
A R T I C L E

Comparison of object-oriented and robot programming
activities: The effects of programming modality on student
achievement, abstraction, problem solving, and motivation

Murat Çınar1 | Hakan Tüzün2

1Borsa Istanbul Vocational and Technical

Anatolian High School, Republic of Turkey

Ministry of National Education, Adana, Turkey

2Department of Computer Education and

Instructional Technology, Faculty of Education,

Hacettepe University, Ankara, Turkey

Correspondence

Murat Çınar, Borsa Istanbul Vocational and

Technical Anatolian High School, Republic of

Turkey Ministry of National Education, Adana,

Turkey.

Email: muratcinar@hacettepe.edu.tr,

murat_cinar@rocketmail.com

Abstract

This study compares the effects of object-oriented and robot programming activities

on programming achievement, abstraction, problem solving, and motivation. In the

study, two consecutive experimental cases were conducted to examine the consis-

tency of findings. The research sample comprises 81 tenth-grade students undergo-

ing vocational secondary education. A total of 41 students participated in the first

case that spanned 12 weeks, and 40 students participated in the second that

spanned 8 weeks. After computational activities, the programming achievement

scores significantly increased in all test groups. However, the achievement scores did

not differ significantly between the groups. For the comparison groups, there was no

statistically significant difference in the pre- and posttest scores of the formal and

descriptive abstraction in both cases. However, a statistically significant increase was

found in the formal (only Case 2) and descriptive abstraction scores of the students

in the experimental groups. The abstraction results revealed a significant difference

in the descriptive abstraction scores of Case 2 in favour of the experimental group.

No statistically significant difference was found in the problem-solving scores within

or between groups. In both cases, the motivation scores of the experimental groups

were found to be statistically higher than those of the comparison groups.

K E YWORD S

abstraction, achievement, computational thinking, educational robotics, motivation, problem-

solving

1 | INTRODUCTION

Seymour Papert, one of the first researchers who opened the debate

on how computers can affect human thinking and learning, underlined

the distinction between how computers change information access

and human thought. Papert (1980) stated that computers, even with-

out their physical presence can contribute conceptually to our think-

ing process by influencing how we think. Despite being innovative,

the idea of developing students' intellectual thinking skills through

computer science concepts did not spread widely owing to the tradi-

tional school culture prevalent in those years. However, by the mid-

2000s, this idea gained immense popularity under the name of com-

putational thinking (CT) concept through Wing's (2006, 2008) studies.

CT is a problem-solving approach based on computer science

concepts, techniques, and approaches. In fact, CT means to think like

a programmer and use this thinking skill to solve problems in other

areas. Similarly, Bork (1981) stated that computer programming can

be used as an educational tool or activity and that students can apply

Required ethical permissions were obtained from the academic ethics commission of Hacettepe University.

Received: 18 May 2020 Revised: 25 August 2020 Accepted: 28 August 2020

DOI: 10.1111/jcal.12495

370 © 2020 John Wiley & Sons Ltd J Comput Assist Learn. 2021;37:370–386.wileyonlinelibrary.com/journal/jcal

https://orcid.org/0000-0003-4012-4174
https://orcid.org/0000-0003-1153-5556
mailto:muratcinar@hacettepe.edu.tr
mailto:murat_cinar@rocketmail.com
http://wileyonlinelibrary.com/journal/jcal

the analytical thinking skills developed through programming to a

wide range of problems. Algorithms, integral components of CT, are

one of the main thinking tools across all disciplines (Doleck, Bazelais,

Lemay, Saxena, & Basnet, 2017; Wilkerson-Jerde, 2014). For example,

consider the current worldwide situation that involves the novel coro-

navirus (2019-nCoV) pandemic management which concerns public

health. This situation is being closely monitored worldwide. Health

officials and researchers are constantly striving to develop algorithms

(e.g., contact-tracing, real-time spatial distribution, rapid recognition,

patient management, and population-flow-based risk assessment)

related to the spread and screening of the 2019-nCoV. This demon-

strates their efforts to address complex and multidimensional pro-

cesses in a scalable manner.

Learning to think computationally has long been considered an

important theme in the field of computer science (Pellas &

Peroutseas, 2016). Experienced computer scientists can analyse and

solve computational problems at a specific level of abstraction, inde-

pendent of programming language. Another important aspect regard-

ing algorithms is to predict their output for a given input. In other

words, programmers need to develop a mental model concerning their

program and predict its behaviour (Robins, Rountree, &

Rountree, 2003). This is closely related to the abstraction process that

decides which details to consider or ignore. While creating represen-

tative systems for real-world facts/problems, individuals can choose

which aspects of the real-world should be modelled, based on the

problem they intend to understand in-depth and solve

(Basawapatna, 2016; Irgens et al., 2020).

Abstraction is the cornerstone of CT and the most important hall-

mark that distinguishes it from other types of thinking. It is essentially

a model creation process that enables solving complex problems by

separating logical and physical perspectives. Therefore, abstraction is

a key to tackle complexity. Moreover, it is actually a skill that is rou-

tinely employed in daily life. Furthermore, several fields are based on

the concepts attained through various levels of abstraction. The con-

cept of abstraction is used formally or informally in a wide range of

disciplines, such as mathematics, cognitive science, artificial intelli-

gence, art, philosophy, complex systems, and computer science. For

example, in a geography lesson, concepts such as parallel, meridian,

and ecliptic plane use abstractions as their cornerstone. These

abstract representations are the basis of navigational calculations

(e.g., celestial navigation), especially in the maritime field. Abstraction,

which is omnipresent in almost every discipline is defined in a differ-

ent manner in different disciplines. Therefore, it is difficult to provide

a general definition for it. In visual arts, abstraction is defined as res-

haping reality through imagination and expressing it with symbols,

whereas in mathematics, it is defined to distinguish the properties of

objects and/or relationships between the objects and organize them

to develop a mathematical structure.

In this study, abstraction is considered as “elimination of redun-

dant details to simplify and acquire generalizations that unveil the

core ideas” as suggested by Hill, Houle, Merritt, and Stix (2008). Based

on this definition related to computer science, it can be seen that

abstraction is a structure comprising two mutually complementary

dimensions. Some generic abstract tests are available online. How-

ever, most of them are mainly for formal operations that focus on logi-

cal, spatial, and inductive reasoning. These tests are commonly

suitable for measuring non-verbal skills. Noting that abstraction does

not have a single aspect; Hill et al. (2008) suggested that abstraction

task types must include not only formal problem-solving operations

by noticing the irrelevances in a given problem situation but also

descriptive items that are based on the extraction of core meanings

from verbal expressions to produce more common generalizations.

Although abstraction is highly dependent on developmental stages, it

is a skill that can be developed through instructional processes. Com-

puter science has rich references in terms of activities that can be

characterized as an abstraction (Colburn & Shute, 2007).

Following a broad consensus on the importance of CT and the

necessity of its integration into educational environments, more prac-

tical questions regarding how to support and evaluate CT develop-

ment have recently received attention. Programming is not only a key

skill in CT but also a prominent activity that enables the demonstra-

tion of CT competences. Programming activities play a key role in the

advancement of CT, which requires several different skills. Program-

ming promotes a unique way of thinking that can be considered cardi-

nal to solve problems that entail a synthesis of cognitive efforts and

information processing capacity.

Problem solving comprises a series of mental, emotional, and

behavioural efforts that an individual exhibits in order to find an

effective way to cope with the problematic and stressful situations

confronted in professional and everyday life (Heppner &

Krauskopf, 1987). The development of learners' problem-solving

competences is one of the most desired educational outcomes for

life. However, real-life problems are rather dynamic, complex,

and versatile compared the ones predefined in structured

formal learning contexts (Heppner, Hibel, Neal, Weinstein, &

Rabinowitz, 1982). Problem-solving skills require the construction of

mental models regarding the problematic situation (Jonassen, 2000).

This also provides a basis for the use of computational approaches

in problem-solving processes. In present study, programming is con-

sidered as an approach—a type of problem-solving form, to reveal

the CT process (Lye & Koh, 2014). It is aimed to enable students

deal with complexity by using abstractions and develop their

problem-solving skills. However, learning to program and transfer-

ring programming skills into real-world scenarios require a series of

challenging mental efforts. Moreover, the acquisition of program-

ming concepts, even at a basic level of programming, is a challenging

task for novices (Durak, 2020). This difficulty mostly stems from the

endeavours to concurrently tackle the semantic and syntactic

aspects of programming. The representation of ideas in a very struc-

tured form becomes especially a chaotic engagement in some

instances, where there are not enough orientations and feedbacks

to make programming intuitions functional. This situation, which is

likely to decrease student motivation, also causes programming to

be perceived as a difficult lesson just like mathematics

(Alturki, 2016). Motivation is the tendency to maintain one's efforts

toward a predetermined purpose. Based on this definition, learning

ÇINAR AND TÜZÜN 371

motivation can be considered as a continuity of learning efforts

(Ngan & Law, 2015). Students are unlikely to be successful in any

learning setting that does not trigger their motivation (Tüzün,

Barab, & Thomas, 2019). When students hold inner motivation for

tasks that require conceptual understanding, they are more likely to

exhibit better learning performance (Carlborg, Tyrén, Heath, &

Eriksson, 2019). Therefore, one of the most frequently addressed

topics in CT studies is student motivation.

Concerning how best to help students acquire computational

concepts, practices, and perspectives, various tools, environments,

and pedagogies are being used. In this study, educational robots are

proposed as both educational innovation and an alternative to

traditional programming education commonly provided through

object-oriented languages for computational problem-solving and pro-

gramming activities. The object-oriented programming is basically

conducted in a programming modality in which data and functions are

encapsulated within modifiable graphical objects in a visual or textual

interface. In contrast, concrete robotic programming is a programming

modality in which the function of programming codes created in visual

or textual programming environments can be observed on physical

objects in real-world settings. The effects of this alternative program-

ming activity on programming achievement, abstraction, problem solv-

ing, and motivation were examined.

Despite the increasing research trend in computer science educa-

tion, especially CT, there is a lack of studies investigating abstraction,

which is one of the main components of CT in literature. Moreover, it

is seen that most of the studies on CT are based on a single cross-

sectional study shaped by relatively short-term instructional activities

and narrow-scoped computational concepts. This study is important

in terms of contributing to the current understanding of CT and the

nature of computational problem-solving processes, especially

abstraction. Furthermore, two consecutive case studies offer us the

opportunity to examine the consistency of the findings and describe

the contextualities from a broad perspective.

1.1 | Research questions

• What is the effect of object-oriented and robot programming

education on students' achievement?

� Does the type of programming activities create a signifi-

cant impact on programming competencies?

• What is the effect of object-oriented and robot programming

education on students' abstraction skills?

� Does the type of programming activities create any signifi-

cant differences in abstraction scores?

• What is the effect of object-oriented and robot programming

education on students' problem-solving perception?

� Does the type of programming activities create any signifi-

cant differences in problem-solving perception?

• Do different programming modalities make a significant differ-

ence in students' motivation?

2 | METHOD

2.1 | Research design

True experimental models including the pretest-posttest and posttest

control group experimental designs were adopted in this study

(Fraenkel & Wallen, 2006). Two consecutive and independent experi-

mental interventions were conducted to examine the consistency of

results. Hereinafter, these experimental studies are referred to as

Case 1 and Case 2. Case 1 and Case 2 were conducted in 2016 and

2017, respectively, with a time interval of one school year. In each

case, students were divided into experimental and comparison groups

formed according to their instructional intervention types. The condi-

tions in both cases were designed in a similar way in order to assess

to what extent the results obtained from the cases mutually support

or exclude each other.

2.2 | Participants

The sample comprises 81 tenth-grade students studying at the infor-

mation technology department at a vocational high school in Turkey.

Only tenth-grade students were included in the study because they

had not opted for a computer programming course beforehand in

the context of the Information Technology program. In both cases,

participants were randomly assigned to the experimental and com-

parison groups via lottery method. Following the assignments, the

participants distributed to experimental and comparison groups in a

balanced manner in terms of academic achievement level and gender

(Table 1). During the implementation periods, the transition rate of

students to 4-year higher education programs was below 1% at the

school where the study was conducted. Therefore, the selected par-

ticipants represent the population with low academic performance

to a large extent.

The number of participants in the experimental and comparison

groups was 20 and 21 in Case 1, respectively, and 21 and 19 in Case

2, respectively. In both case studies, the number of participants was

distributed evenly among the test groups. However, the number of

females in both experimental and comparison groups was lower than

that of males. The number of female participants in the experimental

and comparison groups was 5 (25%) and 4 (19%) in Case 1, respec-

tively, and 4 (19%) and 3 (16%) in Case 2, respectively. This can be

regarded as a result of the study involving students undergoing voca-

tional secondary education.

2.3 | Data collection tools

In this study, data were collected through programming achievement

and abstraction tests and problem-solving and motivation scales,

respectively. Additionally, a personal information form was used to

obtain the qualitative data of the participants.

372 ÇINAR AND TÜZÜN

2.3.1 | Programming achievement test

The programming achievement test was developed by the researchers

to assess basic programming concepts and the acquisition of program-

ming logic. In the preparation phase of the test items, a programming

test comprising 18 items developed by Saygıner (2017) for the Pascal

programming language was used. The questions were prepared to be

free of syntactic rules so that the achievement test is independent of

programming language or mode. Initial format of the achievement test

includes a total of 25 questions: five open-ended and 20 multiple choice

items. The opinions from four experts with over 5 years of programming

teaching experiences were obtained for the content validity of the test.

The achievement test that was revised using expert opinions was

applied to 206 vocational high school students who had taken program-

ming lessons. The sub-upper group technique was used to perform item

analysis. Students were first ranked according to their scores, and both

27% of lower and upper groups were selected. Subsequently, the item

analyses were performed. After item analysis, two items with a discrimi-

nation index of less than 0.25 were excluded from the test. This was the

final format of the achievement test. The average difficulty and discrimi-

nation indices of the test are 0.476 and 0.473, respectively, whereas the

KR-20 internal consistency coefficient was found to be 0.878. An

English version of sample test items is presented in Appendix. The

achievement test is especially appropriate for students at a high school

level and above. However, since test items are free of syntactic rules of

any particular programming language, some items can also be applied to

middle-school students to evaluate their acquisition of CT concepts.

2.3.2 | Abstraction test

To evaluate students' abstraction skills, the abstraction skill inven-

tory developed by Hill et al. (2008) was used. Inventory addresses

abstraction skills in the frame of three discrete cognitive dimen-

sions comprising conceptual (five-point Likert-type three items),

formal (six multiple-choice test items), and descriptive (three

multiple-choice test items) abstraction. To bring the research on a

more rational ground, only formal and descriptive abstraction tests

that are non-self-reporting instruments were used in the study.

2.3.3 | Problem-solving scale

The problem-solving scale originally developed by Heppner (1988)

and Heppner and Petersen (1982) and then adapted by Şahin, Şahin,

and Heppner (1993) to the local language, in which the study was

conducted, was used to evaluate the effects of CT activities on stu-

dents' problem-solving approaches in the face of problematic situa-

tions in daily life. The high score of the scale shows that individuals

perceive themselves incapable in problem-solving. The Cronbach

alpha reliability coefficients of the original and adapted forms of the

scale are high values such as 0.90 and 0.88, respectively. The reliabil-

ity coefficients of the scale applied in the study were 0.76 and 0.88

for the pretests in Case 1 and Case 2, respectively.

2.3.4 | Instructional materials motivation scale

The instructional materials motivation scale, originally developed by

Keller, and adapted by Kutu and Sözbilir (2011) to the local language

in which the study was conducted, was used to evaluate the effect of

different programming modalities and tools used on student motiva-

tion. The reliability coefficients of the original and adapted forms of

the scale were 0.93 (Keller, 2010) and 0.83 (Kutu & Sözbilir, 2011),

respectively, and the reliability values were calculated as 0.84 and

0.87 for the cases in the scope of the study. High scores obtained

from the scale indicate a high level of motivation.

2.3.5 | Personal information form

The personal information form lists the items with questions regarding

age, gender, personal computer (PC) ownership, daily average com-

puter usage time, and programming experience.

2.4 | Data collection

Data were collected within the scope of the programming foundations

course. This introductory-level programming course includes compu-

tational rules that require the understanding of basic computational

concepts and sharing with others and employment of CT skills to pro-

pose a solution in the problem-solving settings. The course that is

followed by theoretical and practical sessions, was allotted 3–4 hours

per week. In both case studies, learning activities in the test groups

were implemented under the guidance of the same instructor. This

helped to minimize the possible differences of the effects of the

instructors on the groups. The weekly course contents and activity

plans prepared by the instructor of the course—the first author of the

current study, were reviewed by a specialist in the field of

TABLE 1 Distribution of participants'
gender and ninth-grade point average
(GPA) according to test groups Case Implementation date Group

Gender GPA

Male (ƒ) Female (ƒ) Mean Std. dev.

Case 1 2016-spring Comparison 17 4 54.22 2.15

Experimental 15 5 53.57 1.86

Case 2 2017-spring Comparison 16 3 65.06 1.93

Experimental 17 4 64.14 2.24

ÇINAR AND TÜZÜN 373

instructional technology. Before implementations, the students were

divided into two groups, and instructional activities related to CT were

performed in one group through object-oriented visual programming

tools (comparison group) and in the other through educational robot

kits (Lego Mindstorms NXT 2.0) and software tools (experimental

group) (Figure 1). C language-based programming tools (C# and

Robot C) were used in both groups. This ensured similar conditions in

terms of syntactic difficulty in programming. The learners in the

experimental groups used Lego blocks to build the robots during the

initial phase of the implementations. They were then expected to

functionally manipulate the robots to improve their programming

knowledge and skills. In fact, educational robot programming activi-

ties, which work as a tool to communicate with the external world,

are considered as an alternative to traditional programming conditions

for demonstrating CT skills. In the theoretical sessions of the course,

short presentations and examples regarding basic information were

presented for students to become familiar with basic programming

concepts such as variables, operators, arithmetical and logical

F IGURE 1 Images of experimental (a, b) and comparison (c, d) groups engaged in computational problem-solving activities through
programming [Colour figure can be viewed at wileyonlinelibrary.com]

374 ÇINAR AND TÜZÜN

http://wileyonlinelibrary.com

operations, conditional statements, and loops. During the practical

session of the course, students tried to find solutions to the computa-

tional problems, and thereby had the opportunity to deepen their

understanding of programming structures and processes. At this stage,

problem-solving forms with the guideline questions suggested by

Polya (1957, 1973) were provided to students in both groups to scaf-

fold the problem-solving activities. The implementation period of Case

1 spanned 12 weeks; this period was reduced to 8 weeks in Case 2 by

lowering the subject density. This aimed to avoid the problems of cog-

nitive overload for novice programmers and prevent any problems

(e.g., loss of subjects) that could be encountered during the long inter-

vention phase.

Introduction of programming concepts to the test groups was

performed in parallel in a temporal sense. Although it required the use

of similar concepts, the structure and presentation of CT problems

were differentiated according to the groups. The number of problems

in the first weeks of practical sessions was gradually reduced in the

following weeks as their complexity increased. Prerequisite conditions

(robot components, physical settings, problem scenarios, etc.) were

created for the experimental groups to perform robotic manipulations

according to the CT problems (Figure 2). Students in the experimental

groups worked in teams throughout the practical sessions. In contrast,

students in the comparison groups were also given flexibility in work-

ing individually or as a team.

2.5 | Data analysis

Prior to data analysis, suitability of the dataset to normal distribution

was examined using Q-Q and P–P plots, Shapiro–Wilk test, and Z-

scores calculated regarding the skewness and kurtosis statistical mea-

sures. Pretest scores were compared between groups using the

independent samples t-test or Mann–Whitney U test according to

normality. In-group score differences pre- and post-implementations

were investigated with the paired sample t-test or its nonparametric

equivalent Wilcoxon signed-rank test. In the study, the relationships

between variables were tested by correlation analysis. Posttest scores

between groups were examined using mean difference analysis or

covariance analysis depending on whether there is a significant rela-

tionship between pre- and posttest scores. In the analysis of the pro-

gramming achievement scores, students' grade point average (GPA)

was also considered as covariate. Statistical significance (p) threshold

value was accepted to be .05.

2.6 | Limitations

In this study, there is a difference in terms of sample size between the

two discrete case studies. Despite how carefully or rigorously the par-

ticipant selection is performed for the interventional studies, espe-

cially with long implementation periods, it is possible that some

participants may leave the study for a variety of reasons. Among the

threats to internal validity (Fraenkel & Wallen, 2006), participant loss

is probably the most difficult to control. Participant loss is a limitation

of this study. A total of seven (14%) and six participants (13%) in Case

1 and Case 2, respectively were excluded from the study for various

reasons (transfer, high absentee rate, special education requirement,

etc.). Data obtained from these participants were removed from the

dataset. Moreover, underrepresentation of female participants is

another limitation of this study.

F IGURE 2 Examples of tracks prepared for robotic activities. Circular route for path tracking (a); and a maze created through removable
cardboard blocks for maze solving (b) [Colour figure can be viewed at wileyonlinelibrary.com]

ÇINAR AND TÜZÜN 375

http://wileyonlinelibrary.com

3 | RESULTS

The demographic characteristics of the participants are presented in

Table 2. The age of the participants was generally between

15–16 years, and most of them had 4–6 years or 7–9 years of com-

puter experience. The GPAs of students who participated in Case

2 are relatively higher than those in Case 1. Participants with a rela-

tively high rate of PC ownership spent an average of 2–3 hours a day

at the computer. However, the programming familiarity of the partici-

pants was considerably low as expected.

Difference between the students' prior knowledge about pro-

gramming was evaluated by the pretest measurements. The program-

ming pretest results showed that the participants did not differ

significantly in terms of programming pre-knowledge level (Case 1:

t39 = .350, p = .728 > .05; Case 2: t38 = −.052, p = .958 > .05). Follow-

ing the CT activities, there was a significant increase in the

programming test scores in all groups (p < .001). In both groups, the

programming test scores of the students increased two times approxi-

mately, and they approached a medium level from the lower one after

the implementations. In the comparison group, the programming

mean score of the learners elevated from 5.952 to 9.904 (t20 = 6,921,

p < .001) and from 6.579 to 10.579 (t18 = 6.040, p < .001) in Case

1 and Case 2, respectively. Similarly, programming test scores of the

experimental group increased from 5.650 to 10.250 (t19 = 8.027,

p < .001) and from 6.619 to 11.524 (t20 = 7.147, p < .001) in Case

1 and Case 2, respectively (Table 3 and Figure 3).

Cohen's d (>0.8) and η2 (>0.14) values indicate that CT activities

have a large effect on the increase in programming achievement in

both experimental and comparison groups. Values in Table 3 clearly

indicate that the posttest scores of the students in the robotic pro-

gramming group are higher compared to those of the students in the

object-oriented visual programming group in both case studies. While

TABLE 2 Students' descriptive statistics of age, GPA, PC ownership and experience, daily usage of PC, and familiarity of programming

Demographics Intervals

Case 1 Case 2

Frequency (ƒ) Percentage (%) Frequency (ƒ) Percentage (%)

Age (years) 15–16 34 83% 31 77.5%

17–18 7 17% 9 22.5%

Total 41 100% 40 100%

GPA (scores) 40–49 16 39% 2 5%

50–59 12 29.3% 11 27.5%

60–69 12 29.3% 16 40%

70–79 1 2.4% 9 22.5%

80–89 — — 2 5%

Total 41 100% 40 100%

Computer usage experience (years) None 4 10% 3 7.5%

0–1 2 5% 2 5%

2–3 5 12% 5 12.5%

4–6 19 46% 13 32.5%

7–9 9 22% 13 32.5%

10 and above 2 5% 4 10%

Total 41 100% 40 100%

Home PC ownership Yes 27 66% 28 70%

No 14 34% 12 30%

Total 41 100% 40 100%

Daily PC usage (hours) None 8 19.5% 9 22.5%

0–1 12 29.3% 10 25%

2–3 13 31.7% 14 35%

4–6 8 19.5% 4 10%

7–9 — — 2 5%

10 and above — — 1 2.5%

Total 41 100% 40 100%

Prior enrolment in a programming course Yes 2 5% 5 12.5%

No 39 95% 35 87.5%

Total 41 100% 40 100%

376 ÇINAR AND TÜZÜN

examining the effect of programming modality for CT on students'

achievement, the ninth-GPA and programming pretest results were

included as covariates in the analysis. Pearson correlation coefficients

(r) between the ninth-GPA and programming posttest scores are

0.692 and 0.433 for Case 1 and Case 2, respectively (p < .01). Simi-

larly, the correlation between programming pretest and posttest

results was found to be 0.749 and 0.475 for Case 1 and

Case 2, respectively (p < .01). Analysis of the adjusted posttest results

based on the pretest and GPA scores revealed that the experimental

groups (X = 10.25 for Case 1 and X = 11.52 for Case 2) obtained rela-

tively high posttest scores compared to those of the comparison

groups (X = 9.90 for Case 1 and X = 10.58 for Case 2). However, the

results obtained from covariance analysis in both cases showed that

there was no statistically significant difference between the program-

ming achievement posttest scores in terms of programming modality

(F1-37 = .884, p > .05 for Case 1; F1-36 = 1.422, p > .05 for Case 2).

The eta-squared statistic indicates a small effect size for both cases

(η2 = .023 for Case 1; η2 = .038 for Case 2).

Another research question is how CT activities performed via

programming affect the abstraction (descriptive and formal abstrac-

tion) skills of the learners. Programming is a computational activity

that enables different levels of data and procedural abstraction. For-

mal abstraction deals with the ability to reason about symbolic situa-

tions and structures to comprehend the underlying ideas and achieve

a more direct or simplified perspective (Hill et al., 2008). This process

involves removing redundant details to concentrate on the main ideas

and achieve simplification. Therefore, the test questions have both

precise and less precise answers. The formal and descriptive abstrac-

tion test scores were analysed using nonparametric tests. Wilcoxon

signed-ranks and Mann–Whitney U tests were employed for the com-

parisons within and among groups, respectively. Additionally, the

covariance rank analysis proposed by Quade (1967) that is considered

as the non-parametric equivalent of covariance analysis was used in

the comparison of the posttest scores.

There was no significant difference between the groups in terms of

formal abstraction skills before the implementations (U = 196.5, p > .05

for Case 1; U = 194.5, p > .05 for Case 2). Following the CT activities,

the number of students with increased formal abstraction scores was

relatively higher than those with decreased scores (except for the exper-

imental group in Case 1). However, a significant difference was found

between the pretest-posttest scores of the experimental group in only

Case 2 (Z = 2.00, p < .05) (Table 4 and Figure 4).

On the contrary, the statistical power value (power = 0.58 < 0.80)

calculated for the test, leads to a limitation owing to the small sample

size (n = 21). Based on the effect size (d = 0.4294) of the comparison

between the experimental group pretest-posttest scores in

Case 2, the sample size must be 37 to obtain a statistical power of

0.80. Although it is irrelevant in cases where the rank orders are not

statistically significant when the effect size statistics related to other

groups are examined, it is observed that the effect sizes are consider-

ably low. In other words, instructional interventions have a consider-

ably low effect on the development of students' formal abstraction

scores. Lastly, the formal abstraction posttest scores of the experi-

mental and comparison groups were compared following the CT activ-

ities. Before posttest comparison, the relationships between academic

achievement and formal abstraction pre- and posttest scores were

examined by Spearman's rank differences correlation analysis. In both

cases, GPA scores did not have a significant relationship with formal

abstraction posttest scores (rs = .239, p = .133 > .05 for Case 1;

rs = .074, p = .649 > .05 for Case 2). Therefore, using the GPA variable

as a covariate in the analysis of formal abstraction test scores was not

considered necessary. However, the formal abstraction pretest scores

TABLE 3 Change of students' programming achievement scores following the implementations

Group Tests N �X SD df t p Cohen's d η2

Case 1 Object-oriented visual prog. Pretest 21 5.952 3.074 20 6.921 .000 1.510 .705

Posttest 21 9.904 4.380

Educational robotic prog. Pretest 20 5.650 2.390 19 8.027 .000 1.795 .772

Posttest 20 10.250 3.385

Case 2 Object-oriented visual prog. Pretest 19 6.579 2.411 18 6.040 .000 1.386 .669

Posttest 19 10.579 3.906

Educational robotic prog. Pretest 21 6.619 2.418 20 7.147 .000 1.559 .718

Posttest 21 11.524 2.676

F IGURE 3 Change in students' programming achievement scores
following the implementations. All comparisons were made between
pretest and posttest results of the relevant test group. Error bars
represent standard error of the means. Triple asterisk
denotes p < .001

ÇINAR AND TÜZÜN 377

are included in nonparametric analyses as a covariate. According to

the results of Quade's rank analysis of covariance, there is no signifi-

cant difference between the test groups in terms of formal abstraction

posttest scores (Quade F = 0.661, p = .421 > .05 for Case 1; Quade

F = 0.255, p = .616 > .05 for Case 2).

Descriptive abstraction corresponds to the generalization process

to define a common basis or essence. It is the ability to recognize the

most substantial characteristics and infer meaningful but shortened

inclusive models based on these characteristics. This involves identify-

ing key points, focusing on clear and direct analysis, obtaining to the

crux of the topic, and comprehending the main principles. Formal

abstraction is more related to problem solving, whereas descriptive

abstraction deals with language manipulation. In both cases, there was

no significant difference according to the descriptive abstraction

levels between the groups before the implementations (U = 210.00,

p > .05 for Case 1; U = 187.50, p > .05 for Case 2). Regarding descrip-

tive abstraction pretest scores in both cases, the number of students

from the experimental groups with significantly increased scores was

higher than those with decreased scores (Z = 2.070, p < .05 for Case

1; Z = 2.530, p < .05 for Case 2) (Table 5 and Figure 5). On the con-

trary, in both case studies, there was no significant difference

between the pre- and posttest scores of the comparison group stu-

dents in favour of the positive scores (Z = 1.355, p > .05 for Case 1;

Z = −.447, p > .05 for Case 2).

The effect size coefficient, r, to be used to evaluate the magni-

tude of the pretest-posttest score differences of the experimental

group was calculated as 0.327 and 0.390 in Case 1 and Case 2, respec-

tively. This indicates that instructional intervention in the experimen-

tal group had a moderate effect on the pretest-posttest score

differences. Power analysis showed that the power of statistical anal-

ysis for the comparison of the pretest-posttest scores of the experi-

mental group was 0.68 and 0.90, for Case 1 and Case 2, respectively.

These results reveal that CT and problem-solving activities fulfilled

through educational robot programming can be used to support stu-

dents' descriptive abstraction skills.

In both case studies, no significant relationship of GPAs with neither

pretest (rs = −.162, p = .310 > .05 for Case 1; rs = −.137, p = .398 > .05

for Case 2) nor posttest (rs = .178, p = .267 > .05 for Case 1; rs = −.149,

p = .360 > .05 for Case 2) results of the descriptive abstraction was deter-

mined. Therefore, using the GPA variable as a covariate in the analysis of

descriptive abstraction scores was not required. However, descriptive

abstraction pretest scores were included in nonparametric analyses as a

covariate. The posttest scores revealed no statistically significant differ-

ence between the test groups according to the descriptive abstraction in

Case 1 (Quade F = 0.337, p = .565 > .05). On the contrary, the rank order

differences between the groups were significant in Case 2 (Quade

F = 6.401, p = .016 < .05).

A problem-solving scale was applied to examine how CT activities

affect students' reactions or approaches to problems in their daily

lives. No significant difference was found between the test groups in

terms of problem-solving scores before pre-implementation phases (t

(39) = 1.313, p > .05 for Case 1; t(30,179) = −.166, p > .05 for Case 2).

This can be interpreted as—the test groups have similar approaches to

TABLE 4 Analysis of change in students' formal abstraction test scores following the interventions

Group Posttest-pretest n Mean rank Sum of ranks Z p r

Case 1 Object-oriented visual programming Negative ranks 7 8.00 56 .688 .491 .106

Positive ranks 9 8.89 80

Ties 5

Educational robotic programming Negative ranks 7 7.93 55.50 −.193 .847 −.030

Positive ranks 7 7.07 49.50

Ties 6

Case 2 Object-oriented visual programming Negative ranks 3 2.50 7.50 .649 .516 .105

Positive ranks 3 4.50 13.50

Ties 13

Educational robotic programming Negative ranks 0 .00 .00 2.000 .046* .309

Positive ranks 4 2.50 10.00

Ties 17

Note: Single asterisk denotes p < .05.

F IGURE 4 Comparison of students' formal abstraction test scores
following the interventions. Error bars represent standard error of the
means. Single asterisk denotes p < .05

378 ÇINAR AND TÜZÜN

daily problems before implementations. The students overall had a

moderate level of competency perception in problem-solving. After

implementations, no significant change was found in the problem-

solving skills perceptions of the students in both experimental and

comparison groups in both cases (p > .05) (Table 6 and Figure 6).

Results of from the covariance analysis, wherein the problem-

solving pretest results were considered as a covariate, showed that

the programming modality did not cause a significant difference in

terms of students' problem-solving skills. (F1-38 = 1.805, p > .05 for

Case 1; F1-37 = .770, p > .05 for Case 2).

In this study, the motivation scale was applied at the post-

intervention phase to reduce the novelty effect of the programming

tools and environments used for computational activities on student

motivation. In both cases, the motivation scores of the learners

showed a significant difference in favour of the experimental group

(t39 = −2.295, p < .05 for Case 1; t38 = −2.211, p < .05 for Case 2)

(Table 7 and Figure 7). Cohen's d values between 0.7 and 0.8 indicate

a moderately high effect. Moreover, it can be said that approximately

11–12% of the variance observed in the motivation scores occurred

depending on the instructional technology.

In this study, relationships between programming achievement,

problem-solving perception, abstraction ability (formal and descriptive

abstraction), and motivation were examined based on the posttest

results (Table 8). The data were analysed collectively without classifi-

cation according to test groups.

In Case 1, which lasted for 12 weeks, moderate positive and sig-

nificant relationships were found between (a) students' programming

achievement and formal abstraction scores (rs = .384, p < .05), (b) pro-

gramming achievement and descriptive abstraction scores (rs = .353,

p < .05), and (c) formal and descriptive abstraction scores (rs = .352,

p < .05). However, these relationships observed between the three

variables in Case 1 were not significant in Case 2, for which, the

implementation process lasted for 8 weeks (p > .05). In both case

studies, a moderate negative relationship was determined to exist

between the problem-solving and motivation scores (rs = −.475,

p < .01 for Case 1; rs = −.542, p < .01 for Case 2). Lower scores

obtained from the problem-solving scale indicate a higher level of

problem-solving perception. Therefore, as students' perceptions of

problem-solving skills increased, their motivation also increased in

both cases. Problem-solving and motivation scales are both based on

self-reporting data. It is thought that collecting data from both instru-

ments based on student perceptions contributes to the relationships

between these two variables.

4 | DISCUSSION

This study comparatively examines the effects of object-oriented pro-

gramming and robot programming activities on achievement, abstrac-

tion, problem solving, and motivation. The results of the study are

summarized in Table 9.

After CT and problem-solving activities through programming,

there was a significant increase (approximately two times) in the

TABLE 5 Analysis of students' descriptive abstraction test scores post interventions

Group Posttest-pretest n Mean rank Sum of ranks Z p r

Case 1 Object-oriented visual programming Negative ranks 5 6.50 32.50 1.355 .175 .209

Positive ranks 9 8.06 8.06

Ties 7

Educational robotic programming Negative ranks 2 4.00 8.00 2.070* .038 .327

Positive ranks 8 5.88 47.00

Ties 10

Case 2 Object-oriented visual programming Negative ranks 3 3.00 9.00 −.447 .655 −.073

Positive ranks 2 3.00 6.00

Ties 14

Educational robotic programming Negative ranks 0 0.00 0.00 2.530* .011 .390

Positive ranks 7 4.00 28.00

Ties 14

Note: Single asterisk denotes p < .05.

F IGURE 5 Comparison of students' descriptive abstraction scores
following the interventions. Error bars represent standard error of the
means. Single asterisk denotes p < .05

ÇINAR AND TÜZÜN 379

programming achievement scores of both experimental and compari-

son groups. Furthermore, instructional interventions showed a high

impact on students' programming success. In both case studies, the

gain scores of the experimental group were higher than those of the

comparison group. However, this difference in posttest scores

between groups was not significant for both case studies.

In this study, all learning conditions except programming modality

were designed to be as similar as possible to each other for the exper-

imental and control groups. Moreover, in both groups, programming

tools based on the C language were used to support students' CT

skills. Both Visual C# and Robot C have the technical and syntactical

complexities of text-based programming languages. Therefore, these

findings regarding achievement scores may be the result of learning

activities implemented in considerably similar conditions, especially

code-writing procedures across the groups.

Several studies report the positive effects of educational robotic

kits and software tools on supporting students' programming skills.

On the contrary, there is a dearth of studies with comparison of edu-

cational robot programming and traditional programming activities.

Garcia and De la Rosa (2016) reported that the middle school stu-

dents' acquisition of programming and algorithm concepts increased

significantly (91%) as a result of the robotic activities performed in a

virtual environment through a web-based visual-block programming

application. They additionally compared the effectiveness of the web-

based virtual robotics application using Scratch, a popular

block-programming tool. At the end of the five-hour experimental

intervention, both tools were found to have a similar effect on student

learning. The study conducted by Scott et al. (2015) to determine the

impact of web programming and robotic applications on the program-

ming process in the introductory programming courses reported that

undergraduate students engaged in robotic activities allocated more

time for programming and produced higher-quality programs in terms

of functionality and sophistication. In that study, it has been stated

that the time allocated for coding practices has a significant effect on

the functionality of the program. Gender did not produce a significant

difference in the quality of the created programs. On the other hand,

the instructional activities organized for the experimental and compar-

ison groups in the study were performed sequentially (1-semester

gap) within the scope of different courses, and not simultaneously.

Moreover, student assessment techniques (e.g., midterm exams,

weekly tasks) differed according to the test groups. Overall, apart

from the manipulations regarding the variables examined in the study,

the instructional conditions arranged for the test groups significantly

TABLE 6 Analysis of learners' problem-solving perceptions according to test groups

Group Tests N �X SD df t p

Case 1 Object-oriented visual programming Pretest 21 100.857 15.58 20 .564 .579

Posttest 21 103.381 19.02

Educational robotic programming Pretest 20 93.700 19.22 19 −.455 .654

Posttest 20 92.050 19.97

Case 2 Object-oriented visual programming Pretest 19 88.6316 12.18 18 1.882 .076

Posttest 19 94.1579 17.02

Educational robotic programming Pretest 21 89.619 24.15 20 .903 .377

Posttest 21 91.7619 23.48

F IGURE 6 Change in learners' problem-solving perceptions after
the implementations according to test groups. Error bars represent
standard error of the means

TABLE 7 Analysis of motivation scores between test groups with t-test after implementations

Test Group N �X SD df t p* Cohen's d η2

Case 1 Motivation scale Object-oriented visual programming 21 85.52 12.53 39 −2.295 .027 0.717 0.114

Educational robotic programming 20 93.65 9.92

Case 2 Motivation scale Object-oriented visual programming 19 80.79 15.50 38 −2.211 .033 0.700 0.113

Educational robotic programming 21 90.05 10.78

Note: *Single asterisk denotes p < .05.

380 ÇINAR AND TÜZÜN

differed from each other. Findings of the current and other studies in

literature indicate that educational robots are as effective as tradi-

tional programming tools in supporting programming skills. However,

more comparative studies are needed in this area.

The formal abstraction test results demonstrate no significant

improvement in the formal abstraction skills of both experimental and

comparison groups in Case 1 after CT activities. However, in Case 2, a

significant increase was seen in the formal abstraction scores of stu-

dents in the educational robotics group only. In both cases, no signifi-

cant difference was observed between the experimental and

comparison groups in terms of formal abstraction posttest scores. The

descriptive abstraction results indicate a significant increase in the

experimental groups following the implementation in both cases;

however, a similar result was not seen for the comparison group in

any case. No significant difference was observed between the test

groups in terms of descriptive abstraction posttest scores in Case 1;

however, a significant difference in favour of the experimental group

in Case 2 was present. These results show that educational robot pro-

gramming practices support the development of students' abstraction

skills more than traditional object-oriented programming activities. It

can be concluded that the descriptive abstraction skills of the experi-

mental group students showed steady development in both cases

compared to those in formal abstraction. This may be owing to the

fact that the problem statements presented to the experimental group

students in the practical sessions of the course are longer and more

complex, thereby requiring higher-level descriptive abstractions.

Abstraction is a conceptual process, in which inclusive infer-

ences based on basic characteristics are acquired by ignoring redun-

dant or irrelevant details. Therefore, abstraction skill or creating an

abstraction requires filtering out less important features while

highlighting important aspects of the ideas to conceptualize and

F IGURE 7 Comparison of motivation scores between test groups
according to case studies. Error bars represent standard error of the
means. Single asterisk denotes p < .05

TABLE 8 Relationship between programming achievement; problem solving; formal and descriptive abstraction; and motivation scores
according to case studies

Case 1

Programming

achievement

Formal

abstraction

Descriptive

abstraction

Problem-

solving Motivation

Case

2

Programming

achievement

r — .384b .353b −.208a .258b

p .013* .024* .193 .104

N 41 41 41 41

Formal abstraction r .064b — .352b .065b .080b

p .693 .024* .684 .620

N 40 41 41 41

Descriptive abstraction r .208b −.191b — .169b .181b

p .198 .238 .292 .258

N 40 40 41 41

Problem-solving r −.180a .255b −.219b — −.475b

p .266 .162 .175 .002**

N 40 40 40 41

Motivation r .152b −.035b .252b −.542b —

p .351 .829 .117 .000**

N 40 40 40 40

Note: *p < .05, **p < .01.
aPearson's correlation coefficient.
bSpearman's rank correlation coefficient.

ÇINAR AND TÜZÜN 381

represent the core ideas or processes with more general definitions

(Weintrop et al., 2016). Computational activities performed through

programming can be used to develop students' intellectual thinking

and problem-solving skills (Feurzeig, Papert, & Lawler, 2011;

Papert, 1993). However, similar to other disciplines, the prerequisite

for reasoning in the subject areas of computer science is to create

appropriate mental models or representations with essential

abstractions in essence. CT inherently comprises multi-level abstrac-

tions. Programming (Voogt, Fisser, Good, Mishra, & Yadav, 2015),

one of the basic forms of CT, has rich references in terms of compo-

nents that can promote abstraction, particularly data and procedural

abstraction. For example, the expression x = x + 1 is a procedure for

assigning a value that requires a considerably different abstraction

from a math equation. According to Papert (1980), through program-

ming, students can gain an intuitive sense of quantity without their

physical existence, related to some qualitative features, and work on

abstract elements. When students program the computer to accom-

plish their desired goals, they think about what they can do on their

own and develop an inner reflection of how they think. In summary,

programming environments that encourage how to think rather than

what to think, have the potential to be effective instructional tools

for cognitive processes. On the contrary, learning to program is a

considerably challenging task. Programming activities, especially for

the novice, involve a wide variety of requirements and challenges.

Programming courses are therefore considered difficult, and they

often have high dropout rates (Alturki, 2016; Robins et al., 2003).

The large number of difficulties encountered in computer program-

ming instruction stems from the structure of the traditional tasks in

computer science education and their presentation forms (Ben-Ari,

2001; diSessa, 2001; Guzdial & Forte, 2005). The traditional

approach of teaching programming is to ask students to memorize

commands specific to a particular programming language and expect

them to follow syntactic rules for that language to create a series of

programs starting from easy to difficult levels of complexity

(Chang, 2014). In higher education and vocational/technical

secondary education institutions, professional software develop-

ment tools such as C# or Visual Basic are generally used in introduc-

tory programming courses. This gives rise to several difficulties,

especially for novice programmers. The complex interface of profes-

sional programming environments, abundance of object or code

blocks, and highly procedural code-writing rules introduce difficul-

ties in establishing the semantic and syntactic relationship of pro-

gramming, thereby limiting the demonstration of computational

skills. Moreover, this hinders students' programming performance,

participation and learning engagement, motivation and career

choices related to computer science (Felleisen, Findler, Flatt, &

Krishnamurthi, 2004). In summary, traditional programming-teaching

approaches neglect students' cognitive role; therefore, they fall

short of supporting the development of students' innovative and

creative thinking skills (Fang, Chen, Cai, Cui, & Harn, 2017).

Educational robot programming is proposed as an alternative pro-

gramming activity in this study. Educational robots embody program-

ming, which is a highly conceptual process, within real-world settings.

This facilitates the establishment of semantic and syntactic relation-

ship of program codes. There is strong consensus in literature that

abstraction is a developable skill. In this study, a wide variety of activi-

ties, particularly problem solving and programming, were held to

exhibit and support abstraction skills. Additionally, through problem-

solving forms, students were encouraged to determine the limit or

scope of the problem, build models for further examination of the

problem, and express the solution ideas or suggestions in a specific

format (such as algorithm, flow charts, and situation scenarios) with

the aim to make them functional, that is, to convert them into pro-

gram codes more easily. These representations are thought to contrib-

ute to abstraction practices. Algorithms and flow charts not only

enable expressing and reasoning of mental processes but also allow

modelling of the proposed solutions. Such models serve as a scaffold

for the functionalization of existing information and understanding by

ensuring that mental representations are expressed in relation to each

other. Recent studies have shown that paper-pencil-based CT

TABLE 9 Examination of the differences in scores of the test groups according to dependent variables

Variables Case

Differences within group

Differences between groupsObject-oriented visual programming Educational robotic programming

Achievement Case 1 Yesa Yesa No

Case 2 Yesa Yesa No

Formal abstraction Case 1 No No No

Case 2 No Yesa No

Descriptive abstraction Case 1 No Yesa No

Case 2 No Yesa Yesb

Problem solving Case 1 No No No

Case 2 No No No

Motivation Case 1 N/A N/A Yesb

Case 2 N/A N/A Yesb

aIn favour of posttest.
bIn favour of experimental group.

382 ÇINAR AND TÜZÜN

activities such as algorithms and flow charts can be as effective as

programming tools (Kim, Kim, & Kim, 2013).

In the current study, although students in both experimental and

comparison groups studied the same subjects in the field of computer

science, they had different experiences regarding abstraction and

decomposition, which are the main components of CT. In addition to

the computational concepts introduced in each activity throughout the

curriculum, the experimental group had the opportunity to (a) examine

complex processes in the physical world through concrete robotics,

(b) observe and control robot movements, and thereby (c) regulate the

relationships between the robot and the physical world.

The physical world is more intuitive and meaningful, especially for

novices (Papert, 1980). The key benefit of visualization of the program

outputs is that it enables learners to follow the work of their

programmed objects, observe the relationships between all program

elements simultaneously, handle the program results as a whole, and

thereby find an opportunity to further develop the programming logic

(Città et al., 2019). Robotics also enables the creation of highly func-

tional feedback points for the written programs. This enables students

to gain important insights into the process of modifying or rebuilding

the program (Berland & Wilensky, 2015; Soleimani, Herro, &

Green, 2019). In this study, the students in the experimental group

developed the programs they initially wrote, in iterative steps based

on their observations and insights. Moreover, thanks to concrete

robotics, they became aware of the work of other teams, which lead

them to establish norms to evaluate their own development.

Robotic activities are highly suitable for supporting student

autonomy and exhibiting creative, strategic, and metacognitive think-

ing skills (Noh & Lee, 2020). Robotic technologies encourage students

to think about abstract structures because students envision robot

movements in their minds before programming. In this respect,

robotic technologies based on the active manipulation of authentic

materials allow abstract concepts to be connected to something that

can be observed and imagined (Burleson et al., 2018).

In this study, the Lego educational robotic kits were chosen for the

robotic applications. The Lego Mindstorms robotic kit not only offers

learners a highly manipulative learning activity thanks to its several

physical components (e.g., building blocks, servo motors, multi-type

sensors) but also enables the functionalization of these building blocks

with a variety of simple-to-use programming tools (Flórez et al., 2017).

Lego robotics is an exploratory activity that supports “learning by tin-

kering” (Bers, Flannery, Kazakoff, & Sullivan, 2014). Tinkering-oriented

learning describes having or requiring plans in the process of writing or

modifying a computer program without relying on any theory. Tinkering

includes a combination of activities such as trial-error, making small

changes, and unveiling and using feedback mechanisms (such as tests).

The iterative and variable nature of tinkering can help novices learn to

program. The bottom-up approaches or guess-check processes

(Burke & Kafai, 2010; Resnick et al., 2009) involved in “learning by tin-

kering” support the discovery of key components in the programming

language or environment (Perkins, Hancock, Hobbs, Martin, &

Simmons, 1986). Several researchers state that tinkering is a useful

activity for novice programmers (Wu, Hu, Ruis, & Wang, 2019).

Tinkering is an enjoyable activity that includes exploring and just-in-

time planning. It also encourages questioning the causes of an action

that produces the desired result and generates feedback from the envi-

ronment (Berland, Martin, Benton, Smith, & Davis, 2013). In this

respect, robot programming gains significance as a learning activity that

offers highly convenient conditions for tinkering.

Despite promoting different learning trajectories, in the literature,

physical and virtual robotic education have been reported to provide

relatively similar student outcomes in terms of the acquisition of CT

concepts and programming skills (Berland & Wilensky, 2015; Zhong,

Zheng, & Zhan, 2020). It is quite reasonable to benefit from the peda-

gogical values of virtual robotics, especially regarding engineering

thinking and complex problem-solving. Virtual robotics is also rec-

ommended for improving attitudes toward programming and to

reduce cognitive load in programming education (Zhong et al., 2020).

Two or three-dimensional virtual robot simulations offered by some

programming tools such as Robot C virtual robot and Robot Virtual

Worlds can be used in educational settings in which purchase costs

and storage facilities are limited. Virtual robot applications eliminate

technical problems and malfunctions that are sometimes encountered

in physical robotics such as problems with batteries and sensors. In

addition, simulation tools can allow robotic activities to be easily inte-

grated into distance education beyond face-to-face education.

CT activities did not result in significant advancements in

students' problem-solving approaches in this study. In addition, no

difference was observed between the test groups in terms of

problem-solving skills in both cases. Some studies in literature rev-

ealed similar findings on CT activities and problem-solving approaches

(Çiftci & Bildiren, 2019; Kalelio�glu & Gülbahar, 2014). Kalelio�glu

and Gülbahar (2014) found that programming activities with Scratch

did not cause a significant difference in primary school students'

problem-solving skills. In another study conducted by Kalelio�glu (2015)

involving primary school fourth-grade students, online coding activi-

ties (code.org) did not cause a significant difference to students'

reflective thinking skills toward problem-solving.

In the current study, it was observed that the conducted

problem-solving and CT activities were not sufficiently effective on

students' approaches to real-life problems. To offer programming

activities or conditions to students is not solely sufficient for effective

learning; however, the transfer of the learned matter to different dis-

ciplines and real-world problems is additionally required. Therefore,

selection of problem scenarios in CT activities that are more related

to daily life may facilitate the transfer of computational skills to real-

world problems. Furthermore, in addition to CT skills, practices that

encourage metacognitive thinking in the problem-solving process can

provide important opportunities for students to develop problem-

solving approaches.

In both cases, learner motivation significantly differentiated in

favour of the educational robot programming group. Study data were

collected following the implementations to eliminate any possible dif-

ferences owing to the novelty effect of educational technologies on

motivation scores. Therefore, it is considered that the difference in

motivation scores is not innovation-induced. In several studies on

ÇINAR AND TÜZÜN 383

http://code.org

the construction of computational artefacts, student participation

and motivation were highlighted rather than learning about the

subject matter (Wilkerson-Jerde, 2014). Saez-Lopez and Sevillano-

Garcia (2017) determined in their study on CT integration in art edu-

cation that robotic technologies and programming activities increase

student interest, motivation, and participation in addition to computa-

tional competencies.

5 | CONCLUSION AND
RECOMMENDATIONS

The past half-century has seen the generation of a comprehensive body

of literature regarding computer science and programming education.

However, these studies were mainly conducted in the context of under-

graduate classes. Recently, increasing initiatives to integrate computer

science into the K12 curriculum, including CT and programming activi-

ties are being conducted worldwide. However, studies on how CT pro-

cesses should be guided, what learning outcomes would be obtained at

the end of the process, and how these outcomes would be evaluated

are notably limited (Grover & Pea, 2013; Lye & Koh, 2014). In the cur-

rent study, the effects of CT experiences on students' programming

achievement, abstraction skills, problem-solving approaches, and moti-

vation were examined through the programming activities, in which

they try to find solutions to computational problems. To demonstrate

CT skills more effectively, students are encouraged to perform the

problem-solving process under the guidance of the problem-solving

steps proposed by Polya (1957, 1973). Their problem-solving process

has been scaffolded in this way. The study was conducted with voca-

tional secondary education students—a group of participants that is rel-

atively underrepresented in the literature.

The results revealed that educational robot programming is as

effective as traditional programming activities in enhancing learners'

programming competencies. Additionally, more positive outcomes

regarding abstraction were obtained in the group engaged in robotic

activities. It was determined that the students in this group were more

successful in simplifying the problem statements and in revealing their

outlines. However, there was no difference between the test groups in

the reasoning related to symbolic structures. Based on these results,

instead of developing the abstraction skill as a whole, it is recommended

to focus on instructional interventions and problem-solving processes

that will be conducted according to the types of abstraction. Employ-

ment of instructional design elements that are customized according to

different types of abstraction may yield more effective results.

In this study, CT and problem-solving activities did not signifi-

cantly affect students' approach to real-world problems and their

perception of problem-solving skills. Therefore, if problems more

relevant to daily life are chosen to develop students' CT skills, it

becomes easier for them to transfer their computational skills to

real-world problems. Furthermore, it is considered that the effect of

robot programming activities on student motivation may contribute

positively to students' computer science and STEM career

preferences.

The participants in the current study majorly represent the popu-

lation with low academic performance. Future studies involving partic-

ipants with a relatively higher level of academic achievement or from

different educational levels can provide new insights to the current

understanding of the relationship between CT and educational robot

programming activities. The current research is based on two cross-

sectional experimental interventions. Additional cross-sectional stud-

ies or collection of longitudinal data can reveal different perspectives

on the variables under investigation.

ACKNOWLEDGEMENTS

This work is derived from the first author's doctoral dissertation under

the supervision of the second author. The authors would like to thank

Prof. Arif Altun, Prof. Selçuk Özdemir, and anonymous reviewers for

their constructive feedback. The authors would also like to thank

Hacettepe Technopolis Technology Transfer Centre for advanced lan-

guage editing service. There has been no financial support for this

work that might have influenced its outcome.

DISCLOSURE STATEMENT

The authors declare that there are no conflicts of interest associated

with this publication. This manuscript is the original work of authors

and all authors mutually agree for its submission.

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1111/jcal.12495.

DATA AVAILABILITY STATEMENT

The data are available from the corresponding author upon reasonable

request.

ORCID

Murat Çınar https://orcid.org/0000-0003-4012-4174

Hakan Tüzün https://orcid.org/0000-0003-1153-5556

REFERENCES

Alturki, R. A. (2016). Measuring and improving student performance in an

introductory programming course. Informatics in Education, 15(2),

183–204. https://doi.org/10.15388/infedu.2016.10
Basawapatna, A. (2016). Alexander meets Michotte: A simulation tool

based on pattern programming and phenomenology. Educational Tech-

nology & Society, 19(1), 277–291.
Ben-Ari, M. (2001). Constructivism in computer science education. Journal

of Computers in Mathematics and Science Teaching, 20(1), 45–73.
Berland, M., Martin, T., Benton, T., Smith, C. P., & Davis, D. (2013). Using learn-

ing analytics to understand the learning pathways of novice programmers.

The Journal of the Learning Sciences, 22(4), 564–599.
Berland, M., & Wilensky, U. (2015). Comparing virtual and physical

robotics environments for supporting complex systems and com-

putational thinking. Journal of Science Education and Technology, 24

(5), 628–647.
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computa-

tional thinking and tinkering: Exploration of an early childhood robot-

ics curriculum. Computers & Education, 72, 145–157.
Bork, A. (1981). Leaming with computers. Bedford, MA: Digital Press.

384 ÇINAR AND TÜZÜN

https://publons.com/publon/10.1111/jcal.12495
https://publons.com/publon/10.1111/jcal.12495
https://orcid.org/0000-0003-4012-4174
https://orcid.org/0000-0003-4012-4174
https://orcid.org/0000-0003-1153-5556
https://orcid.org/0000-0003-1153-5556
https://doi.org/10.15388/infedu.2016.10

Burke, Q., & Kafai, Y. B. (2010). Programming & storytelling: Opportunities

for learning about coding & composition. Paper presented at: 9th

International Conference on Interaction Design and Children

(pp. 348–351). Barcelona, Spain: ACM.

Burleson, W. S., Harlow, D. B., Nilsen, K. J., Perlin, K., Freed, N.,

Jensen, C. N., … Muldner, K. (2018). Active learning environments with

robotic tangibles: Children's physical and virtual spatial programming

experiences. IEEE Transactions on Learning Technologies, 11(1), 96–106.
Carlborg, N., Tyrén, M., Heath, C., & Eriksson, E. (2019). The scope of

autonomy when teaching computational thinking in primary school.

International Journal of Child-Computer Interaction, 21, 130–139.
https://doi.org/10.1016/j.ijcci.2019.06.005

Chang, C. K. (2014). Effects of using Alice and Scratch in an introductory

programming course for corrective instruction. Journal of Educational

Computing Research, 51(2), 185–204.
Città, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S., …

Sciortino, M. (2019). The effects of mental rotation on computational

thinking. Computers & Education, 141, 103613. https://doi.org/10.

1016/j.compedu.2019.103613

Colburn, T., & Shute, G. (2007). Abstraction in computer science. Minds

and Machines, 17(2), 169–184.
Çiftci, S., & Bildiren, A. (2019). The effect of coding courses on the cogni-

tive abilities and problem-solving skills of preschool children. Computer

Science Education, 30(1), 3–21. https://doi.org/10.1080/08993408.

2019.1696169

diSessa, A. A. (2001). Changing minds: Computers, learning, and literacy (1st

ed.). Cambridge, MA: MIT Press.

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. (2017). Algo-

rithmic thinking, cooperativity, creativity, critical thinking, and problem

solving: Exploring the relationship between computational thinking

skills and academic performance. Journal of Computers in Education, 4

(4), 355–369. https://doi.org/10.1007/s40692-017-0090-9
Durak, H. Y. (2020). Modeling different variables in learning basic concepts of

programming in flipped classrooms. Journal of Educational Computing

Research, 58(1), 160–199. https://doi.org/10.1177/0735633119827956
Fang, A. D., Chen, G. L., Cai, Z. R., Cui, L., & Harn, L. (2017). Research on

blending learning flipped class model in colleges and universities based

on computational thinking – “database principles” for example. Eurasia

Journal of Mathematics Science and Technology Education, 13(8),

5747–5755.
Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). The

TeachScheme! project: Computing and programming for every stu-

dent. Computer Science Education, 14(1), 55–77.
Feurzeig, W., Papert, S. A., & Lawler, B. (2011). Programming-languages as

a conceptual framework for teaching mathematics. Interactive Learning

Environments, 19(5), 487–501.
Flórez, B. F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., &

Danies, G. (2017). Changing a generation's way of thinking: Teaching

computational thinking through programming. Review of Educational

Research, 87(4), 834–860.
Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research

in education (6th ed.). New York, NY: McGraw-Hill.

Garcia, P. G. F., & De la Rosa, F. (2016). RoBlock–web app for program-

ming learning. International Journal of Emerging Technologies in Learning,

11(12), 45–53.
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of

the state of the field. Educational Researcher, 42(1), 38–43.
Guzdial, M., & Forte, A. (2005). Design process for a non-majors comput-

ing course. ACM SIGCSE Bulletin, 37(1), 361–365.
Heppner, P. P. (1988). The problem solving inventory (PSI): Research manual.

Palo Alto, CA: Consulting Psychologists Press.

Heppner, P. P., Hibel, J., Neal, G. W., Weinstein, C. L., & Rabinowitz, F. E.

(1982). Personal problem solving: A descriptive study of individual dif-

ferences. Journal of Counseling Psychology, 29(6), 580–590. https://doi.
org/10.1037/0022-0167.29.6.580

Heppner, P. P., & Krauskopf, C. J. (1987). An information-processing

approach to personal problem solving. The Counseling Psychologist, 15

(3), 371–447. https://doi.org/10.1177/0011000087153001
Heppner, P. P., & Petersen, C. H. (1982). The development and implica-

tions of a personal problem-solving inventory. Journal of Counseling

Psychology, 29(1), 66–75.
Hill, J. H., Houle, B. J., Merritt, S. M., & Stix, A. (2008). Applying abstraction

to master complexity: The comparison of abstraction ability in

computer science majors with students in other disciplines. Paper pres-

ented at: Proceedings of the 2nd International Workshop on The Role of

Abstraction in Software Engineering (pp. 15–21). Leipzig, Ger-

many: ACM.

Irgens, G. A., Dabholkar, S., Bain, C., Woods, P., Hall, K., Swanson, H., …
Wilensky, U. (2020). Modeling and measuring high school students'

computational thinking practices in science. Journal of Science Educa-

tion and Technology, 29(1), 137–161. https://doi.org/10.1007/

s10956-020-09811-1

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educa-

tional Technology Research and Development, 48(4), 63–85. https://doi.
org/10.1007/bf02300500

Kalelio�glu, F. (2015). A new way of teaching programming skills to K-12

students: Code.org. Computers in Human Behavior, 52, 200–210.
Kalelio�glu, F., & Gülbahar, Y. (2014). The effects of teaching programming

via scratch on problem solving skills: A discussion from learners' per-

spective. Informatics in Education, 13(1), 33–50.
Keller, J. M. (2010). Motivational design for learning and performance: The

ARCS model approach. New York, NY: Springer US.

Kim, B., Kim, T., & Kim, J. (2013). Paper-and-pencil programming strategy

toward computational thinking for non-majors: Design your solution.

Journal of Educational Computing Research, 49(4), 437–459.
Kutu, H., & Sözbilir, M. (2011). Ö�gretim Materyalleri Motivasyon Anketinin

Türkçeye Uyarlanması: Güvenirlik ve Geçerlik Çalışması. Necatibey E�gitim
Fakültesi Elektronik Fen Ve Matematik E�gitimi Dergisi, 5(1), 292–312.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of com-

putational thinking through programming: What is next for K-12?

Computers in Human Behavior, 41, 51–61.
Ngan, S.-C., & Law, K. M. Y. (2015). Exploratory network analysis of learn-

ing motivation factors in e-learning facilitated computer programming

courses. The Asia-Pacific Education Researcher, 24(4), 705–717.
https://doi.org/10.1007/s40299-014-0223-0

Noh, J., & Lee, J. (2020). Effects of robotics programming on the computa-

tional thinking and creativity of elementary school students. Educa-

tional Technology Research and Development, 68(1), 463–484.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas.

New York, NY: Basic Books.

Papert, S. (1993). The children's machine: Rethinking school in the age of the

computer. New York, NY: Basic Books.

Pellas, N., & Peroutseas, E. (2016). Gaming in second life via Scratch4SL:

Engaging high school students in programming courses. Journal of Edu-

cational Computing Research, 54(1), 108–143.
Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986).

Conditions of learning in novice programmers. Journal of Educational

Computing Research, 2(1), 37–55.
Polya, G. (1957). How to solve it? (2nd ed.). Princeton, NJ: Princeton Uni-

versity Press.

Polya, G. (1973). How to solve it: A new aspect of mathematical method (2nd

ed.). Princeton, NJ: Princeton University Press.

Quade, D. (1967). Rank analysis of covariance. Journal of the American Sta-

tistical Association, 62(320), 1187–1200.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,

Brennan, K., … Silverman, B. (2009). Scratch: Programming for all. Com-

munications of the ACM, 52(11), 60–67.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching pro-

gramming: A review and discussion. Computer Science Education, 13(2),

137–172.

ÇINAR AND TÜZÜN 385

https://doi.org/10.1016/j.ijcci.2019.06.005
https://doi.org/10.1016/j.compedu.2019.103613
https://doi.org/10.1016/j.compedu.2019.103613
https://doi.org/10.1080/08993408.2019.1696169
https://doi.org/10.1080/08993408.2019.1696169
https://doi.org/10.1007/s40692-017-0090-9
https://doi.org/10.1177/0735633119827956
https://doi.org/10.1037/0022-0167.29.6.580
https://doi.org/10.1037/0022-0167.29.6.580
https://doi.org/10.1177/0011000087153001
https://doi.org/10.1007/s10956-020-09811-1
https://doi.org/10.1007/s10956-020-09811-1
https://doi.org/10.1007/bf02300500
https://doi.org/10.1007/bf02300500
https://doi.org/10.1007/s40299-014-0223-0

Saez-Lopez, J. M., & Sevillano-Garcia, M. L. (2017). Sensors, programming

and devices in art education sessions. One case in the context of pri-

mary education. Cultura Y Educacion, 29(2), 350–384.
Saygıner, Ş. (2017). Effects of block-based visual and text-based program-

ming instruction on achievement, logical thinking and motivation. Ankara,

Turkey: Hacettepe University.

Scott, M. J., Counsell, S., Lauria, S., Swift, S., Tucker, A., Shepperd, M., &

Ghinea, G. (2015). Enhancing practice and achievement in introductory

programming with a robot Olympics. IEEE Transactions on Education,

58(4), 249–254.
Soleimani, A., Herro, D., & Green, K. E. (2019). CyberPLAYce—A tangible,

interactive learning tool fostering children's computational thinking

through storytelling. International Journal of Child-Computer Interaction,

20, 9–23.
Şahin, N., Şahin, N. H., & Heppner, P. P. (1993). Psychometric properties

of the problem solving inventory in a group of Turkish university stu-

dents. Cognitive Therapy and Research, 17(4), 379–396.
Tüzün, H., Barab, S. A., & Thomas, M. K. (2019). Reconsidering the motiva-

tion of learners in educational computer game contexts. Turkish Journal

of Education, 8(2), 129–159. https://doi.org/10.19128/turje.546283
Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational

thinking in compulsory education: Towards an agenda for research

and practice. Education and Information Technologies, 20(4), 715–728.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., &

Wilensky, U. (2016). Defining computational thinking for mathematics

and science classrooms. Journal of Science Education and Technology,

25(1), 127–147.
Wilkerson-Jerde, M. H. (2014). Construction, categorization, and consen-

sus: Student generated computational artifacts as a context for disci-

plinary reflection. Etr&D-Educational Technology Research and

Development, 62(1), 99–121.
Wing, J. M. (2006). Computational thinking. Communications of the ACM,

49(3), 33–35.
Wing, J. M. (2008). Computational thinking and thinking about computing.

Philosophical Transactions of the Royal Society A: Mathematical, Physical

and Engineering Sciences, 366(1881), 3717–3725.
Wu, B., Hu, Y. L., Ruis, A. R., & Wang, M. H. (2019). Analysing computa-

tional thinking in collaborative programming: A quantitative ethnogra-

phy approach. Journal of Computer Assisted Learning, 35(3), 421–434.
Zhong, B., Zheng, J., & Zhan, Z. (2020). An exploration of combining virtual

and physical robots in robotics education. Interactive Learning Environ-

ments. https://doi.org/10.1080/10494820.2020.1786409

How to cite this article: Çınar M, Tüzün H. Comparison of

object-oriented and robot programming activities: The effects

of programming modality on student achievement,

abstraction, problem solving, and motivation. J Comput Assist

Learn. 2021;37:370–386. https://doi.org/10.1111/jcal.12495

APPENDIX: SAMPLE ITEMS IN PROGRAMMING

ACHIEVEMENT TEST

STEP 1: START

STEP 2: counter = 0

STEP 3: IF counter <10 THEN REPEAT {counter = counter+1; GO

STEP 3;}

STEP 4: END.

Which of the following is wrong for the statements above?

a. REPEAT is a loop process.

b. counter = 0 indicates the initial value of the loop.

c. counter = counter +1 indicates that the counter will increase by

more than 2 times each turn.

d. counter <10 indicates the condition for the loop.

e. The operations in the “REPEAT” block are repeated 10 times.

Which of the expressions given below cause an infinite loop?

a. STEP 1: counter = 0;

STEP 2: IF counter <100 THEN REPEAT {counter = counter+1;

GO STEP 2}

b. STEP 1: counter = 0;

STEP 2: IF counter<100 THEN REPEAT {counter = counter-1;

GO STEP 2}

c. STEP 1: counter = 100;

STEP 2: IF counter >0 THEN REPEAT {counter = counter-1; GO

STEP 2}

d. STEP 1: counter = 0;

STEP 2: IF counter <= 100 THEN REPEAT {counter = counter

+5; GO STEP 2}

e. STEP 1: counter = 10;

STEP 2: IF counter <0 THEN REPEAT {counter = counter-5; GO

STEP 2}.

What is seen on the screen when the program given below is run?

a = 10;

b = 20;

a = a + b * 2 + 5;

WRITE a;

a. 35 b. 45 c. 55 d. 65 e. 150

386 ÇINAR AND TÜZÜN

https://doi.org/10.19128/turje.546283
https://doi.org/10.1080/10494820.2020.1786409
https://doi.org/10.1111/jcal.12495

	Comparison of object-oriented and robot programming activities: The effects of programming modality on student achievement,...
	1 INTRODUCTION
	1.1 Research questions

	2 METHOD
	2.1 Research design
	2.2 Participants
	2.3 Data collection tools
	2.3.1 Programming achievement test
	2.3.2 Abstraction test
	2.3.3 Problem-solving scale
	2.3.4 Instructional materials motivation scale
	2.3.5 Personal information form

	2.4 Data collection
	2.5 Data analysis
	2.6 Limitations

	3 RESULTS
	4 DISCUSSION
	5 CONCLUSION AND RECOMMENDATIONS
	ACKNOWLEDGEMENTS
	 DISCLOSURE STATEMENT
	 PEER REVIEW
	 DATA AVAILABILITY STATEMENT

	REFERENCES

