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Introduction

Let NT,(K) be the ring of all (lower niltriangular) n x n matrices over an
associative ring K with zeros on and above the main diagonal. Let M,(J) be
the ring of all n X n matrices over an ideal J of K. In this paper we investigate

ideals and structural connections of the ring NT,(K) + M, (J), which is denoted
by Rn(K,J).

It was shown in [7] that for R = NT,(K) and K = K? the class Qg(R) of
all normal subgroups of the adjoint group of the ring R coincides with the class
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Qr(R) of all ideals of associated Lie ring. The question about characterization of
all associative radical rings R satisfying Q,(R) = Qg(R) (see [5, question 10.19])
is still open. It is clear that if J is a quasi-regular ideal, then R, (K, J) is a radical
(Jacobson) ring. If the quasi-regular ideal J contains an element z satisfying
22 £ 0, then Example 1.1 below shows that there exists a normal subgroup of the
adjoint group which is not an ideal of the groupoid (R, (K, J),«) with respect to
associated Lie multiplication a * 3 = aff — fa. On the other hand we show in
Section 1 that Example 1.1 gives also a new counterexample to the question in {7,
Remark 1] and [4, question 6.19]. The first counterexample to this question was
constructed by E.I. Khukhro [cf. comments to the question 6.19 in [4]).

Notice that all ideals of any radical ring R are placed in the intersection Qg (R)N
Qp(12). R. Dubish and S. Perlis [1, Thin. 9] gave a uniform construction of all
ideals ol the algebra N7, (K) over a field K. Similar construction of ideals of
the ring NT,(K)(= R,(K,0)) over a division ring K has been found in (V. M.
Levchuk [7, sect. 2]). It is impossible to give a similar description of the ideals of
NT,(K) for the case I = Z (see [7]).

The aim of Section 2 is to get a description of all ideals of R,(K,J) in an
effective way within the line pointed in [1] and [7]. In this section we assume
that K is a commmutative ring with identity. Our main Theorem 2.2 describes all
ideals of R,{K,J) when J is a strongly maximal ideal of K (Definition 2.1), in
particular, when K = Z or K = Z,,, m > 1 and J is a maximal ideal of K. This
description is similar to the ones in [1], [7] and coincides with them, if K is a field
and J = 0. At the end of Section 2 we give an example of a maximal ideal which
is not strongly maximal.

In Section 3 we describe all maximal abelian ideals of the ring R, (K, J) when
K = Zym and J is the strongly maximal ideal (p). Theorem 3.1 shows that if m
is even, then ]Lln(Jm/z) is a unique maximal abelian’ideal of B,(K,J). But if m
is an odd integer, then the ring Ro(K,J) has precisely (n — 2)p+ 1 of maximal
abelian ideals. In proof of Theorem 3.1 we also use the known description of
maximal abelian ideals of the ring NT,(F) over a field F (see [7]).

We denote by e;;, matrices unit and by 7y,,, the canonical projection on M, (K}
see [2]. Thus, men (ei;) = 1if (k,m) = (i, §) and mgm (e;;) = 0 if (k, m) # (1, 7).
§1. Structural connections of associated Lie ring

and adjoint group

Recall that an ideal H of the associative ring R is called quasi-regular, if H is
a group with respect to the adjoint multiplication aob=a+ b+ ab, cf [2]. A ring
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R is called a radical (Jacobson) ring, if (R, o) is a group (adjoint group), that is,
for each element a € R there exists an element ¢’ € R such that aod’ = a’ca = 0.
If a is a nilpotent element, then a’ = —a+a® —a®+---. On the other hand, every
associative ring R is also associated Lie ring (R, +,*), where % is the associated
Lie multiplication a x b = ab — ba. 1t is clear that each ideal of the radical ring is
a normal subgroup of the adjoint group and an ideal of the associated Lie ring,

simultaneously. The following question is still open:

Characterize radical rings R such that the class Qp,(R) of all ideals of associated
Lie ring coincides with the class Q¢ (R) of all normal subgroups of the adjoint
group [5, question 10.19].

Other relations between the adjoint group of a radical ring and the associated
Lie ring were investigated by A.l. Mal'cev [9] and S.A. Jennings [3].

Taking into account relations
! ' ! . .
(zey) = z'eir, (vei;) = —wei;, 1% 7,

we can say that the ring R.(K,J) = NT,(K) + M,(J) is radical if and only
if J is a quasi-regular idea! of the associative ring K. It was shown in [7] that
QLINTL(K)) = Qc(NT,(K)), if the ring K is generated by the set {zy | z,y €
K}, ie, K = K2 It does not hold when K = 2Z, n > 5. Examples of non-
nilpotent radical rings R with the equality Qi (R) = Q¢ (R) was constructed in
[8]. On the other hand, we have

Example 1.1: Let J be a quasi-regular ideal of an associative commutative
ring K with identity and R = R, (K, J). Let e be an identity n x n matrix. The
following map 7 : @ > e+ a (@ € R) is a monomorphism between the adjoint
group of the ring R and GL,(K). Assume H = 7~ (r(R) N SL,(K)). 1t is clear
that H is a normal subgroup of the adjoint group of'R. If aeyy + beyz € H, then
1= (1+a)(1+b) = l+aoband b=a'. Thus a(er —ex) = aejg*xey € H (a € J)
holds only when @/ = —a and hence a? = 0. Therefore, if the ideal J contains an
element o satisfying 2 # 0, then the normal subgroup H of the adjoint group
of the ring I is not an ideal of the associated Lie ring and moreover it is not an
ideal of the groupoid (R, *).

It was shown in {7, Lemma 2.3] that for arbitrary subgroup H of the adjoint
group of the ring B = N1, (K) over any associative ring K the following two

conditions are equivalent:

(i) H is a normal subgroup of adjoint group (R, o);
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(ii) H is an ideal of the groupoid (R, ).

In [7, Remark 1) and in [4, question 6.19] it was asked whether the above
conditions (i) and (ii) are equivalent for any subgroup H of the adjoint group of
any nilpotent associative ring R.

It was shown that this question has a negative answer in general case. E.L
Khukhro (cf. comments to the question 6.19 in [4]) gave the first counterexample
in the case of R to be a free nilpotent algebra of nilpotency class 3 over the field
G F(2) generated by two elements, see also [6]. Example 1.1 shows that for rings
I, (K, J) with J # 0 the answer to the question is usually negative.

§2. The construction of ideals

Throughout this section K will denote a commutative (associative) ring with
identity and J will be an ideal of K. First we will distinguish some special ideals

of the ring R, (K,J). Censider following ordered sets of matrices positions

L= {(ilvjl)v(i%j?)w"'ﬁ(irvjr)}! r Z 17 (1)
l§j1<j2<"'<]'r§7lv 1Si1<i2<"'<irSn;

L= {(ky, ), (kzyma), -, (kymg)}, ¢ >0, (2)
Jr<mp<my <o <mgEn, 1<k <ky <oor<hy <4y
We refer to £ as a “set of corners” of degree n (compare with [1, Sect. 7], [7,
Sect. 2]). We also allow the possibility that £' = ¢. Choose a J-submodule T of

K. We now consider all J-submodules A of the ring R, (K, J) with the following
conditions (i)-(iv):

(i) There exist sets £ and £’ defined by (1) and (2) such that

JB C AC B, where B = Z Te;; + Z (JT)erm;
(hi)el (km)el

(i) If JT = JT'J then L' = ¢ and also £ = {(1,n)} when JT = T;

(iii) The ideal of K generated by m;(A) is equal to T if (n, 1) # (i,) € £ and
Tar(AY =T, if L= {(n,1)};

(iv) mkm (A) generates the ideal JT for all (k,m) € L.

We call every J-submodule A with (i)-(iv) a T-boundary in R,(K,J). Notice
that we can determine a T-boundary A = A(T; L, L) with £ = {(n,1)} for any
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J-submodule T of K. If £ # {(n,1)} then T is an ideal of K. It is clear that
either T C J ori > j for all (z,7) € £ because A C R,(K,J).

We now describe the ideal of 12,(K,J) which is generated by any T-boundary
A. Regard the n x n matrix as a square array of n* points (¢, j) (matrix position).
Consider the following partial ordering: (i,7) < (k,m) (or (k,m) > (4,7)), if
i<k, m<jand (i,j) # (k;m). For any additive subgroup L of K we denote
by N;;(L) (resp. by Qi;(L)) the additive group generated by sets Leg, for all
(k,m) > (i,7) (resp. (k,m) > (i,7)). It can be easily shown that the ideal of the
ring R, (K,J) generated by any T-boundary A = A(T; £, L') is equal to

IA)=A+ Y Qu(T)+ Nin(TJ) + Ny, (JT)+
(1,0)€EL

FMITI 4+ Y Qe (JT). (3)
(k.m)el!

We associate “staircases™ with sets £ and £7 as in [1], [T]. Then we can compare

with the ideal 1(A) the following matrix

mimy. .- mq
ky
(J2*T)| k2
ooy

i }
: (J7)

Jij2 e

Figure 1.

Now we shall show that in certain cases all ideals of the ring R,(K,J) are
ideals 1(A).

Definition 2.1: An ideal J of a ring K is called a strongly maximal ideal if
for any J—submodule L of K every ideal of K which is between a J-submodule
L and JL, is equal to L or JL.
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Let J be a strongly maximal ideal of a ring K.

Theorem 2.2: If H is any idea} of the ring R,{K,J), n > 2, then there exists
a unique 7, (H)-boundary A in R, (X, J) such that H = I(A).

We now require following lemmas.

Lemma 2.3: Let J be an-arbitrary ideal of K and let H be an ideal of the
ring R, (K,J) and Hyy = my(H). Then JH,, C Hypy N Hy; for all 4, 4, %,v, and

JTCH,y CKHyCHGCT forall (u,v) < (4,7), (4)
where T = H,,. In particular, all projections H,, are J-submodules of K and

M, (J*T) C H ¢ M (T). (5)

Proof: Notice that the product of matrices ege can have nonzero entries only
in k-th row which is equal to i-th row of @. Using the inclusion (Ken)H C¢ H
it follows K H;; C H,,; for m > i. Similarly, we have KH,,, C H; for m > i.
Combining these inclusions we get KH,, C Hi; C T for all (u,v) < (4,7) and
hence H C M,(T'). The ideal I contains a set J (e, + He,;) and hence
JHu, € My Hy;. Since the additive group of M,(J?T) is generated by its
elementary matrices and

(J?Hu)ei; = (Jew)H(Jey;) C H

we derive M, (J?T) C H and (4) which conclude the proof.

Let L(H) be the set of all minimal (with respect to the relation <) matrices
positions (7,5} such that H;; generates an ideal of K which contains T' = H,;. It
is clear that the set L(H) is defined uniquely for H.

Lemma 2.4: Keeping notation of Lemma 2.3 thf; following hold:

(i) The set £ = L(H) is a set of corners which is defined by (1);

(ii) Hin N H1; D JT and Hym =T for all (i,5) € £ and (k, m) > (i, 5);
(ili) The J-submodule T' is an ideal of K when £ # {(n,1)}.

Proof: Since T' = H,, C KT, the set L(H) is non-empty. Suppose that
(¢,7) € L{H). Taking into account (4) and the inclusion T C K H;;, we obtain

KHi; = Hi, = T for all (k,m) > (4, 7).
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‘Therefore the set £ = L({H) is a set of corners as in (1). Also, if £ # {(n,1)},
then 7T is an ideal of K. Using Lemma 2.3 and the equality H,, = T we obtain
HyNHy; D JH;; = JKH; = JT for all (4,7) € £ and our lemma is proved.

Proof of Theorem 2.2: Suppose that Hy, = my,(H), T = Hpy and £ =
L(H). If £={(1,n)}, in particular when T = JT, then we have H = Hynein +
Q1(T) since :

H D K(ewH+ Hejy) D (KHij)ewy, 1< u,v<J. (6)

Therefore, in this case Hine1n is a unique T-boundary A such that H = I(A).
Assume that £ # {(1,n)}. Then we have T # JT. Choose an arbitrary matrix

position (s,t) which is placed in the set
{(h=1,1), (2= L+ 1)y, (& = L + 1), (ny 5 + 1)1 (7)

It is clear that (s,t) > (1,7,) or (s,¢) > (i1,n). Hence T D K Hy D Hyy D JT by
(4) and by Lemma 2.4 (ii). By definition of £(/) the J-submodule H,, generates
the ideal of K which does not contain T. Now, assume that J is a strongly
maximal ideal of K. Then we conclude KH, = JT = Hy.

Let (k,m) be an arbitrary matrix position which is placed above staircase
L(H). Then there exists a matrix position (s,t} > (k, m) which is in the set (7).
Therefore JT' = Hg O K Him D Him O J(JT) by (4). This implies that either
the set Hy,, generates the ideal JT or Hg,, = J*T. Notice that if (k,m) > (i1,7n)
or (k,m) > (1,7.), then Hyn D JT by Lemma 2.4 (ii) and (4).

If JT # J*T we define £'(H) to be the set of all minimal matrices positions
(k,m) such that 1 < k < 1y, jr < m < n and that the J-submodule Hy,, generates
the ideal JT. If JT = J2T then L' = ¢. Thus, for H the set L'(H) is defined
uniquely and £' = L'(H) is a set (2).

Suppose that (i,7) € £. Then JH;; = JKH;; = JT and hence
(Jer)H = (JT)ey; mod Q1;(JT) + M, (J*T).

Taking into account (6) we obtain Ny;(JT) C H and similarly, Nin(JT) C H.
Therefore Niyn(JT) + Nyj, (JT) + M, (J¥T) C H. Using (6) it is easy to show
that

Qi (T)+ Qum(JT) CH forall (i,j)€ Land (k,m)e L.

We choose the set A of all matrices o =|| ay, ||€ H with a,, = 0 if (u,v) ¢
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LUL'. 1t is clear that the set A = A(T; L, L') is a J-submodule of R, (K, J) with
conditions (i)-(iv). Therefore, the set A is a T-boundary and H = I(A). Finally,
T-boundary A is defined uniquely for H. This completes the proof.

Thus, Theorem 2.2 describes all ideals of the ring R,, (K, J) when J is a strongly
maximal ideal of K. The next proposition indicates examples of such ideals.

Proposition 2.5: The zero ideal of any field and every maximal ideal of the
rings Z and Z,,, m > 1, are strongly maximal ideals.

Proof: Straightforward.

Observe that the case J = 0 of Theorem 2.2 gives well known description of
ideals of the ring or algebra NT,{K) over a field K (see [1, Thm. 9] and [7, Sect.
2]).

[t is clear that any strongly maximal ideal of a ring K, which is not equal to

I(, 1s maximal. We conclude this section with an example.

Example 2.6: Consider the ring K = Z[z] of polynomials in one indeter-
minate z over Z. The ideal J = pZ 4 zK for an arbitrary prime p is maximal
and

P =pZ4p eZ 4 +pr* 1 Z +2°K.
Let T'=J® and s > 1. The quotient-ring T/JT is a ring with zero multiplication
and with elementary abelian additive group of order p**!. Thus between T' and
JT we can find chains of ideals of K with arbitrary finite length varying s suitably.
Hence, the ideal J of K is not strongly maximal.

§3. Abelian ideals of R,.(K,J)

In this section we apply Theorem 2.2 in order to describe maximal abelian
ideals of the ring R, (K,J) when K = Z,m and J = (p). It is convenient now to
assume that always J° = K.

Theorem 3.1: Suppose that K = Z,m and J = (p). If m is even, then
M, (J™/?) is unique maximal abelian ideal of the ring R, (I, Jyn>2 Ifm=

2s+1 is an odd integer, then the ring R, (K, J) has (n — 2)p+ 1 maximal abelian
ideals which have the form:

Niic1(J9) 4+ M (o, 1<i<n,ifn=2ands=0orn>2
Jie+ Nyt (J°) + My () if n = 2 and s > 0

Nig1ict(J5) + Mo (I + J% (e +ceni), 1<i<n, 1<c<p.
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Proof: Let H be an arbitrary maximal abelian ideal of R, (I, J) and
T =n,(H). Since

(Z akueku)eln(z bvtez/t) = Z(aklbm)eki

ko vt k.t
we obtain 7,1 (Hx(Je,H)) = mo1 (H (Je1n)H) = TJT. However, Hx(Jey, H) =0
since H is an abelian ideal. Hence T%J = 0. Taking into account inclusions (5)
we obtain M, (JT) = M,(JT)H =0 and

M,(JT) C H C M,(T) (8)

since H is a maximal abelian ideal.

Now we find centralizer C(M,,(T)) of M,,(T) in the ring R, (K, J). Let AnngT
be the annihilator of T in K, and a =|| ayu, |6 R.(K,J) Then « is in the
centralizer C{1'exm) of Tegm in Ry (K, J) if and only if agx = amm mod (AnngT)
and all other elements of k-th column and m-th row of a are contained in Anng 7.
Therefore

C(M(T)) = Je+ M (AnngT) N R (K, J)

where € is the identity matrix. It is clear that M, (T') is an abelian ideal if and
only if 7?2 = 0. If AnngT = T C J then the ideal M, (T) of R,(K,J) is maximal
abelian because any ideal of the ring R,(K,J) which is between M,(T) and
Je + M, (T) (= C(M,(T))) is equal to M, (T).

Each ideal of our ring I is equal to J! for some ¢, 0 < t < m, and AnngJ! =
J7t 1t follows that if m is even then M, (J™/?) is a maximal abelian ideal of
R.(K,J). Suppose that T = J°. Then we have J2**! = JT? = 0 and hence
25+ 1 > m. If d is the integer part of (m + 1)/2 then M,(J?¢) C M,(JT) or
H C M,(T) ¢ M,(J?%. Since M,(J%) is an abelian ideal we have H > M, (J9)
and so (m—1)/2 < s < d. When m is even we obtain d = m/2 and H = M, (J™/?).

Assume that m is an odd integer. Then we have m = 2s+1and 7 = J*, J**! =
JT = AnngT. When s = 0 the conclusion of our theorem holds by [7, Thm 3 ].
Let s be a positive integer. By 2.2 and by (8) there exists a set of corners £ as in
(1) such that

H=A+ > Qu(T)+ M.(JT)
(i.3)ec
where A C 3 syec T'ey;. It is not diffucult to show that

CNG(T)) = Je + {Ny 111 (K) + My (Anng T)} O Ru(K, J).
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Suppose that (¢,5) € L and i < 7. If i < n then Ny (T) C H and so
H CC(Nupril T) N Mp(T) =Te + Nig1:(T) + M (JT).

Hence 1 = j and n = 2. ‘'For j > 1 we obtain the same result. Clear that
Te + Noy(T) + M3(JT) for T = J® is a maximal abelian ideal of R,(K,J). As
above all ideals N;y;(T) + M (JT) are maximal abelian in the ring R, (K, J) for
n> 2.

We now consider the case when Niyy;(T) ¢ H for all 4. It is clear that H C
NT,(T) + M, (JT) and if (iv,51), (¢, J-) € £ asin (1) then 1 < 1} < j, < n.
Suppose, if possible, that ze;; € H for some i) < i and z € (T — (JT)). Then we
have II C C{xze;;) and so 7, (H) C Annpz = JT for all u. Consequently iy = j,
and if 1 = iy then H N (Teyy) = JTe;y and H N (Ten;) = JTen;. Therefore H is
placed in the abelian ideal T'(eq + ceni) + Nigr1ic1 (T} + M, (JT) for some c € K
such that T'e = T. Cicar that we can choose ¢ such that 1 < ¢ < p.

Finally note that the number of all maximal abelian ideals in the ring R, (K, J)
for odd m is equal to (n = 1)+ (n - 2)(p—1) = {(n— 2)p+ 1. Theorem 3.1 is
proved.
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