←− G[NT(�1, S1)] σ←− G[NT(�, S1)]

�

3. The Proof of the Main Theorem

Firstly, in this section we will prove the following theorem.

THEOREM 3.1. Let R = NT(�,K), RS = NT(�, S) and � be a finite chain of
order > 4. The adjoint groups G(R) and G(RS) or associated Lie rings �(R) and
�(RS) are isomorphic if and only if rings K and S are idempotent isomorphic and
|�| = |�|; every isomorphism between them is standard.

We need the following characterization of the one-sided Peirce decompositions.

LEMMA 3.2. Let K be an associative ring with identity. Let K = A1 + A2 =
B1 + B2 and AiBi = 0 for some subsets Ai, Bi of K, i = 1, 2. Then there exists
an idempotent f of K such that A1 = Kf , A2 = K(1 − f ), B1 = (1 − f )K and
B2 = f K. If Kf = f K, then an idempotent f is in the center of K.

Proof (see [12, Lemma 4]). By hypothesis, 1 = f1 + f2 = g1 + g2 for some
elements fi ∈ Ai, gi ∈ Bi . They satisfy the equations

f1 = f1(g1 + g2) = f1g2 = (f1 + f2)g2 = g2, f2 = g1,

f1 − f 2
1 = f1(1 − f1) = f1f2 = f1g1 = 0.

Consequently, f1 is an idempotent and Ai = Ai(g1 + g2) = Ai(1 − gi) = Aifi

for i = 1, 2. Since the sum Kf1 + K(1 − f1) = K is direct [4, Sect. 3.7], we get
Ai = Kfi . Similarly, Bi = (1 − fi)K, i = 1, 2. Thus, the first assertion of the
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lemma holds for f = f1. Let f K = Kf and x ∈ K. Then yf = f x, xf = f z for
some elements y, z ∈ K. Hence, f x = (yf )f = f xf = f (f z) = xf , i.e., f is a
central idempotent. This proves the lemma. �
LEMMA 3.3. Let � be a finite chain {1, 2, . . . , n} and ‘ be an anti-automorphism
of �. If 1 � j < n, 1 < i � n, then Nj ‘,j = C(Rj), the ideal Nij coincides with
the intersection of the left annihilator of Rj and the right annihilator of Rn−i in R

and also

C(Rn−j ) = C(Rn−j ) ∩ R2 + C(Rn−j−1) + Nj+1j + Nj ′,j ′−1,

n − j � j < n. (6)

Proof. The power Rj is additively generated by the sets Keuv with u − v � j .
It is easy to see that the left annihilator of Rj and the right annihilator of Rn−i in
R coincide with N2j and Nin−1, respectively. It is clear that Nij = Nin−1 ∩ N2j .
The formula of the centralizer C(NV T ) = NT V from Section 2 gives the equality
C(Nij ) = Nj+1,i−1. Evidently, the map m → n+1−m, 1 � m � n, is the unique
anti-automorphism of the chain �. It follows the equalities Nj ‘,j = C(Nj+1,n−j ) =
C(Rj) and (6). The lemma is proved. �

Proof of Theorem 3.1. Let R be a ring NT(�,K) with a finite chain � and
RS = NT(�, S). If G(R) � G(RS) or �(RS) � �(R), then |�| = |�| by Lemma
1.3; for a finite chain � it means that � � �. We now may assume (with using a
chain isomorphism) that � = � and � coincides with the usual chain {1, 2, . . . , n}.
In this case we may write R = NT(n,K) and RS = NT(n, S), as usual.

Investigate arbitrary isomorphism ψ of G(RS) onto G(R) or of �(RS) onto
�(R). Let n > 4 and H(i) = Ni+1i (S)ψ, 1 � i < n. By (6), the sum of (i + 1, i)-
projections of H(i) and H(n−i) coincides with K. If n = 2m, then m‘ = m + 1
and by Lemma 3.3, H(m) = [C(Rm

S )]ψ = C(Rm) = Nm+1m. Choose arbitrary m

with n − m < m < n. Since H(i) is an (maximal) abelian ideal of �(R), we have
H(i) � (H (i) ∩ Kem1) = 0 for i = m,n − m. Denote by H(i)

uv , the (u, v)-projection
of H(i), i.e., the set of all (u, v)-coefficients of matrices in H(i). It is not diffucult
to show that H

(i)

m‘,m‘−1em1 ⊂ H(i). Therefore we get

H
(i)

m+1mH
(i)

m‘,m‘−1 = 0, K = H
(m)

i+1i + H
(n−m)

i+1i , i = m,n − m.

Consequently, by Lemma 3.2, H(i)

m+1m = Kfi and H
(i)

m‘,m‘−1 = fn−iK(i = m,n − m)

for an idempotent fm of K and fn−m = 1K − fm. Using that H(i) is an Abelian
ideal of �(R), for m > n − m + 1 (= m‘) we get

H(i) ∩ Kem1 = fn−iKem1, H (i) ∩ Kenm‘ = Kfmenm‘

and hence KfmK ⊆ fmK; similarly, KfmK ⊆ Kfm. Therefore, Kfm = fmK and
fm is a central idempotent by Lemma 3.2. Since the Lie product H(m+1)∗H(n−m) is
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congruent to zero modulo R3 for n−m < m < n−1, we have that fm(1−fm+1) =
fm+1(1 − fm) = 0 and fm = fm+1. Consequently, we have proved the existence of
an idempotent f in the center of the ring K such that

ψ(xei+1i ) = µi(x)ei+1i − νi(x)ei‘,i‘−1(mod R2), x ∈ S, 1 � i < n,

for some homomorphisms µi : S+ → f K and νi : S+ → (1K −f )K of the additive
group S+. Also we get

(Ni+1i (S))ψ = H(i) = f Ni+1i + (1 − f )Ni‘,i‘−1, i = 2, 3, . . . , n − 2.

For i = 1 and i = n − 1 these equations are also valid modulo R2.
Considering the product Hi ∗ H(i−1) (1 < i < n), we obtain, modulo R3,

f Kei+1i−1 + (1K − f )Kei‘+1,i‘−1 = ψ(ei+1i ) ∗ H(i−1) = H(i) ∗ ψ(eii−1)

because the commutation [ , ] in the adjoint group of R and Lie multiplication ∗
of R coincides, modulo R3. Now, it is easy to verify that the elements of the form
µi(1S) + νj (1S) are invertible in the ring K. Therefore, up to multiplication by a
diagonal automorphism of the ring R, the isomorphism ψ satisfies the additional
condition ψ(ei+1i) = f ei+1i − (1K − f )ei‘,i‘−1, modulo R2, for 1 � i < n and
ν1 = ν2 = · · · = νn −1. Since (R2

S)
ψ = R2 and f K ∩(1K −f )K = 0, the equality

µ1(a) + ν1(a) = 0 (a ∈ S) gives a = 0. Therefore µ1 + ν1 is an isomorphism of
the additive group S+ onto K+.

It is easy to verify that for any g-isomorphism σ of the ring S onto K with an
idempotent g in the center of S the map σ−1 is an gσ -isomorphism of the ring K

onto S. Let θ = (µ1 + ν1)
−1 and f θ = g. Since f K ∩ (1 − f )K = 0 we have

f = θ−1(g) = µ1(g) + ν1(g) = µ1(g) and ν1(g) = 0. Therefore,

θ−1(g2) = µ1(g)2 + ν1(g)2 = f 2 = f = µ1(g) = θ−1(g),

θ−1(gS) = µ1(gS) + ν′
1(gS) = µ1(g)f K

= f 2K = Kf 2 = µ1(Sg) = θ−1(Sg).

So g is an idempotent in the center of the ring S, by Lemma 3.2, and θ−1 is a
g-isomorphism of the ring S onto K. Consequently, θ is an f -isomorphism of the
ring K onto S.

Denote by τ , the idempotent S-ring isomorphism (1) of G(R) (or �(R), accord-
ing to the choice of ψ), which is induced by the f -isomorphism θ . Let π = ψτ .
Then π ∈ Aut G(R) (resp. π ∈ Aut �(R)). Also for all y ∈ K and i > j we get

π(yeij ) = ψ[(yf )θeij − (y − yf )θej ′i′ ]
= [(yf )θg]θ−1

eij − [(yf )θ (1 − g)]θ−1
ej ′i′ −

− [(y − yf )θ (g)]ej ′i′ + [(y − yf )θ (1 − g)]θ−1
eij

= [f 2 + (1 − f )2]yeij − [(1 − f )yf + (y − yf )f ]ej ′i′

= yeij (mod R2).
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Thus, the automorphism π acts like the identity, modulo R2; by Lemma 13 of [12]
it is a product of some hypercentral of height � 3 and inner automorphisms.
Therefore ψ is a product of some idempotent K-ring isomorphism of G(RS) (resp.
�(RS)), hypercentral and triangular automorphisms of G(RS) (resp. �(RS)), i.e.,
ψ is a standard isomorphism. Theorem 3.1 is proved. �

Remark 3.4. In particular case of � = � and S = K Theorem 2.9 and The-
orem 3.1 give the description of Aut G(R) and Aut �(R). For n = |�| = 3, 4
the statement of Theorem 3.1 is not true. In fact, choose a commutative ring K,
a matrix ‖aij‖ ∈ SL(2,K) with 2ai1ai2 = 0 (i = 1, 2) at n = 4 and the
anti-automorphism ‘: j → n + 1 − j of �. Then the map

xe21 → x(a11e21 + a12e1‘2‘), xe1‘2‘ → x(a21e21 + a22e1‘2‘), x ∈ K,

in generating subsets Kej+1j of the Lie ring �(R) at n = 3, 4 (for n = 4 it is the
identity map of the remaining subset Ke32) defines its an isomorphism. Evidently,
for standardness of this isomorphism it is necessary that the matrix ‖aij ‖ (and the
group SL(2,K)) is generated by transvections, see [12, §3].

Proof of the Main Theorem. Theorems 2.9 and 3.1 prove statements (ii) and (iii)
of the main theorem. Consider arbitrary isomorphism ψ of the ring RS onto R. Up
to multiplication of ψ by a chain isomorphism, we may assume, by Corollary 2.5,
Lemma 2.2 and (for a finite chain ) Lemma 3.3, that � = � and ψ[Nij (S)] =
Nij for all i, j ∈ �, j < i. Then, by Lemma 2.3, ψ is a product of a K-ring
isomorphism of RS , triangular and central automorphisms of R. This completes
the proof of the main theorem. �
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