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INTRODUCTION

This paper is devoted to the study of automorphisms of matrix radical
rings. The area has been under active investigation since the 1950s. Auto-
morphisms of the algebra NTn�K� of all (lower) niltriangular n× n matrices
over a field K were described by Dubish and Perlis [1, Theorem 5-7]. It is
easy to verify that the automorphism group AutR of any radical ring R
coincides with the intersection of the automorphism group of the adjoint
group G�R� and the automorphism group of the associated Lie ring ��R�
of R. The adjoint group of NTn�K� is isomorphic to the unitriangular
group UTn�K�. If K is a finite field, then the group UTn�K� is a Sylow
subgroup of GLn�K� and its automorphisms were studied in [13, 14, 16,
17]. For arbitrary associative ring K with identity automorphism groups of
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NTn�K�, G�NTn�K�� and ��NTn�K�� were described in [9; 10, Theorem
1]; see surveys in [2, 15]. This result was extended to all Chevalley groups in
[11, 12] and so the problem (1.5) of [6] on unipotent subgroups of Chevalley
groups was solved. On the other hand, the question about description of
automorphisms of Sylow p-subgroups of Chevalley groups over Zpm for
m > 1 [7, Question 12.42] is still open. Let Mn�J� be the ring of all n× n
matrices over an ideal J of K and

Rn�K� J� �= NTn�K� +Mn�J��

By [4, 11.3.3] Sylow p-subgroups of the group GLn�Zpm� are isomorphic to
the adjoint group of the ring Rn�Zpm� �p��. Note that for any radical ring
Rn�K� J� investigations of the question about description of automorphism
groups AutG�R� and Aut��R� for R = Rn�K� J� have some additional dif-
ficulties. In fact, general results in [9, 10] were found by using close struc-
tural connections between the associated Lie ring and the adjoint group of
NTn�K�. However, for Rn�K� J�, these structural connections do not hold;
see [7, Question 10.19; 8].

The aim of the present paper is to describe the automorphism group
AutRn�K� J� for arbitrary K and quasi-regular ideal J with certain spe-
cific properties. Theorems 2.1 and 3.1 establish the structure of the
automorphism group AutRn�K� J� when J coincides with a one-sided or
two-sided annihilator of Jt in K for t ≥ 0. As a corollary, Proposition 3.3
describes automorphisms of K-algebra Rn�K� J�. The order of AutRn�K� J�
is given in Proposition 3.2 for any finite ring K and J as in Theorem 2.1.
In particular, for an arbitrary divisor d of m �1 ≤ d < m� we obtain
	AutR2�Zpm� �pd��	 = �pm − pm−1� · p2m and

	AutRn�Zpm� �pd��	 = �pm − pm−1�n−1 · p�2m−d�·C2
n+d�n−2�� n > 2�

1. FUNDAMENTAL AUTOMORPHISMS AND
POWERS OF Rn�K� J�

Throughout this paper K� J, and J+ denote an associative ring with iden-
tity, an ideal of K, and the additive group of J, respectively. If �auv� is a
matrix, then aij is called the �i� j�-coefficient. We denote by e, the iden-
tity matrix, by eij , the matrix unit of Mn�K� in which the �i� j�-coefficient is
equal to 1 and others are zero. We use standard terminology, as in [3, 4].

The following lemma determines “annihilator” automorphisms of an
arbitrary ring R. We set AnnR = α ∈ R 	 αR = Rα = 0�.
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Lemma 1.1. Let ζ � R→ AnnR be an additive map. Then

(a) the map 1+ ζ � x→ x+ ζ�x� is an endomorphism of the ring R if
and only if ζ�R2� = 0;

(b) if ζ�R2� = 0 and AnnR ⊆ R2, then 1 + ζ is an automorphism of
the ring R.

Proof. (a) It follows from equalities �x+ ζ�x���y + ζ�y��=xy�x� y ∈R�.
(b) Evidently Ker�1 + ζ� ⊆ ζ�R� ⊆ AnnR and if ζ�R2� = 0, then

1 + ζ induces the identity map on R2. If also AnnR ⊆ R2, then the map
1 + ζ is an endomorphism of the ring R with zero kernel. It remains to
note that inclusions

R ⊆ ζ�R� + �1+ ζ�R ⊆ R2 + �1+ ζ�R ⊆ �1+ ζ�R ⊆ R

are equalities. The lemma is proved.

For an arbitrary associative ring R the adjoint multiplication ◦ and the
associated Lie multiplication ∗ are defined as

α ◦ β = α+ β+ αβ� α ∗ β = αβ− βα�

An element α ∈ R is called quasi-regular if there exists an element α′ ∈ R
such that α ◦ α′ = α′ ◦ α = 0. For instance, the quasi-inverse element for a
nilpotent element −α is defined as �−α′� = α+ α2 + α3 + · · ·. The adjoint
conjugation of R by a quasi-regular element

α′ ◦ y ◦ α = y + y ∗ α+ α′�y ∗ α�� y ∈ R� (1)

gives an “inner” automorphism of the ring R. It coincides with ordinary
conjugation of R by the element e+ α when the ring R contains identity e.
A ring R is called radical if �R� ◦� is a group. Each element α of any radical
ring determines an inner automorphism as in (1).

Let R be the ring Rn�K� J�. It is a radical ring if and only if J is a quasi-
regular ideal of K; i.e., �J� ◦� is a group. The conjugation δ−1αδ �α ∈ R� by
an arbitrary invertible diagonal n× n matrix δ over K determines an auto-
morphism of R which is called “diagonal.” An automorphism θ of the ring
K determines an automorphism �auv� → �θ�auv�� of the ring R if and only
if the ideal J is θ-invariant. Such an automorphism of R is called a “K-ring”
or “ring” automorphism as usual. On the other hand, an automorphism θ
of the additive group K+ determines an automorphism of the ring R2�K� J�
as above if the ideal J is θ-invariant and the relation �zy�θ = zθyθ is satis-
fied for z ∈ K, y ∈ J and for z ∈ J, y ∈ K. This generalization of a K-ring
automorphism will be called a �K+� J�-ring automorphism of R2�K� J� if
1θ = 1.

Note that the ring R is generated by sets Kei+1i �i = 1� 2� � � � � n − 1�
and Je1n since 1 ∈ K. The following lemmas describe powers Rk and their
annihilators in the ring R. We put J0 = K.
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Lemma 1.2. Let k be a positive integer and k = sn+ t, 0 ≤ t < n. Then
the ideal Rk consists of all matrices �auv� such that the element auv is placed
in the ideal Js, Js+1, Js+2 respectively to cases t ≤ u− v, t − n ≤ u− v < t,
u− v < t − n.

Proof. It is easy to show by induction on k. (See also [4, 16.1.2; 5,
Theorem 3].)

An ideal J is called nilpotent of class m, if m is the smallest positive
integer such that Jm = 0. As a corollary of Lemma 1.2 we obtain that if J
is a nilpotent ideal of K of class m, then the ring R is nilpotent of class mn.

Lemma 1.3. The left (resp. right) annihilator of Rk (k = sn+ t, 0 ≤ t < n)
in the ring R consists of all matrices α ∈ R such that all elements of the first
t columns (resp. last (n− t) rows) of α are in the left (resp. right) annihilator
of Js+1 in K and other elements are placed in the left (resp. right) annihilator
of Js in K.

Proof. It is sufficient to note that elements of the first t rows of matri-
ces of Rk are ranged over the ideal Js+1. Remaining elements of the first
column of these matrices are ranged over the ideal Js by Lemma 1.2.

Let AnnKJ = x ∈ K 	 xJ = Jx = 0�. Then AnnR = �AnnKJ�en1 by
Lemma 1.3. If n > 2 or n = 2 but AnnKJ ⊆ J, then AnnR ⊆ R2 by
Lemma 1.2 and an arbitrary annihilator automorphism of the ring R has
the form

�auv� → �auv� +
(
λn�a1n� +

n−1∑
i=1

λi�ai+1i�
)
en1 ��auv� ∈ R�� (2)

where additive maps λn of J and λ1� λ2� � � � � λn−1 of K into AnnK J satisfy
λn�J2� = 0, λi�J� = 0, 1 ≤ i < n. We denote by ζi�λ� �1 ≤ i ≤ n� an
annihilator automorphism (2) of R such that λi = λ and λj are zero for all
j �= i. It is clear that the annihilator automorphism (2) of R is equal to the
product ζ1�λ1�ζ2�λ2� · · · ζn�λn�.

Choose an arbitrary homomorphism σ � J+ → K+ and λ, µ ∈ End�J+�.
Consider the following map of the set of all elementary matrices

ye1n → ye1n + yλe11 + yµenn + yσen1� yein → yein + yλei1�

ye1j → ye1j + yµenj� 1 < i ≤ n� 1 ≤ j < n� y ∈ J� (3)

(We assume that the remaining elementary matrices from R are fixed.)
If map (3) determines an automorphism of the ring R, then the invar-
iance under (3) of relations xei1ye1n = xyein, ye1nxenj = yxe1j , and
�ye1n� �ze1n� = 0 gives

�xy�λ=xyλ� �yx�µ=yµx� yzµ=−yλz� �zy�σ=zµyλ�
yµzσ+yσzλ=yzσ+yλzλ=yσz+yµzµ=0� y�z∈J� x∈K� (4)
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On the other hand, if λ�µ, and σ satisfy (4), then map (3) preserves all
basic relations

xeij+yeij=�x+y�eij� �xeij��yejm�=xyeim� �xeij��yekm�=0� j �=k�
in the ring R and hence it determines an automorphism of the ring R which
will be called almost-annihilator. We denote by ζ�l��λ� (resp. ζ�r��µ��, an
automorphism (3) with zero µ�σ (resp. λ� σ). By Lemma 1.3, ζ�l��λ� is the
identity map of R modulo the left annihilator of R.

2. THE AUTOMORPHISM GROUP

We investigate the automorphism group AutRn�K� J� of a radical ring
Rn�K� J�. Let K be an associative ring with identity, as above, and K# be
the multiplicative group of all invertible elements of K. Denote by � (resp.
�′), the subgroup of AutRn�K� J� which is generated by all annihilator
and almost-annihilator (resp. almost-annihilator) automorphisms. Also, we
denote by ��� ���K� J�, and ��K+� J�, subgroups which form all diagonal,
inner, K-ring, and �K+� J�-ring (for n = 2� automorphisms, respectively.

The following theorem is the main result of this section.

Theorem 2.1. Let J be an ideal of K such that a one-sided or two-sided
annihilator of Jt in K coincides with J for a nonnegative integer t. Then
AutRn�K� J� = �����K� J� for n > 2. If inclusion

c ∈ K	cJ = Jc = J�mod J2�� ⊆ K# (5)

is satisfied then AutR2�K� J� = �′����K+� J�.
Let R = Rn�K� J�. We require the following lemmas.

Lemma 2.2. Let K be an associative ring with identity and n > 2. Then
each automorphism of the ring NTn�K� is equal to a product of certain diag-
onal, inner, K-ring, and annihilator automorphisms of NTn�K�.
Proof. See [9; 10, Theorem 1].

Lemma 2.3. If an ideal J of the ring K coincides with a one-sided or two-
sided annihilator of Jt in K for a nonnegative integer t and n ≥ 2, then the
ideal Mn�J� of the ring R is characteristic.

Proof. If t = 0, then Jt = K and J = 0 since 1 ∈ K. Suppose t > 0.
All powers of R and also their one-sided annihilators are characteristic in
R. The left (resp. right) annihilator of Rtn in R is equal to the set of all
matrices of R over the left (resp. right) annihilator of Jt in K by Lemma 1.3.
The intersection of one-sided annihilators is equal to Mn�AnnK�Jt�� ∩ R.
The lemma is proved.
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Lemma 2.4. Let J be a quasi-regular ideal of K�n ≥ 2, and let (5) hold
for n = 2. Let φ be an automorphism of the ring R and let the ideal Mn�J�
be φ-invariant. Then there exists a diagonal automorphism δ of R such that
the �i+ 1� i�-coefficient of the matrix eφδi+1i is equal to 1 for all i, 1 ≤ i < n.

Proof. Denote the �i + 1� i�-coefficient of matrix eφi+1i by ci. First, we
show that ci ∈ K# for all i, 1 ≤ i < n. If n = 2, we obtain eφ21 ∈ c1e21 +
M2�J� and

R2 = �e21 +M2�J��φR = Je21 + c1Je22 + Je11 +M2�J2�
since R2 and M2�J� are φ-invariant. It gives c1J + J2 = J and similarly
Jc1 + J2 = J. Consequently, c1 ∈ K# by (5). Suppose n > 2. The automor-
phism φ induces an automorphism of the quotient-ring R/Mn�J� which
is isomorphic to the ring NTn�K/J� over the associative ring K/J with
identity. By Lemma 2.2 there exist elements fi ∈ K and ui ∈ J such that
cifi = 1+ ui, i = 1� 2� � � � � n− 1. Therefore all elements 1+ ui and ci are
invertible in K since the ideal J is quasi-regular.

Choose now the conjugation δ of R by the diagonal matrix diag�d1�
d2� � � � � dn� where d1 = 1 and di+1 = cici−1 · · · c2c1, 1 ≤ i < n. Then the
�i+ 1� i�-coefficient of matrix eφδi+1i is equal to 1 for all i as required.

Lemma 2.5. Let n ≥ 2 and let φ be an automorphism of a ring Rn�K� J�
such that the �i + 1� i�-coefficient of a matrix eφi+1i is equal to 1 for each i,
1 ≤ i < n. Then φ ∈ ���K� J�� for n > 2 and φ ∈ �′��K+� J�� for n = 2.

Proof. First, we show that there exists an inner automorphism ψ such
that each matrix eφψi+1i − ei+1i has zero ith column. Clearly, for any matrix
β the mth column of the matrix βekm is equal to the kth column of β and
other columns of βekm are zero. Let αt = �eφtt−1 − ett−1�et−1t , 1 < t ≤ n.
The matrix αt is placed in the left ideal Rett of the ring R and α2

t = 0.
By (1) we get

α′
t ◦ eφi+1i ◦ αt = e

φ
i+1i − αte

φ
i+1i + �e− αt�eφi+1iαt ∈ eφi+1i − αte

φ
i+1i + Rett �

Denote by dj the �2� j�-coefficient of the matrix eφ21. Since d1 = 1, matrices
α2 and α2e

φ
21 have zero second rows and hence

α2e
φ
21 = �eφ21 − e21�e12eφ21 =

n∑
j=1

�eφ21 − e21�dje1j�

�α′
2 ◦ eφ21 ◦ α2�e11 = e

φ
21e11 − �eφ21 − e21�e11 = e21�

Consequently, the first column of the matrix α′
2 ◦ eφ21 ◦ α2 is equal to the

second column of the identity matrix. Suppose that 1 < i < n and each
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matrix eφt+1t − et+1t , 1 ≤ t < i, has the zero tth column. The adjoint conju-
gation of the element αi+1 does not change the tth column of such a matrix
since the tth column of αi+1e

φ
t+1t is zero. On the other hand, the ith column

of the matrix �α′
i+1 ◦ eφi+1i ◦ αi+1� − ei+1i is also zero. Thus, without loss of

generality we may assume that the ith column of each matrix eφi+1i − ei+1i
�1 ≤ i < n� is zero.

Consider the product �xekm�φeφi+1i, 1 ≤ i < n. Its ith column is equal to
the �i+ 1�st column of the first factor. If i+ 1 �= m, this product is equal to
zero. Therefore, all columns of matrix �xekm�φ (1 ≤ k ≤ n, 1 ≤ m ≤ n) are
zeros except the first and mth columns. In particular, eφi+1i ∈ ei+1i + Re11
for 1 < i < n and e

φ
21 = e21. Consequently, the first row of each matrix

�xekm�φ for k > 1 is zero since eφ21�xekm�φ = 0. For n > 2 we set α1 =
−b3e21 − b4e31 − · · · − bnen−11 where bi+1 is the �i+ 1� 1�-coefficient of the
matrix eφi+1i. By (1) we obtain

α′
1 ◦ e21 ◦ α1 = e21� α′

1 ◦ eφi+1i ◦ α1 = e
φ
i+1i + e

φ
i+1iα1 = e

φ
i+1i − bi+1ei+11

for 1 < i < n. Therefore, without loss of generality we may assume that
the �i+ 1�st row of each matrix eφi+1i − ei+1i �1 ≤ i < n� is also zero. Since
e
φ
i+1i�xekm�φ = 0 for i �= k, 1 ≤ i < n, we obtain that all rows of a matrix
�xekm�φ are zeros except the kth and nth rows. In particular, the restriction
of φ on NTn�K� is an automorphism of the ring NTn�K�.

Suppose n > 2. By Lemma 2.2 there exist an automorphism θ of the ring
K and endomorphisms φi of the additive group K+ such that

�xei+1i�φ = xθei+1i + xφien1� (6)

e
φ
i+1i = ei+1i + aien1� a1 = an−1 = 0 �x ∈ K� 1 ≤ i < n� (7)

for ai = 1φi . Clearly �xeij�φ = xθeij for i − j > 1. The relations yen1 =
enn−1 · · · e32�ye21� = en1�ye1n�en1 are φ-invariant for all y ∈ J. Hence the
�1� n�-coefficient of a matrix �ye1n�φ is equal to yθ. By using (6) and (7)
we get

�ye1n�φ=yθe1n+yλe11+yµenn+yσen1� �yein�φ=yθein+yλei1�
�ye1j�φ=�ye1n�φenj=yθe1j+yµenj�1≤ j<n� 1<i≤n� y∈J� (8)

where λ�µ ∈ End�J+� and σ is a homomorphism of J+ into K+. Since the
set of all �1� n�-coefficient of matrices in Rφ coincides with Jθ we obtain the
equality J = Jθ. Therefore, θ induces a K-ring automorphism of the ring
R. Without loss of generality we may assume that θ is the identity map of
K. The φ-invariance of relations �Kei+1i��Je1n� = 0 = �Je1n��Keii−1� gives
�Kφi�J = 0 = J�Kφi−1� for 1 < i < n. Also we obtain

�xJei+1i�φ=�xei+1i�φ�Jeii�φ=�xei+1i+xφien1��Jeii�� 1≤ i<n� x∈K�
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Consequently, Jφi = �Kφi�J = aiJ and similarly Jφi = J�Kφi� = Jai. Taking
into account (7) we get that φ is a product of the annihilator and almost-
annihilator automorphisms as in Section 1.

Assume n = 2. Let xθ be the (2,1)-coefficient of a matrix �xe21�φ for
x ∈ K. As above, we get 1θ = 1 and

�xe21�φ = xθe21�x ∈ K��
e21�ye12�φe21 = �e21�ye12�e21�φ = yθe21� y ∈ J�

Therefore, (8) is satisfied and θ is an automorphism of the additive group
K+ such that Jθ = J. Finally, relations �zy�θe21 = �ze21�φ�ye11�φ = zθyθe21
show that the relation �zy�θ = zθyθ is satisfied for z ∈ K, y ∈ J and similarly
for z ∈ J, y ∈ K. Consequently, φ is a product of the almost-annihilator
and �K+� J�-ring automorphisms of R2�K� J�. The lemma is proved.

Now Theorem 2.1 follows easily by Lemmas 2.3–2.5.
We consider some cases when the conditions of Theorem 2.1 hold.

(A) Let J be a maximal ideal of K which is nilpotent of a class
t + 1 > 1. Then AnnK�Jt� = J since AnnK�Jt� is a proper ideal of K which
contains J. If K is a local ring, then K\J = K# and (5) is satisfied.

(B) Let a be an element of a ring K and aK = Ka = AnnK�at� for
a positive integer t. Let J be the principal ideal �a�. Clearly AnnK�Jt� = J.
Suppose J contains one-sided annihilators of a. (For instance, AnnKa =
AnnKJ ⊆ AnnK�Jt� = J if a is in the center of the ring K.) Then (5) is
satisfied. In fact, if c ∈ K and cJ+ J2 = J then there exist elements x� y ∈ K
such that �cx+ ya− 1�a = 0 and cx ∈ 1+ J ⊆ K#. Therefore there exists
a right (similarly, left) inverse of c in K.

(C) Let p be a prime and m be a positive integer. Let K =Mn�Zpm�
for n ≥ 1 or K is a ring of polynomials in commutative or noncommutative
indeterminates (of finite or infinite number) over Zpm . If d is an arbitrary
divisor of m, 1 ≤ d < m, and J is the principal ideal pdK of K, then the
case (B) for t = �m− d�/d holds.

Example 2.6. Let K1 be an associative ring with identity which has a
nilpotent ideal J1 of class two. Let K be a direct product �K1�K1� of two
copies of the ring K1 and let J be the ideal �J1� 0� of K. If λ � �a� 0� →
�a� a��a ∈ J1� then ζn�λ� is an automorphism of the ring Rn�K� J��n > 2�
by Lemma 1.1 and the ideal Mn�J� is not ζn�λ�-invariant.
Remark 2.7. Let J be an arbitrary quasi-regular ideal of a ring K and

n > 2. All automorphisms of the ring Rn�K� J� that leave invariant the
ideal Mn�J� are described by Lemmas 2.4 and 2.5. In the general case,
the subgroup of such automorphisms does not coincide with the automor-
phism group of the ring Rn�K� J� as the last example shows. However, the
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authors have no example of a radical ring Rn�K� J� such that the equality
AutRn�K� J� = �����K� J� does not hold.

3. THE STRUCTURE OF THE AUTOMORPHISM GROUP

We investigate the structure of the automorphism group of a radical ring
R in Theorem 2.1. As above, R = Rn�K� J�. Consider the subgroup series

� ⊆ �� ⊆ ��� ⊆ �����K� J�� (9)

We denote the multiplicative group of all invertible diagonal n× n matrices
over K by Dn�K� as usual. Let �′

� (resp. �� ) be the subgroup of inner
automorphisms that are induced by adjoint conjugations with elements from
Ken1 (resp. Ken1 + �AnnKJ�en2 + �AnnKJ�en−11� ∩R). Let ��K� J� (resp.
�′�K� J�� be the additive group of all homomorphisms λ � K+ → AnnKJ
(resp. λ � J+ → AnnKJ) such that λ�J� = 0 (resp. λ�J2� = 0�. We also
denote by ��l��K� J� the additive group of all K-module homomorphisms
of the left K-module J into the left annihilator of J in J. Using (4) it is
easy to verify that maps

ζi: ��K� J� → ��1 ≤ i < n�� ζn: �
′�K� J� → ��

ζ�l�: ��l��K� J� → ��

(see Section 1) are group monomorphisms.

Theorem 3.1. Let C�K� be the center of a ring K, n ≥ 2, and C�R� =
AnnR+ �J ∩ C�K��e. Let AnnKJ ⊆ J for n = 2. Then,

(i) the subgroup series (9) is normal in the group �����K� J� and
equalities ����� ∩ ��K� J� = � ∩ ��K� J�, ��� � ∩ � = � ∩ �, and � ∩
� = �� hold;

(ii) there exist the isomorphisms

� � Dn�K�/�K# ∩ C�K��e� � ∩ ��K� J� � K#/�K# ∩ C�K���

� � �R� ◦�/C�R�� � ∩� �
( n∑
i=1

Jeii� ◦
)/

�J ∩ C�K��e�

(iii) the subgroup � is a direct product of subgroups �′, ζi���K� J��,
1 ≤ i < n;

(iv) if J is a principal ideal �a� and aK = Ka, then

�′ = �′
� × ζn��′�K� J�� × ζ�l����l��K� J���
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Proof. (i) The subgroup � is normal in AutR since AutR ⊆ Aut�R� ◦�
and � �Aut�R� ◦�. It is easy to show that �� ����K� J��. Similarly, nor-
malizers in AutR of subgroups ζi���K� J��, 1 ≤ i < n, and �′ contain
� and ��K� J�. By (2) subgroups ζi���K� J�� and �′ generate � so ��
is a normal subgroup of series (9). Consequently, the subgroup series (9)
of the group �����K� J� is normal. We get ��� � ∩ � = � ∩ � since
each intersection �Keij� ∩ R is �-invariant. Similarly, ����� ∩ ��K� J� =
�∩��K� J�. Clearly, �� ⊆ �∩� for n > 2. It is also true for n = 2 if J is a
quasi-regular ideal such that AnnKJ ⊆ J. Suppose that the adjoint conjuga-
tion of R by an element α ∈ R is equal to an element χ ∈ �. By (1) we get
�Kei+1i� ∗ α ⊆ �e+ α�AnnR = AnnR for 1 ≤ i < n since βχ − β ∈ AnnR
for each β ∈ NTn�K�. It follows that χ ∈ �� and � ∩� = �� .

(ii) The subgroup � is isomorphic to the quotient-group of the
adjoint group of R by its center. The center of the ring R coincides with
the center of the adjoint group and it contains C�R�. The inverse inclu-
sion is also true since any matrix α in the center of R satisfies relations
α ∗ �Kei+1i� = α ∗ �Je1n� = 0, 1 ≤ i < n. Thus, the center of the adjoint
group is equal to C�R� and � � �R� ◦�/C�R�.

The intersection �∩��K� J� coincides with the set of all conjugations of
R by matrices from K#e. In fact, if θ ∈ � ∩ ��K� J� and θ coincides with
the conjugation of R by a diagonal matrix α ∈ Dn�K�, then all elements
of the main diagonal of α pairwise coincide because eθi+1i = ei+1i, 1 ≤
i < n. The centralizer of R in Dn�K� coincides with �K# ∩ C�K��e. It
gives required isomorphisms of � and � ∩ ��K� J�. Also we get � ∩� �
�C�R� + �R ∩ �Dn�K� − e��� ◦�/C�R�. Since C�R� ∩ R ∩ �Dn�K� − e� =
C�R� ∩ �Dn�K� − e� = �J ∩ C�K��e we obtain the required isomorphism
of � ∩�.

(iii) Note that the subring NTn�K� of R is �-invariant and
each almost-annihilator automorphism of R induces the identity map
on NTn�K�. By using (2) we obtain � = �′ × ζ1���K� J�� × · · · ×
ζn−1���K� J��.

(iv) Suppose that J = aK = Ka for some a ∈ K. The decomposition
of the subgroup �′ follows easily if we show that subgroups ζn��′�K� J��,
ζ�l����l��K� J��, and �′

I generate the subgroup �′. Choose an arbitrary
almost-annihilator automorphism χ of the ring R. It is determined in (3)
by means of a homomorphism σ : J+ → K+ and endomorphisms λ�µ ∈
End�J+� which satisfy (4). In particular, λ and µ are K-module endomor-
phisms of the left and right K-module J, respectively. By (1) we get

�−xen1� ◦ �ae1n�χ ◦ xen1 ∈ ae1n + �aλ + ax�e11 + �aµ − xa�enn +Ken1

for all x ∈ K. The equation aµ − xa = 0 is solvable in K because Jµ ⊆
J = Ka. Therefore we can account aµ = 0 up to multiplication of χ by
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an inner automorphism from �′
I . Hence Jµ = �aK�µ = aµK = 0 since µ

is a K-module endomorphism of the right K-module J. By (4) we obtain
�J2�σ = JµJλ = 0 = �Jµ�2 = JσJ and JλJ = JJµ = 0 = �Jλ�2 = JJσ .
Consequently, σ ∈ �′�K� J�, λ ∈ ��l��K� J�, and χ = ζn�σ� · ζ�l��λ�. The
theorem is proved.

We now consider the order 	AutRn�K� J�	 of the automorphism group
for any finite ring K (which are within Theorem 2.1). Taking into account
Remark 2.7 we define Qn to be the order of the subgroup of �����K� J�
and Q+

2 to be the order of �����K+� J� for n = 2.

Proposition 3.2. Let K be a finite ring and J be a quasi-regular ideal of
K. Suppose AnnKJ ⊆ J for n = 2. Then Q+

2 = 	�′	 · 	��K+� J�	 · 	�#	 · 	J	
and

Qn = �	�′	/�	K	 · 	AnnKJ	2�� · 	��K� J�	 · �	K#	 · 	��K� J�	�n−1

· �	K	 · 	J	�C2
n � n > 2�

If J = �a� for a ∈ C�K�, then 	�′	 = 	�′�K� J�	 · 	K	 · 	AnnJJ	 · 	AnnKJ	−1.

Proof. By Theorem 3.1 we get

	�	/	� ∩ ��K� J�	 = 	Dn�K�	/	K#	 = 	K#	n−1�

	� 	/	� ∩�	 = 	R	/�	AnnR	 · 	J	n�
= �	K	 · 	J	�C2

n /	AnnKJ	�
	�	 = 	��K� J�	n−1 · 	�′	�

	� ∩ � 	 = 	�� 	 = 	K	 · 	AnnKJ	�
for each n ≥ 2. Note that the order 	HM	 of the product of two arbi-
trary subgroups H�M in an arbitrary group is equal to the product 	H	 ·
	M	 · 	H ∩M	−1; see [3, Theorem I.4.7]. Therefore, we obtain the required
decomposition of Qn by Theorem 3.1(i). Suppose n = 2 and AnnK J ⊆ J.
Then ζ1���K� J�� ⊆ ���K+� J� and �����K+� J� = �′����K+� J� as
in the proof of Theorem 2.1. We get �′ ∩ � = �′ ∩�� = �′

� and 	�′
� 	 =

	K	/	AnnKJ	. The formula for Q+
2 follows easily since by 3.1(i) we obtain

��′� � ∩� = � ∩��

��′��� ∩ ��K+� J� = � ∩ ��K+� J� = � ∩ ��K� J��
Suppose that J = aK = Ka for some element a ∈ K. Each K-module
endomorphism of the left K-module J is uniquely defined by an image of
the element a and this image may be an arbitrary element in J. Therefore
	��l��K� J�	 = 	AnnJJ	 for a ∈ C�K�. Using Theorem 3.1(iv) we now obtain
the required decomposition of 	�′	. This completes the proof.
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Using Theorem 2.1 we may describe automorphisms of K-algebras
Rn�K� J�. Let �mod be the automorphism group of the algebra Rn�K� J�.

Proposition 3.3. Let K be a commutative ring and let J be an ideal of
K such that AnnK�Jt� = J for a positive integer t. Suppose (5) is satisfied for
n = 2. Then �mod = ��mod ∩����. If K is a finite ring and J is a principal
ideal, then 	�mod	 = 	K#	 · 	K	 · 	J	 · 	AnnKJ	 for n = 2 and

	�mod	 = 	K#	n−1 · 	AnnKJ	n−2 · �	K	 · 	J	�C2
n � n > 2�

Proof. Let �mod = �mod ∩� and let φ ∈ �mod. By Theorem 2.1 there
exist a K-ring or �K+� J�-ring automorphism θ of R and an automorphism
χ ∈ ��� such that φ = χθ. Without loss of generality we may assume
that χ ∈ � since �� ⊆ �mod. Similarly χ ∈ �′ for n = 2 as in Theorem 2.1
so �xe21�χ = xe21 for n ≥ 2. We get

xθe21 = �xe21�θ = �xe21�φ = x�eφ21� = x�eθ21� = xe21�

Consequently, θ is the identity map, χ ∈ �mod, and the decomposition of
�mod is proved.

By using Theorem 3.1(iii) we obtain that �mod is equal to a direct
product of subgroups �mod ∩ �′��mod ∩ ζi���K� J��, 1 ≤ i < n. Clearly,
an annihilator automorphism ζi�λ� (resp. an almost-annihilator automor-
phism (3)) of R is a K-module if and only if λ (resp. σ) is a K-module
homomorphism of the K-module K (resp. J). Therefore, we obtain
	�mod ∩ ζi���K� J��	 = 	AnnKJ	 (1 ≤ i < n) for a finite ring K. Suppose
J = aK for some a ∈ K. Then �′ ∩ �mod is equal to a direct product of
subgroups �mod ∩ ζn��′�K� J��, ζ�l����l��K� J�� and �′

� by Theorem 3.1(iv).
Since AnnKJ ⊆ AnnK�Jt� = J we get equalities.

	�mod ∩ ζn��′�K� J��	 = 	AnnKJ	 = 	AnnJJ	 = 	��l��K� J�	�
Using Theorem 3.1 and Proposition 3.2 we obtain the required formula for
�mod. This completes the proof.

Note that the description of �mod was found by Dubish and Perlis
[1, Theorem 5-7] for arbitrary field K and J = 0. See also [9, Corollary 1].
If K = Zpm , then �mod = AutRn�K� J�. Therefore,
Corollary 3.4. Let K = Zpm and d be an arbitrary divisor of m such

that 1 ≤ d < m. If J = �pd�, then 	AutR2�K� J�	 = �pm − pm−1� · p2m and

	AutRn�K� J�	 = �pm − pm−1�n−1 · p�2m−d�·C2
n+d�n−2�� n > 2�

Proof. It follows from the equality 	K	 = 	AnnKJ	 · 	J	 and Proposi-
tion 3.3.
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According to [1] the automorphism group AutR of an arbitrary asso-
ciative ring R has a normal subgroup � of all “monic” automorphisms of
R which induce the identity map into quotient-ring Rk/Rk+1 for all posi-
tive integers k. Let R = Rn�K� J�, n > 2. Clearly � ⊇ �� . If J = 0, then
� ∩� = 1 (see [1, 9]) and even the group AutR is equal to the semidirect
product of subgrpups � and ���K� J� [9]. However, the intersection �∩�
is nontrivial for each nonzero quasi-regular ideal J by Theorem 3.1(ii).
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