The Automorphism Group of Certain Radical Matrix Rings¹

Feride Kuzucuoglu

Department of Mathematics, University of Hacettepe, 06532 Beytepe, Ankara, Turkey E-mail: feridek@eti.cc.hun.edu.tr

and

Vladimir M. Levchuk

Department of Mathematics, Krasnoyarsk State University, av. Svobodny 79, Krasnoyarsk 660041, Russia E-mail: levchuk@math.kgu.krasnoyarsk.su

Communicated by Walter Feit

Received January 31, 2000

INTRODUCTION

This paper is devoted to the study of automorphisms of matrix radical rings. The area has been under active investigation since the 1950s. Automorphisms of the algebra $NT_n(K)$ of all (lower) niltriangular $n \times n$ matrices over a field K were described by Dubish and Perlis [1, Theorem 5-7]. It is easy to verify that the automorphism group Aut R of any radical ring R coincides with the intersection of the automorphism group of the adjoint group G(R) and the automorphism group of the associated Lie ring $\Lambda(R)$ of R. The adjoint group of $NT_n(K)$ is isomorphic to the unitriangular group $UT_n(K)$. If K is a finite field, then the group $UT_n(K)$ is a Sylow subgroup of $GL_n(K)$ and its automorphisms were studied in [13, 14, 16, 17]. For arbitrary associative ring K with identity automorphism groups of

¹This research is supported by TUBITAK (Ankara, Turkey). The second author is also supported by RFFI (Grant 99-01-01256) and by the Krasnoyarsk Science Foundation.

 $NT_n(K)$, $G(NT_n(K))$ and $\Lambda(NT_n(K))$ were described in [9; 10, Theorem 1]; see surveys in [2, 15]. This result was extended to all Chevalley groups in [11, 12] and so the problem (1.5) of [6] on unipotent subgroups of Chevalley groups was solved. On the other hand, the question about description of automorphisms of Sylow *p*-subgroups of Chevalley groups over Z_{p^m} for m > 1 [7, Question 12.42] is still open. Let $M_n(J)$ be the ring of all $n \times n$ matrices over an ideal *J* of *K* and

$$R_n(K,J) := NT_n(K) + M_n(J).$$

By [4, 11.3.3] Sylow *p*-subgroups of the group $GL_n(Z_{p^m})$ are isomorphic to the adjoint group of the ring $R_n(Z_{p^m}, (p))$. Note that for any radical ring $R_n(K, J)$ investigations of the question about description of automorphism groups Aut G(R) and Aut $\Lambda(R)$ for $R = R_n(K, J)$ have some additional difficulties. In fact, general results in [9, 10] were found by using close structural connections between the associated Lie ring and the adjoint group of $NT_n(K)$. However, for $R_n(K, J)$, these structural connections do not hold; see [7, Question 10.19; 8].

The aim of the present paper is to describe the automorphism group Aut $R_n(K, J)$ for arbitrary K and quasi-regular ideal J with certain specific properties. Theorems 2.1 and 3.1 establish the structure of the automorphism group Aut $R_n(K, J)$ when J coincides with a one-sided or two-sided annihilator of J^t in K for $t \ge 0$. As a corollary, Proposition 3.3 describes automorphisms of K-algebra $R_n(K, J)$. The order of Aut $R_n(K, J)$ is given in Proposition 3.2 for any finite ring K and J as in Theorem 2.1. In particular, for an arbitrary divisor d of m $(1 \le d < m)$ we obtain $|\text{Aut } R_2(Z_{p^m}, (p^d))| = (p^m - p^{m-1}) \cdot p^{2m}$ and

$$|\operatorname{Aut} R_n(Z_{p^m}, (p^d))| = (p^m - p^{m-1})^{n-1} \cdot p^{(2m-d) \cdot C_n^2 + d(n-2)}, \quad n > 2.$$

1. FUNDAMENTAL AUTOMORPHISMS AND POWERS OF $R_n(K, J)$

Throughout this paper K, J, and J^+ denote an associative ring with identity, an ideal of K, and the additive group of J, respectively. If $||a_{uv}||$ is a matrix, then a_{ij} is called the (i, j)-coefficient. We denote by e, the identity matrix, by e_{ij} , the matrix unit of $M_n(K)$ in which the (i, j)-coefficient is equal to 1 and others are zero. We use standard terminology, as in [3, 4].

The following lemma determines "annihilator" automorphisms of an arbitrary ring R. We set Ann $R = \{\alpha \in R \mid \alpha R = R\alpha = 0\}$.

LEMMA 1.1. Let $\zeta : R \to \operatorname{Ann} R$ be an additive map. Then

(a) the map $1 + \zeta : x \to x + \zeta(x)$ is an endomorphism of the ring R if and only if $\zeta(R^2) = 0$;

(b) if $\zeta(R^2) = 0$ and Ann $R \subseteq R^2$, then $1 + \zeta$ is an automorphism of the ring R.

Proof. (a) It follows from equalities $(x + \zeta(x))(y + \zeta(y)) = xy(x, y \in R)$.

(b) Evidently $\operatorname{Ker}(1+\zeta) \subseteq \zeta(R) \subseteq \operatorname{Ann} R$ and if $\zeta(R^2) = 0$, then $1+\zeta$ induces the identity map on R^2 . If also $\operatorname{Ann} R \subseteq R^2$, then the map $1+\zeta$ is an endomorphism of the ring R with zero kernel. It remains to note that inclusions

$$R \subseteq \zeta(R) + (1+\zeta)R \subseteq R^2 + (1+\zeta)R \subseteq (1+\zeta)R \subseteq R$$

are equalities. The lemma is proved.

For an arbitrary associative ring R the adjoint multiplication \circ and the associated Lie multiplication * are defined as

$$\alpha \circ \beta = \alpha + \beta + \alpha \beta, \qquad \alpha * \beta = \alpha \beta - \beta \alpha.$$

An element $\alpha \in R$ is called quasi-regular if there exists an element $\alpha' \in R$ such that $\alpha \circ \alpha' = \alpha' \circ \alpha = 0$. For instance, the quasi-inverse element for a nilpotent element $-\alpha$ is defined as $(-\alpha') = \alpha + \alpha^2 + \alpha^3 + \cdots$. The adjoint conjugation of *R* by a quasi-regular element

$$\alpha' \circ y \circ \alpha = y + y * \alpha + \alpha'(y * \alpha), \qquad y \in R, \tag{1}$$

gives an "inner" automorphism of the ring *R*. It coincides with ordinary conjugation of *R* by the element $e + \alpha$ when the ring *R* contains identity *e*. A ring *R* is called radical if (R, \circ) is a group. Each element α of any radical ring determines an inner automorphism as in (1).

Let *R* be the ring $R_n(K, J)$. It is a radical ring if and only if *J* is a quasiregular ideal of *K*; i.e., (J, \circ) is a group. The conjugation $\delta^{-1}\alpha\delta$ ($\alpha \in R$) by an arbitrary invertible diagonal $n \times n$ matrix δ over *K* determines an automorphism of *R* which is called "diagonal." An automorphism θ of the ring *K* determines an automorphism $||a_{uv}|| \rightarrow ||\theta(a_{uv})||$ of the ring *R* if and only if the ideal *J* is θ -invariant. Such an automorphism of *R* is called a "*K*-ring" or "ring" automorphism as usual. On the other hand, an automorphism θ of the additive group K^+ determines an automorphism of the ring $R_2(K, J)$ as above if the ideal *J* is θ -invariant and the relation $(zy)^{\theta} = z^{\theta}y^{\theta}$ is satisfied for $z \in K$, $y \in J$ and for $z \in J$, $y \in K$. This generalization of a *K*-ring automorphism will be called a (K^+, J) -ring automorphism of $R_2(K, J)$ if $1^{\theta} = 1$.

Note that the ring R is generated by sets Ke_{i+1i} (i = 1, 2, ..., n-1) and Je_{1n} since $1 \in K$. The following lemmas describe powers R^k and their annihilators in the ring R. We put $J^0 = K$.

LEMMA 1.2. Let k be a positive integer and k = sn + t, $0 \le t < n$. Then the ideal R^k consists of all matrices $||a_{uv}||$ such that the element a_{uv} is placed in the ideal J^s , J^{s+1} , J^{s+2} respectively to cases $t \le u - v$, $t - n \le u - v < t$, u - v < t - n.

Proof. It is easy to show by induction on k. (See also [4, 16.1.2; 5, Theorem 3].)

An ideal J is called nilpotent of class m, if m is the smallest positive integer such that $J^m = 0$. As a corollary of Lemma 1.2 we obtain that if J is a nilpotent ideal of K of class m, then the ring R is nilpotent of class mn.

LEMMA 1.3. The left (resp. right) annihilator of R^k ($k = sn + t, 0 \le t < n$) in the ring R consists of all matrices $\alpha \in R$ such that all elements of the first t columns (resp. last (n - t) rows) of α are in the left (resp. right) annihilator of J^{s+1} in K and other elements are placed in the left (resp. right) annihilator of J^s in K.

Proof. It is sufficient to note that elements of the first t rows of matrices of R^k are ranged over the ideal J^{s+1} . Remaining elements of the first column of these matrices are ranged over the ideal J^s by Lemma 1.2.

Let $\operatorname{Ann}_K J = \{x \in K \mid xJ = Jx = 0\}$. Then $\operatorname{Ann} R = (\operatorname{Ann}_K J)e_{n1}$ by Lemma 1.3. If n > 2 or n = 2 but $\operatorname{Ann}_K J \subseteq J$, then $\operatorname{Ann} R \subseteq R^2$ by Lemma 1.2 and an arbitrary annihilator automorphism of the ring R has the form

$$\|a_{uv}\| \to \|a_{uv}\| + \left(\lambda_n(a_{1n}) + \sum_{i=1}^{n-1} \lambda_i(a_{i+1i})\right) e_{n1} \qquad (\|a_{uv}\| \in R), \quad (2)$$

where additive maps λ_n of J and $\lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ of K into $\operatorname{Ann}_K J$ satisfy $\lambda_n(J^2) = 0$, $\lambda_i(J) = 0$, $1 \le i < n$. We denote by $\zeta_i(\lambda)$ $(1 \le i \le n)$ an annihilator automorphism (2) of R such that $\lambda_i = \lambda$ and λ_j are zero for all $j \ne i$. It is clear that the annihilator automorphism (2) of R is equal to the product $\zeta_1(\lambda_1)\zeta_2(\lambda_2)\cdots\zeta_n(\lambda_n)$.

Choose an arbitrary homomorphism $\sigma: J^+ \to K^+$ and $\lambda, \mu \in \text{End}(J^+)$. Consider the following map of the set of all elementary matrices

$$ye_{1n} \to ye_{1n} + y^{\lambda}e_{11} + y^{\mu}e_{nn} + y^{\sigma}e_{n1}, \qquad ye_{in} \to ye_{in} + y^{\lambda}e_{i1}, ye_{1j} \to ye_{1j} + y^{\mu}e_{nj}, \qquad 1 < i \le n, \quad 1 \le j < n, \quad y \in J.$$
(3)

(We assume that the remaining elementary matrices from R are fixed.) If map (3) determines an automorphism of the ring R, then the invariance under (3) of relations $xe_{i1}ye_{1n} = xye_{in}$, $ye_{1n}xe_{nj} = yxe_{1j}$, and $(ye_{1n}) (ze_{1n}) = 0$ gives

$$(xy)^{\lambda} = xy^{\lambda}, \quad (yx)^{\mu} = y^{\mu}x, \quad yz^{\mu} = -y^{\lambda}z, \quad (zy)^{\sigma} = z^{\mu}y^{\lambda},$$
$$y^{\mu}z^{\sigma} + y^{\sigma}z^{\lambda} = yz^{\sigma} + y^{\lambda}z^{\lambda} = y^{\sigma}z + y^{\mu}z^{\mu} = 0, \qquad y, z \in J, \quad x \in K.$$
(4)

On the other hand, if λ , μ , and σ satisfy (4), then map (3) preserves all basic relations

$$xe_{ij} + ye_{ij} = (x+y)e_{ij}, \quad (xe_{ij})(ye_{jm}) = xye_{im}, \quad (xe_{ij})(ye_{km}) = 0, \ j \neq k,$$

in the ring *R* and hence it determines an automorphism of the ring *R* which will be called almost-annihilator. We denote by $\zeta^{(l)}(\lambda)$ (resp. $\zeta^{(r)}(\mu)$), an automorphism (3) with zero μ , σ (resp. λ , σ). By Lemma 1.3, $\zeta^{(l)}(\lambda)$ is the identity map of *R* modulo the left annihilator of *R*.

2. THE AUTOMORPHISM GROUP

We investigate the automorphism group Aut $R_n(K, J)$ of a radical ring $R_n(K, J)$. Let K be an associative ring with identity, as above, and $K^{\#}$ be the multiplicative group of all invertible elements of K. Denote by \mathcal{B} (resp. \mathcal{B}'), the subgroup of Aut $R_n(K, J)$ which is generated by all annihilator and almost-annihilator (resp. almost-annihilator) automorphisms. Also, we denote by $\mathcal{D}, \mathcal{F}, \mathcal{A}(K, J)$, and $\mathcal{A}(K^+, J)$, subgroups which form all diagonal, inner, K-ring, and (K^+, J) -ring (for n = 2) automorphisms, respectively.

The following theorem is the main result of this section.

THEOREM 2.1. Let J be an ideal of K such that a one-sided or two-sided annihilator of J^t in K coincides with J for a nonnegative integer t. Then Aut $R_n(K, J) = \Re \mathcal{FDA}(K, J)$ for n > 2. If inclusion

$$\{c \in K | cJ = Jc = J(\operatorname{mod} J^2)\} \subseteq K^{\#}$$
(5)

is satisfied then $\operatorname{Aut} R_2(K, J) = \mathscr{B}' \mathscr{FDA}(K^+, J).$

Let $R = R_n(K, J)$. We require the following lemmas.

LEMMA 2.2. Let K be an associative ring with identity and n > 2. Then each automorphism of the ring $NT_n(K)$ is equal to a product of certain diagonal, inner, K-ring, and annihilator automorphisms of $NT_n(K)$.

Proof. See [9; 10, Theorem 1].

LEMMA 2.3. If an ideal J of the ring K coincides with a one-sided or twosided annihilator of J^t in K for a nonnegative integer t and $n \ge 2$, then the ideal $M_n(J)$ of the ring R is characteristic.

Proof. If t = 0, then $J^t = K$ and J = 0 since $1 \in K$. Suppose t > 0. All powers of R and also their one-sided annihilators are characteristic in R. The left (resp. right) annihilator of R^{in} in R is equal to the set of all matrices of R over the left (resp. right) annihilator of J^t in K by Lemma 1.3. The intersection of one-sided annihilators is equal to $M_n(\operatorname{Ann}_K(J^t)) \cap R$. The lemma is proved. LEMMA 2.4. Let J be a quasi-regular ideal of K, $n \ge 2$, and let (5) hold for n = 2. Let ϕ be an automorphism of the ring R and let the ideal $M_n(J)$ be ϕ -invariant. Then there exists a diagonal automorphism δ of R such that the (i + 1, i)-coefficient of the matrix $e_{i+1i}^{\phi\delta}$ is equal to 1 for all $i, 1 \le i < n$.

Proof. Denote the (i + 1, i)-coefficient of matrix e_{i+1i}^{ϕ} by c_i . First, we show that $c_i \in K^{\#}$ for all $i, 1 \le i < n$. If n = 2, we obtain $e_{21}^{\phi} \in c_1 e_{21} + M_2(J)$ and

$$R^{2} = (e_{21} + M_{2}(J))^{\phi}R = Je_{21} + c_{1}Je_{22} + Je_{11} + M_{2}(J^{2})$$

since R^2 and $M_2(J)$ are ϕ -invariant. It gives $c_1J + J^2 = J$ and similarly $Jc_1 + J^2 = J$. Consequently, $c_1 \in K^{\#}$ by (5). Suppose n > 2. The automorphism ϕ induces an automorphism of the quotient-ring $R/M_n(J)$ which is isomorphic to the ring $NT_n(K/J)$ over the associative ring K/J with identity. By Lemma 2.2 there exist elements $f_i \in K$ and $u_i \in J$ such that $c_i f_i = 1 + u_i$, i = 1, 2, ..., n - 1. Therefore all elements $1 + u_i$ and c_i are invertible in K since the ideal J is quasi-regular.

Choose now the conjugation δ of R by the diagonal matrix diag (d_1, d_2, \ldots, d_n) where $d_1 = 1$ and $d_{i+1} = c_i c_{i-1} \cdots c_2 c_1$, $1 \le i < n$. Then the (i+1, i)-coefficient of matrix $e_{i+1i}^{\phi\delta}$ is equal to 1 for all i as required.

LEMMA 2.5. Let $n \ge 2$ and let ϕ be an automorphism of a ring $R_n(K, J)$ such that the (i + 1, i)-coefficient of a matrix e_{i+1i}^{ϕ} is equal to 1 for each i, $1 \le i < n$. Then $\phi \in \mathfrak{BA}(K, J)\mathcal{F}$ for n > 2 and $\phi \in \mathfrak{B}'\mathcal{A}(K^+, J)\mathcal{F}$ for n = 2.

Proof. First, we show that there exists an inner automorphism ψ such that each matrix $e_{i+1i}^{\phi\psi} - e_{i+1i}$ has zero *i*th column. Clearly, for any matrix β the *m*th column of the matrix βe_{km} is equal to the *k*th column of β and other columns of βe_{km} are zero. Let $\alpha_t = (e_{tt-1}^{\phi} - e_{tt-1})e_{t-1t}, 1 < t \leq n$. The matrix α_t is placed in the left ideal Re_{tt} of the ring R and $\alpha_t^2 = 0$. By (1) we get

$$\alpha'_{t} \circ e^{\phi}_{i+1i} \circ \alpha_{t} = e^{\phi}_{i+1i} - \alpha_{t}e^{\phi}_{i+1i} + (e - \alpha_{t})e^{\phi}_{i+1i}\alpha_{t} \in e^{\phi}_{i+1i} - \alpha_{t}e^{\phi}_{i+1i} + Re_{tt}.$$

Denote by d_j the (2, j)-coefficient of the matrix e_{21}^{ϕ} . Since $d_1 = 1$, matrices α_2 and $\alpha_2 e_{21}^{\phi}$ have zero second rows and hence

$$\alpha_2 e_{21}^{\phi} = (e_{21}^{\phi} - e_{21})e_{12}e_{21}^{\phi} = \sum_{j=1}^n (e_{21}^{\phi} - e_{21})d_j e_{1j},$$
$$(\alpha_2' \circ e_{21}^{\phi} \circ \alpha_2)e_{11} = e_{21}^{\phi}e_{11} - (e_{21}^{\phi} - e_{21})e_{11} = e_{21}.$$

Consequently, the first column of the matrix $\alpha'_2 \circ e^{\phi}_{21} \circ \alpha_2$ is equal to the second column of the identity matrix. Suppose that 1 < i < n and each

matrix $e_{t+1t}^{\phi} - e_{t+1t}$, $1 \le t < i$, has the zero *t*th column. The adjoint conjugation of the element α_{i+1} does not change the *t*th column of such a matrix since the *t*th column of $\alpha_{i+1}e_{t+1t}^{\phi}$ is zero. On the other hand, the *i*th column of the matrix $(\alpha_{i+1}' \circ e_{i+1i}^{\phi} \circ \alpha_{i+1}) - e_{i+1i}$ is also zero. Thus, without loss of generality we may assume that the *i*th column of each matrix $e_{i+1i}^{\phi} - e_{i+1i}$ $(1 \le i < n)$ is zero.

Consider the product $(xe_{km})^{\phi}e_{i+1i}^{\phi}$, $1 \le i < n$. Its *i*th column is equal to the (i + 1)st column of the first factor. If $i + 1 \ne m$, this product is equal to zero. Therefore, all columns of matrix $(xe_{km})^{\phi}$ $(1 \le k \le n, 1 \le m \le n)$ are zeros except the first and *m*th columns. In particular, $e_{i+1i}^{\phi} \in e_{i+1i} + Re_{11}$ for 1 < i < n and $e_{21}^{\phi} = e_{21}$. Consequently, the first row of each matrix $(xe_{km})^{\phi}$ for k > 1 is zero since $e_{21}^{\phi}(xe_{km})^{\phi} = 0$. For n > 2 we set $\alpha_1 = -b_3e_{21} - b_4e_{31} - \cdots - b_ne_{n-11}$ where b_{i+1} is the (i + 1, 1)-coefficient of the matrix e_{i+1i}^{ϕ} . By (1) we obtain

$$\alpha'_1 \circ e_{21} \circ \alpha_1 = e_{21}, \quad \alpha'_1 \circ e^{\phi}_{i+1i} \circ \alpha_1 = e^{\phi}_{i+1i} + e^{\phi}_{i+1i} \alpha_1 = e^{\phi}_{i+1i} - b_{i+1}e_{i+11i}$$

for 1 < i < n. Therefore, without loss of generality we may assume that the (i + 1)st row of each matrix $e_{i+1i}^{\phi} - e_{i+1i}$ $(1 \le i < n)$ is also zero. Since $e_{i+1i}^{\phi}(xe_{km})^{\phi} = 0$ for $i \ne k$, $1 \le i < n$, we obtain that all rows of a matrix $(xe_{km})^{\phi}$ are zeros except the *k*th and *n*th rows. In particular, the restriction of ϕ on $NT_n(K)$ is an automorphism of the ring $NT_n(K)$.

Suppose n > 2. By Lemma 2.2 there exist an automorphism θ of the ring K and endomorphisms ϕ_i of the additive group K^+ such that

$$(xe_{i+1i})^{\phi} = x^{\theta}e_{i+1i} + x^{\phi_i}e_{n1}, \tag{6}$$

$$e_{i+1i}^{\phi} = e_{i+1i} + a_i e_{n1}, \qquad a_1 = a_{n-1} = 0 \quad (x \in K, \ 1 \le i < n)$$
(7)

for $a_i = 1^{\phi_i}$. Clearly $(xe_{ij})^{\phi} = x^{\theta}e_{ij}$ for i - j > 1. The relations $ye_{n1} = e_{nn-1} \cdots e_{32}(ye_{21}) = e_{n1}(ye_{1n})e_{n1}$ are ϕ -invariant for all $y \in J$. Hence the (1, n)-coefficient of a matrix $(ye_{1n})^{\phi}$ is equal to y^{θ} . By using (6) and (7) we get

$$(ye_{1n})^{\phi} = y^{\theta}e_{1n} + y^{\lambda}e_{11} + y^{\mu}e_{nn} + y^{\sigma}e_{n1}, \qquad (ye_{in})^{\phi} = y^{\theta}e_{in} + y^{\lambda}e_{i1}, (ye_{1j})^{\phi} = (ye_{1n})^{\phi}e_{nj} = y^{\theta}e_{1j} + y^{\mu}e_{nj}, 1 \le j < n, \qquad 1 < i \le n, \qquad y \in J,$$
(8)

where $\lambda, \mu \in \text{End}(J^+)$ and σ is a homomorphism of J^+ into K^+ . Since the set of all (1, n)-coefficient of matrices in R^{ϕ} coincides with J^{θ} we obtain the equality $J = J^{\theta}$. Therefore, θ induces a *K*-ring automorphism of the ring *R*. Without loss of generality we may assume that θ is the identity map of *K*. The ϕ -invariance of relations $(Ke_{i+1i})(Je_{1n}) = 0 = (Je_{1n})(Ke_{ii-1})$ gives $(K^{\phi_i})J = 0 = J(K^{\phi_i-1})$ for 1 < i < n. Also we obtain

$$(xJe_{i+1i})^{\phi} = (xe_{i+1i})^{\phi}(Je_{ii})^{\phi} = (xe_{i+1i} + x^{\phi_i}e_{n1})(Je_{ii}), \qquad 1 \le i < n, \quad x \in K.$$

Consequently, $J^{\phi_i} = (K^{\phi_i})J = a_i J$ and similarly $J^{\phi_i} = J(K^{\phi_i}) = Ja_i$. Taking into account (7) we get that ϕ is a product of the annihilator and almostannihilator automorphisms as in Section 1.

Assume n = 2. Let x^{θ} be the (2,1)-coefficient of a matrix $(xe_{21})^{\phi}$ for $x \in K$. As above, we get $1^{\theta} = 1$ and

$$(xe_{21})^{\phi} = x^{\theta}e_{21}(x \in K),$$

$$e_{21}(ye_{12})^{\phi}e_{21} = [e_{21}(ye_{12})e_{21}]^{\phi} = y^{\theta}e_{21}, \quad y \in J.$$

Therefore, (8) is satisfied and θ is an automorphism of the additive group K^+ such that $J^{\theta} = J$. Finally, relations $(zy)^{\theta}e_{21} = (ze_{21})^{\phi}(ye_{11})^{\phi} = z^{\theta}y^{\theta}e_{21}$ show that the relation $(zy)^{\theta} = z^{\theta}y^{\theta}$ is satisfied for $z \in K$, $y \in J$ and similarly for $z \in J$, $y \in K$. Consequently, ϕ is a product of the almost-annihilator and (K^+, J) -ring automorphisms of $R_2(K, J)$. The lemma is proved.

Now Theorem 2.1 follows easily by Lemmas 2.3–2.5.

We consider some cases when the conditions of Theorem 2.1 hold.

(A) Let J be a maximal ideal of K which is nilpotent of a class t + 1 > 1. Then $\operatorname{Ann}_K(J^t) = J$ since $\operatorname{Ann}_K(J^t)$ is a proper ideal of K which contains J. If K is a local ring, then $K \setminus J = K^{\#}$ and (5) is satisfied.

(B) Let *a* be an element of a ring *K* and $aK = Ka = \operatorname{Ann}_K(a^t)$ for a positive integer *t*. Let *J* be the principal ideal (*a*). Clearly $\operatorname{Ann}_K(J^t) = J$. Suppose *J* contains one-sided annihilators of *a*. (For instance, $\operatorname{Ann}_K a =$ $\operatorname{Ann}_K J \subseteq \operatorname{Ann}_K(J^t) = J$ if *a* is in the center of the ring *K*.) Then (5) is satisfied. In fact, if $c \in K$ and $cJ + J^2 = J$ then there exist elements $x, y \in K$ such that (cx + ya - 1)a = 0 and $cx \in 1 + J \subseteq K^{\#}$. Therefore there exists a right (similarly, left) inverse of *c* in *K*.

(C) Let p be a prime and m be a positive integer. Let $K = M_n(Z_{p^m})$ for $n \ge 1$ or K is a ring of polynomials in commutative or noncommutative indeterminates (of finite or infinite number) over Z_{p^m} . If d is an arbitrary divisor of m, $1 \le d < m$, and J is the principal ideal $p^d K$ of K, then the case (B) for t = (m - d)/d holds.

EXAMPLE 2.6. Let K_1 be an associative ring with identity which has a nilpotent ideal J_1 of class two. Let K be a direct product (K_1, K_1) of two copies of the ring K_1 and let J be the ideal $(J_1, 0)$ of K. If $\lambda : (a, 0) \rightarrow (a, a)(a \in J_1)$ then $\zeta_n(\lambda)$ is an automorphism of the ring $R_n(K, J)(n > 2)$ by Lemma 1.1 and the ideal $M_n(J)$ is not $\zeta_n(\lambda)$ -invariant.

Remark 2.7. Let J be an arbitrary quasi-regular ideal of a ring K and n > 2. All automorphisms of the ring $R_n(K, J)$ that leave invariant the ideal $M_n(J)$ are described by Lemmas 2.4 and 2.5. In the general case, the subgroup of such automorphisms does not coincide with the automorphism group of the ring $R_n(K, J)$ as the last example shows. However, the

authors have no example of a radical ring $R_n(K, J)$ such that the equality Aut $R_n(K, J) = \mathfrak{BFDA}(K, J)$ does not hold.

3. THE STRUCTURE OF THE AUTOMORPHISM GROUP

We investigate the structure of the automorphism group of a radical ring R in Theorem 2.1. As above, $R = R_n(K, J)$. Consider the subgroup series

$$\mathcal{F} \subseteq \mathcal{BF} \subseteq \mathcal{BFD} \subseteq \mathcal{BFDA}(K,J). \tag{9}$$

We denote the multiplicative group of all invertible diagonal $n \times n$ matrices over K by $D_n(K)$ as usual. Let $\mathscr{B}'_{\mathscr{F}}$ (resp. $\mathscr{B}_{\mathscr{F}}$) be the subgroup of inner automorphisms that are induced by adjoint conjugations with elements from Ke_{n1} (resp. $\{Ke_{n1} + (\operatorname{Ann}_K J)e_{n2} + (\operatorname{Ann}_K J)e_{n-11}\} \cap R$). Let $\Lambda(K, J)$ (resp. $\Lambda'(K, J)$) be the additive group of all homomorphisms $\lambda : K^+ \to \operatorname{Ann}_K J$ (resp. $\lambda : J^+ \to \operatorname{Ann}_K J$) such that $\lambda(J) = 0$ (resp. $\lambda(J^2) = 0$). We also denote by $\Lambda^{(l)}(K, J)$ the additive group of all K-module homomorphisms of the left K-module J into the left annihilator of J in J. Using (4) it is easy to verify that maps

$$\zeta_i \colon \Lambda(K, J) \to \mathfrak{B}(1 \le i < n), \qquad \zeta_n \colon \Lambda'(K, J) \to \mathfrak{B},$$

 $\zeta^{(l)} \colon \Lambda^{(l)}(K, J) \to \mathfrak{B},$

(see Section 1) are group monomorphisms.

THEOREM 3.1. Let C(K) be the center of a ring K, $n \ge 2$, and $C(R) = Ann R + (J \cap C(K))e$. Let $Ann_K J \subseteq J$ for n = 2. Then,

(i) the subgroup series (9) is normal in the group $\mathscr{BFDA}(K, J)$ and equalities $(\mathscr{BFD}) \cap \mathscr{A}(K, J) = \mathfrak{D} \cap \mathscr{A}(K, J), (\mathscr{BF}) \cap \mathfrak{D} = \mathcal{F} \cap \mathfrak{D}, and \mathcal{F} \cap \mathfrak{B} = \mathfrak{B}_{\mathcal{F}} hold;$

(ii) there exist the isomorphisms

$$\mathfrak{D} \simeq D_n(K)/(K^{\#} \cap C(K))e, \qquad \mathfrak{D} \cap \mathfrak{A}(K,J) \simeq K^{\#}/(K^{\#} \cap C(K)),$$

 $\mathfrak{F} \simeq (R,\circ)/C(R), \qquad \mathfrak{F} \cap \mathfrak{D} \simeq \left(\sum_{i=1}^n Je_{ii},\circ\right) / (J \cap C(K))e;$

(iii) the subgroup \mathscr{B} is a direct product of subgroups \mathscr{B}' , $\zeta_i(\Lambda(K, J))$, $1 \le i < n$;

(iv) if J is a principal ideal (a) and aK = Ka, then

$$\mathscr{B}' = \mathscr{B}'_{\mathscr{F}} \times \zeta_n(\Lambda'(K,J)) \times \zeta^{(l)}(\Lambda^{(l)}(K,J)).$$

Proof. (i) The subgroup \mathcal{F} is normal in Aut R since Aut $R \subseteq \operatorname{Aut}(R, \circ)$ and $\mathcal{F} \trianglelefteq \operatorname{Aut}(R, \circ)$. It is easy to show that $\mathfrak{D} \trianglelefteq (\mathfrak{DA}(K, J))$. Similarly, normalizers in Aut R of subgroups $\zeta_i(\Lambda(K, J))$, $1 \le i < n$, and \mathfrak{B}' contain \mathfrak{D} and $\mathfrak{A}(K, J)$. By (2) subgroups $\zeta_i(\Lambda(K, J))$ and \mathfrak{B}' generate \mathfrak{B} so \mathfrak{BF} is a normal subgroup of series (9). Consequently, the subgroup series (9) of the group $\mathfrak{BFDA}(K, J)$ is normal. We get $(\mathfrak{BF}) \cap \mathfrak{D} = \mathcal{F} \cap \mathfrak{D}$ since each intersection $(Ke_{ij}) \cap R$ is \mathfrak{D} -invariant. Similarly, $(\mathfrak{BFD}) \cap \mathfrak{A}(K, J) =$ $\mathfrak{D} \cap \mathfrak{A}(K, J)$. Clearly, $\mathfrak{B}_{\mathcal{F}} \subseteq \mathfrak{B} \cap \mathcal{F}$ for n > 2. It is also true for n = 2 if J is a quasi-regular ideal such that $\operatorname{Ann}_K J \subseteq J$. Suppose that the adjoint conjugation of R by an element $\alpha \in R$ is equal to an element $\chi \in \mathfrak{B}$. By (1) we get $(Ke_{i+1i}) * \alpha \subseteq (e + \alpha)\operatorname{Ann} R = \operatorname{Ann} R$ for $1 \le i < n$ since $\beta^{\chi} - \beta \in \operatorname{Ann} R$ for each $\beta \in NT_n(K)$. It follows that $\chi \in \mathfrak{B}_{\mathcal{F}}$ and $\mathcal{F} \cap \mathfrak{B} = \mathfrak{B}_{\mathcal{F}}$.

(ii) The subgroup \mathcal{F} is isomorphic to the quotient-group of the adjoint group of R by its center. The center of the ring R coincides with the center of the adjoint group and it contains C(R). The inverse inclusion is also true since any matrix α in the center of R satisfies relations $\alpha * (Ke_{i+1i}) = \alpha * (Je_{1n}) = 0, 1 \le i < n$. Thus, the center of the adjoint group is equal to C(R) and $\mathcal{F} \simeq (R, \circ)/C(R)$.

The intersection $\mathfrak{D} \cap \mathscr{A}(K, J)$ coincides with the set of all conjugations of R by matrices from $K^{\#}e$. In fact, if $\theta \in \mathfrak{D} \cap \mathscr{A}(K, J)$ and θ coincides with the conjugation of R by a diagonal matrix $\alpha \in D_n(K)$, then all elements of the main diagonal of α pairwise coincide because $e_{i+1i}^{\theta} = e_{i+1i}$, $1 \leq i < n$. The centralizer of R in $D_n(K)$ coincides with $(K^{\#} \cap C(K))e$. It gives required isomorphisms of \mathfrak{D} and $\mathfrak{D} \cap \mathscr{A}(K, J)$. Also we get $\mathcal{F} \cap \mathfrak{D} \simeq (C(R) + (R \cap (D_n(K) - e)), \circ)/C(R)$. Since $C(R) \cap R \cap (D_n(K) - e) = C(R) \cap (D_n(K) - e) = (J \cap C(K))e$ we obtain the required isomorphism of $\mathcal{F} \cap \mathfrak{D}$.

(iii) Note that the subring $NT_n(K)$ of R is \mathscr{B} -invariant and each almost-annihilator automorphism of R induces the identity map on $NT_n(K)$. By using (2) we obtain $\mathscr{B} = \mathscr{B}' \times \zeta_1(\Lambda(K,J)) \times \cdots \times \zeta_{n-1}(\Lambda(K,J))$.

(iv) Suppose that J = aK = Ka for some $a \in K$. The decomposition of the subgroup \mathscr{B}' follows easily if we show that subgroups $\zeta_n(\Lambda'(K, J))$, $\zeta^{(l)}(\Lambda^{(l)}(K, J))$, and \mathscr{B}'_I generate the subgroup \mathscr{B}' . Choose an arbitrary almost-annihilator automorphism χ of the ring *R*. It is determined in (3) by means of a homomorphism $\sigma: J^+ \to K^+$ and endomorphisms $\lambda, \mu \in$ $\operatorname{End}(J^+)$ which satisfy (4). In particular, λ and μ are *K*-module endomorphisms of the left and right *K*-module *J*, respectively. By (1) we get

$$(-xe_{n1}) \circ (ae_{1n})^{\chi} \circ xe_{n1} \in ae_{1n} + (a^{\lambda} + ax)e_{11} + (a^{\mu} - xa)e_{nn} + Ke_{n1}$$

for all $x \in K$. The equation $a^{\mu} - xa = 0$ is solvable in K because $J^{\mu} \subseteq J = Ka$. Therefore we can account $a^{\mu} = 0$ up to multiplication of χ by

an inner automorphism from \mathscr{B}'_{I} . Hence $J^{\mu} = (aK)^{\mu} = a^{\mu}K = 0$ since μ is a *K*-module endomorphism of the right *K*-module *J*. By (4) we obtain $(J^{2})^{\sigma} = J^{\mu}J^{\lambda} = 0 = (J^{\mu})^{2} = J^{\sigma}J$ and $J^{\lambda}J = JJ^{\mu} = 0 = (J^{\lambda})^{2} = JJ^{\sigma}$. Consequently, $\sigma \in \Lambda'(K, J)$, $\lambda \in \Lambda^{(l)}(K, J)$, and $\chi = \zeta_{n}(\sigma) \cdot \zeta^{(l)}(\lambda)$. The theorem is proved.

We now consider the order $|\operatorname{Aut} R_n(K, J)|$ of the automorphism group for any finite ring K (which are within Theorem 2.1). Taking into account Remark 2.7 we define Q_n to be the order of the subgroup of $\mathscr{BFDM}(K, J)$ and Q_2^+ to be the order of $\mathscr{BFDM}(K^+, J)$ for n = 2.

PROPOSITION 3.2. Let K be a finite ring and J be a quasi-regular ideal of K. Suppose $\operatorname{Ann}_K J \subseteq J$ for n = 2. Then $Q_2^+ = |\mathscr{B}'| \cdot |\mathscr{A}(K^+, J)| \cdot |\mathscr{K}^{\#}| \cdot |J|$ and

$$\begin{aligned} Q_n &= (|\mathscr{B}'|/(|K| \cdot |\mathrm{Ann}_K J|^2)) \cdot |\mathscr{A}(K,J)| \cdot (|K^{\#}| \cdot |\Lambda(K,J)|)^{n-1} \\ &\cdot (|K| \cdot |J|)^{C_n^2}, \qquad n > 2. \end{aligned}$$

If J = (a) for $a \in C(K)$, then $|\mathscr{B}'| = |\Lambda'(K, J)| \cdot |K| \cdot |\operatorname{Ann}_J J| \cdot |\operatorname{Ann}_K J|^{-1}$. *Proof.* By Theorem 3.1 we get

$$\begin{split} |\mathfrak{D}|/|\mathfrak{D} \cap \mathfrak{A}(K,J)| &= |D_n(K)|/|K^{\#}| = |K^{\#}|^{n-1}, \\ |\mathcal{F}|/|\mathcal{F} \cap \mathfrak{D}| &= |R|/(|\operatorname{Ann} R| \cdot |J|^n) \\ &= (|K| \cdot |J|)^{C_n^2}/|\operatorname{Ann}_K J|, \\ |\mathfrak{B}| &= |\Lambda(K,J)|^{n-1} \cdot |\mathfrak{B}'|, \\ |\mathfrak{B} \cap \mathcal{F}| &= |\mathfrak{B}_{\mathcal{F}}| = |K| \cdot |\operatorname{Ann}_K J|, \end{split}$$

for each $n \geq 2$. Note that the order |HM| of the product of two arbitrary subgroups H, M in an arbitrary group is equal to the product $|H| \cdot |M| \cdot |H \cap M|^{-1}$; see [3, Theorem I.4.7]. Therefore, we obtain the required decomposition of Q_n by Theorem 3.1(i). Suppose n = 2 and $\operatorname{Ann}_K J \subseteq J$. Then $\zeta_1(\Lambda(K,J)) \subseteq \mathfrak{M}(K^+,J)$ and $\mathfrak{BFDM}(K^+,J) = \mathfrak{B}'\mathfrak{FDM}(K^+,J)$ as in the proof of Theorem 2.1. We get $\mathfrak{B}' \cap \mathfrak{F} = \mathfrak{B}' \cap \mathfrak{B}_{\mathfrak{F}} = \mathfrak{B}'_{\mathfrak{F}}$ and $|\mathfrak{B}'_{\mathfrak{F}}| = |K|/|\operatorname{Ann}_K J|$. The formula for Q_2^+ follows easily since by 3.1(i) we obtain

$$(\mathscr{B}'\mathcal{F}) \cap \mathfrak{D} = \mathcal{F} \cap \mathfrak{D},$$
$$(\mathscr{B}'\mathcal{F}\mathfrak{D}) \cap \mathscr{A}(K^+, J) = \mathfrak{D} \cap \mathscr{A}(K^+, J) = \mathfrak{D} \cap \mathscr{A}(K, J).$$

Suppose that J = aK = Ka for some element $a \in K$. Each *K*-module endomorphism of the left *K*-module *J* is uniquely defined by an image of the element *a* and this image may be an arbitrary element in *J*. Therefore $|\Lambda^{(l)}(K, J)| = |\operatorname{Ann}_J J|$ for $a \in C(K)$. Using Theorem 3.1(iv) we now obtain the required decomposition of $|\mathscr{B}'|$. This completes the proof.

Using Theorem 2.1 we may describe automorphisms of *K*-algebras $R_n(K, J)$. Let \mathcal{A}_{mod} be the automorphism group of the algebra $R_n(K, J)$.

PROPOSITION 3.3. Let K be a commutative ring and let J be an ideal of K such that $\operatorname{Ann}_K(J^t) = J$ for a positive integer t. Suppose (5) is satisfied for n = 2. Then $\mathscr{A}_{\text{mod}} = (\mathscr{A}_{\text{mod}} \cap \mathscr{B})\mathscr{FD}$. If K is a finite ring and J is a principal ideal, then $|\mathscr{A}_{\text{mod}}| = |K^{\#}| \cdot |K| \cdot |J| \cdot |\operatorname{Ann}_K J|$ for n = 2 and

$$|\mathscr{A}_{\text{mod}}| = |K^{\#}|^{n-1} \cdot |\text{Ann}_{K}J|^{n-2} \cdot (|K| \cdot |J|)^{C_{n}^{2}}, \qquad n > 2.$$

Proof. Let $\mathscr{B}_{\text{mod}} = \mathscr{A}_{\text{mod}} \cap \mathscr{B}$ and let $\phi \in \mathscr{A}_{\text{mod}}$. By Theorem 2.1 there exist a *K*-ring or (K^+, J) -ring automorphism θ of *R* and an automorphism $\chi \in \mathscr{BFD}$ such that $\phi = \chi \theta$. Without loss of generality we may assume that $\chi \in \mathscr{B}$ since $\mathscr{FD} \subseteq \mathscr{A}_{\text{mod}}$. Similarly $\chi \in \mathscr{B}'$ for n = 2 as in Theorem 2.1 so $(xe_{21})^{\chi} = xe_{21}$ for $n \ge 2$. We get

$$x^{\theta}e_{21} = (xe_{21})^{\theta} = (xe_{21})^{\phi} = x(e_{21}^{\phi}) = x(e_{21}^{\theta}) = xe_{21}.$$

Consequently, θ is the identity map, $\chi \in \mathcal{B}_{mod}$, and the decomposition of \mathcal{A}_{mod} is proved.

By using Theorem 3.1(iii) we obtain that \mathscr{B}_{mod} is equal to a direct product of subgroups $\mathscr{B}_{mod} \cap \mathscr{B}', \mathscr{B}_{mod} \cap \zeta_i(\Lambda(K, J)), 1 \leq i < n$. Clearly, an annihilator automorphism $\zeta_i(\lambda)$ (resp. an almost-annihilator automorphism (3)) of R is a K-module if and only if λ (resp. σ) is a K-module homomorphism of the K-module K (resp. J). Therefore, we obtain $|\mathscr{B}_{mod} \cap \zeta_i(\Lambda(K, J))| = |\operatorname{Ann}_K J| (1 \leq i < n)$ for a finite ring K. Suppose J = aK for some $a \in K$. Then $\mathscr{B}' \cap \mathscr{B}_{mod}$ is equal to a direct product of subgroups $\mathscr{B}_{mod} \cap \zeta_n(\Lambda'(K, J)), \zeta^{(l)}(\Lambda^{(l)}(K, J))$ and $\mathscr{B}'_{\mathscr{I}}$ by Theorem 3.1(iv). Since $\operatorname{Ann}_K J \subseteq \operatorname{Ann}_K (J^t) = J$ we get equalities.

$$|\mathscr{B}_{\mathrm{mod}} \cap \zeta_n(\Lambda'(K,J))| = |\mathrm{Ann}_K J| = |\mathrm{Ann}_J J| = |\Lambda^{(l)}(K,J)|.$$

Using Theorem 3.1 and Proposition 3.2 we obtain the required formula for \mathcal{A}_{mod} . This completes the proof.

Note that the description of \mathcal{A}_{mod} was found by Dubish and Perlis [1, Theorem 5-7] for arbitrary field K and J = 0. See also [9, Corollary 1]. If $K = Z_{p^m}$, then $\mathcal{A}_{mod} = \operatorname{Aut} R_n(K, J)$. Therefore,

COROLLARY 3.4. Let $K = Z_{p^m}$ and d be an arbitrary divisor of m such that $1 \le d < m$. If $J = (p^d)$, then $|\operatorname{Aut} R_2(K, J)| = (p^m - p^{m-1}) \cdot p^{2m}$ and

$$|\operatorname{Aut} R_n(K,J)| = (p^m - p^{m-1})^{n-1} \cdot p^{(2m-d) \cdot C_n^2 + d(n-2)}, \qquad n > 2.$$

Proof. It follows from the equality $|K| = |Ann_K J| \cdot |J|$ and Proposition 3.3.

According to [1] the automorphism group Aut *R* of an arbitrary associative ring *R* has a normal subgroup \mathcal{M} of all "monic" automorphisms of *R* which induce the identity map into quotient-ring R^k/R^{k+1} for all positive integers *k*. Let $R = R_n(K, J)$, n > 2. Clearly $\mathcal{M} \supseteq \mathcal{B}\mathcal{J}$. If J = 0, then $\mathcal{M} \cap \mathcal{D} = 1$ (see [1, 9]) and even the group Aut *R* is equal to the semidirect product of subgrpups \mathcal{M} and $\mathfrak{D}\mathcal{A}(K, J)$ [9]. However, the intersection $\mathcal{M} \cap \mathfrak{D}$ is nontrivial for each nonzero quasi-regular ideal *J* by Theorem 3.1(ii).

REFERENCES

- 1. R. Dubish and S. Perlis, On total nilpotent algebras, Amer. J. Math. 73 (1951), 439-452.
- A. J. Hahn, D. G. James, and B. Weisfeiler, Homomorphisms of algebraic and classical groups: A survey, *Canad. Math. Soc. Conf. Proc.* 4 (1984), 249–296.
- 3. T. W. Hungerford, "Algebra," Winston, New York, 1974.
- M. I. Kargapolov and Ju. I. Merzljakov, "Fundamentals of the Theory of Groups," Springer-Verlag, New York/Berlin, 1979.
- S. G. Kolesnikov and V. M. Levchuk, Generalized congruence-subgroups of Chevalley groups, Siberian Math. J. 40 (1999), 291–304.
- A. S. Kondratyev, Subgroups of finite Chevalley groups, Uspekhi Mat. Nauk. 41 (1986), 57–96.
- "The Kourovka Notebook (Unsolved Problems in Group Theory)," 12th ed., Instit. of Math. SO RAN, Novosibirsk, 1992.
- F. Kuzucuoglu and V. M. Levchuk, Ideals of some matrix rings, *Commun. Algebra* 28 (2000), 3503–3513.
- V. M. Levchuk, Automorphisms of certain nilpotent matrix groups and rings, *Soviet Math. Dokl.* 16 (1975), 756–760.
- V. M. Levchuk, Connections between the unitriangular group and certain rings. II. Groups of automorphisms, *Siberian Math. J.* 24 (1983), 543–557.
- V. M. Levchuk, Automorphisms of unipotent subgroups of Chevalley groups, *Algebra and Logic* 29 (1990), 211–224.
- V. M. Levchuk, Chevalley groups and their unipotent subgroups, *in* Contemp. Math., Vol. 131, Part 1, pp. 227–242, Amer. Math. Soc., Providence, 1992.
- J. S. Maginnis, Outer automorphisms of upper triangular matrices, J. Algebra 161 (1993), 267–270.
- 14. P. P. McBride, Automorphisms of 2-groups, Commun. Algebra 11 (1983), 843-862.
- Yu. I. Merzlyakov, Linear groups, in "Itogi Nauki i Tekhniki—Algebra, Topologiya, Geometriya," Vol. 16, pp. 35–89, VINITI, Moscow, 1978. [In Russian]
- P. P. Pavlov, Sylow p-subgroups of the full group over a prime field of characteristic p, Izv. Akad. Nauk. SSSR Ser. Mat. 16 (1952), 437–458.
- A. J. Weir, Sylow p-subgroups of the general linear group over finite fields of characteristic p, Proc. Amer. Math. Soc. 6 (1955), 454–464.