Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Investigation of high frequency EOP variations Recent results and future prospects of the SPEED project

T. Nilsson H. Schuh J. Böhm S. Böhm M. Schindelegger A. Pany L. Plank H. Spicakova K. Teke J. Wresnik

> Institute of Geodesy and Geophysics Vienna University of Technology

Statusseminar DFG Forschergruppe FOR584 TU München, 29–30 October, 2009

э

・ロト ・ 雪 ト ・ ヨ ト

Introduction

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Varitaions Nilsson et al.

High frequency

FOP

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

- Continuous VLBI campaigns like CONT02, CONT05, and CONT08 – provide good data sets for studying high frequency variations in the Earth Rotation Parameters.
- A new VLBI processing software is being developed in Vienna: VieVS (Vienna VLBI Software).
- Goal of this work:
 - Evaluate the performance of VieVS for estimation of high frequency Earth rotation.
 - Investigate high frequency Earth rotation variations for the recent CONT08 campaign, as well as the previous campaigns CONT05 and CONT02.

Nilsson et al.

Introduction

VieVS – Vienna VLBI Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

VieVS – Vienna VLBI Software

- New geodetic VLBI processing software written in Matlab.
- Classical least squares adjustment.
- Parameters estimated as piecewise linear functions offsets at integer hours.
- Implement the latest IERS Conventions and models.
- OCCAM software used as a guideline.

2	inint_qu =
Cick to choose OSAPPOIXLIN004 OSAPPO	Protection Process Procest Process Process Process Process Process
Parameter files DEFAULT CURRENT Iffop parm1 test	Clear Nockelling options
₩ Change	LSM options OK
2	med_qu -
TRF (TRF2005 @ VTRF2005 (Other)	ORF CHER Ent 2 G KEP2
000 Ge CO4 05predeteed EDF include a priori instation officies dC, dT include high frequency 600 © ocean tides exp.eares m	Station corrections Windla Danth rides Windla Danth rides Windla Careta Isolang PES2004 eva: Windla unrespherer Salatig Xingeneral Isolang Windla Unrespherer Salatig Windla Unresphere Salatig Windla Unresphere Salatig
berros tras serv m pris pre opugo _spenitor (UT1) thereor _the	Mapping function
Procession/Network (Defragree & Sents) Procession/Network Model (E JAU 2000A	OK

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Data Processing

Varitaions Nilsson et al.

High frequency

FOP

Introduction

VieVS – Vienna VLBI Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

- Polar motion, UT1-UTC, and nutation modelled as piecewise linear functions in one hour intervals.
- Stacking of parameters (EOPs, zenith wet delays and gradients) at session boundaries.
- Blocking of retrograde polar motion with periods between 16 and 48 hours, and of nutations with periods <2 days.
- One set of coordinates estimated for each CONT campaign. No Net Translation/Rotation w.r.t. VTRF2005 coordinates.
- Source coordinates fixed to ICRF2.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

CONT08: August 12-26, 2008

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheri Angular Momentum

EOP Combination

Conclusions

CONT08 Polar Motion Estimates

- Polar Motion estimates from VieVS
- IERS 05 C04 series plus IERS recommended model for high frequency ERP variations.

э

・ロト ・雪ト ・ヨト

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheri Angular Momentum

EOP Combination

Conclusions

CONT08 Polar Motion Estimates

- Polar Motion estimates from VieVS
 - IERS 05 C04 series plus IERS recommended model for high frequency ERP variations.
 - VLBI solution
 Calc/Solve (from
 T. Artz, Uni.
 Bonn)

э

・ロト ・雪ト ・ヨト

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheri Angular Momentum

EOP Combination

Conclusions

CONT08 Polar Motion Estimates

- Polar Motion
 estimates from
 VieVS
- IERS 05 C04
 series plus IERS
 recommended
 model for high
 frequency ERP
 variations.
- VLBI solution
 Calc/Solve (from
 T. Artz, Uni.
 Bonn)
- **GPS** solution (*P.* Steigenberger et al., JGR, (2006))

э

・ロト ・ 雪 ト ・ ヨ ト

Nilsson et al.

Introduction

VieVS – Vienna VLBI Software

Data Processin

CONT08 EOP

Atmospherie Angular Momentum

EOP Combinations

Conclusions

-456 VieVS -C04 05 + ocea -457 Calc/Solve [se -458 1 -459 1 -460 -461 -462 12 22 26 14 16 18 20 Day of August 2008 24 VieVS -C04 05 + ocear GPS LOD [ms] Calc/Solve 14 16 18 20 Day of August 2008 22 24 26

CONT08 DUT1 and Length Of Day Estimates

- UT1-UTC estimated from VLBI (VieVS and Calc/Solve).
- Length of Day estimated from VLBI (VieVS and Calc/Solve) and from GPS.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Nilsson et al.

CONT08 EOP

CONT08 Nutation Estimates

estimated from VLBI (VieVS).

Nutation from IERS 05 C04

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト э

Nilsson et al.

CONT08 Residual Polar Motion Estimates

Introduction

VieVS – Vienna VLB Software

Data Processin

CONT08 EOP

Atmospheri Angular Momentum

EOP Combination

Conclusions

 Polar Motion from VLBI (VieVS and Calc/Solve) and GPS minus IERS 05 C04 and high frequency ERP model.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Nilsson et al.

CONT08 Residual Polar Motion Estimates

Introduction

VieVS – Vienna VLB Software

Data Processin

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

- Polar Motion from VLBI (VieVS and Calc/Solve) and GPS minus IERS 05 C04 and high frequency ERP model.
- X-pole offset between GPS and VLBI probably due to different datums.
- Offset decreases
 (by 140 μas) if
 ITRF2005
 coordinates are
 used in VieVS
 solution instead of
 VTRF2005.

(日) (同) (日) (日)

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processin

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

CONT08 Residual DUT1 and LOD Estimates

- Good agreement in DUT1 between the two VLBI solutions.
- LOD from VLBI is noisier than LOD from GPS. (VLBI LOD calculated from the time derivatives of the DUT1 estimates.)

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

CONT08 Polar Motion Spectrum

• Fourier spectrum of polar motion residuals.

э

・ロト ・聞ト ・ヨト ・ヨト

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

CONT08 Polar Motion Spectrum

ヘロン 人間 とくほと 人 ほとう

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

CONT08 Polar Motion Spectrum

・ロト ・雪ト ・ヨト

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

CONT08 Polar Motion Spectrum

ヘロト 人間ト ヘヨト ヘヨト

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

CONT08 Polar Motion Spectrum

・ロト ・雪ト ・ヨト

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheri Angular Momentum

EOP Combination

Conclusions

CONT08 DUT1 and LOD Spectra

 Fourier spectra of DUT1 and LOD residuals.

э

(日)、

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheri Angular Momentum

EOP Combination

Conclusions

CONT08 DUT1 and LOD Spectra

- Fourier spectra of DUT1 and LOD residuals.
- Peaks at 12 h and 24 h.

э

(日)、

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

Unexplained Signals in the CONT Polar Motion

-					LOD					
		Sol.	-12 h	-8 h	+6 h	+8 h	+12 h	+24 h	12 h	24 h
	C08	VieVS			Х		Х	Х	X	Х
		C/S			Х		Х	Х	X	X
		GPS	х			х		х	X	Х
	C05	VieVS	Х				Х	Х	X	X
		GPS	Х			Х		х	X	Х
	C02	VieVS	X	X		v		X	X	X
		GFD	~	^		~				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

Unexplained Signals in the CONT Polar Motion

					LOD				
	Sol.	-12 h	-8 h	+6 h	+8 h	+12 h	424 h	12 h	24 h
C08	VieVS			Х		Х	Х	Х	Х
	C/S			Х		Х	Х	X	X
	GPS	Х			Х		X	X	Х
C05	VieVS	х				х	х	x	х
	GPS	Х			Х		Х	X	Х
C02	VieVS	х	Х				х	x	х
	GPS	Х	Х		Х		X	X	

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

All solutions have a peak at 24 h prograde.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

Unexplained Signals in the CONT Polar Motion

		(Polar Motion							
	Sol.	-12 h	-8 h	+6 h	+8 h	+12 h	+24 h	12 h	24 h	
C08	VieVS			Х		Х	Х	Х	Х	
	C/S			Х		Х	Х	X	X	
	GPS	Х			Х		Х	X	X	
C05	VieVS	х				x	х	x	х	
	GPS	Х			Х		Х	X	X	
C02	VieVS	х	x				х	x	х	
	GPS	Х	Х		Х		Х	X		

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Almost always 12 h retrograde signal.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

Unexplained Signals in the CONT Polar Motion

				LOD					
	Sol.	-12 h	-8 h	+6 h	+8 h	+12 h	+24 h	12 h	24 h
C08	VieVS			Х		Х	Х	X	X
	C/S			Х		Х	Х	X	X
	GPS	X			Х		X	X	X
C05	VieVS	x				Х	x	x	X
	GPS	X			х		Х	X	X
C02	VieVS	x	(x)				х	x	X
	GPS	X			Х		Х	X	

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

CONT02: 8 h retrograde signal.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

Unexplained Signals in the CONT Polar Motion

				Polar Motion								
_		Sol.	-12 h	-8 h	+6 h	+8 h	+12 h	+24 h	12 h	24 h		
_	C08	VieVS			Х		Х	Х	Х	Х		
		C/S			Х		Х	Х	X	X		
		GPS	х			Х		Х	X	Х		
(C05	VieVS	х				X	х	x	Х		
		GPS	Х			Х		Х	X	Х		
(C02	VieVS	х	Х				х	x	Х		
		GPS	Х	Х		X		X	X			

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

GPS: always a prograde 8 h signal.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOP

Atmospheri Angular Momentum

EOP Combinations

Conclusions

Unexplained Signals in the CONT Polar Motion

			Polar Motion							
	Sol.	-12 h	-8 h	+6 h	+8 h	+12 h	+24 h	<u>1</u> 2 h	24 h	
C08	VieVS			Х		Х	Х	X	X	
	C/S			Х		Х	Х	X	X	
	GPS	X			Х		Х	X	X	
C05	VieVS	x				х	х	x	х	
	GPS	X			Х		Х	X	Х	
C02	VieVS	x	Х				х	x	х	
	GPS	Х	Х		Х		Х	\ X		

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

LOD: Peaks at 12 h and 24 h.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Atmospheric Angular Momentum

- There are peaks at +24 h, \pm 12 h, and sometimes also at \pm 8 h in the Earth rotation spectra.
- Possible reasons:
 - Inaccurate ocean tidal model for high frequency Earth rotation variations.
 - Atmospheric excitation of Earth rotation.
 - Excitation of Earth rotation by other sources.
 - Artefacts from the processing of the VLBI/GPS data.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Atmospheric Angular Momentum

- There are peaks at +24 h, \pm 12 h, and sometimes also at \pm 8 h in the Earth rotation spectra.
- Possible reasons:
 - Inaccurate ocean tidal model for high frequency Earth rotation variations.
 - Atmospheric excitation of Earth rotation.
 - Excitation of Earth rotation by other sources.
 - Artefacts from the processing of the VLBI/GPS data.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processin

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Atmospheric Angular Momentum for CONT08

- Excitation functions for the CONT08 period calculated from ECMWF data.
- Resolution
 6 hours.

For χ_3 , the mass and motion terms seems to counteract each other (see also Diploma Thesis by *M*. *Schindeleggger*, *TU Wien*, 2009).

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processin

CONT08 EO

Atmospheric Angular Momentum

EOP Combinatior

Conclusions

CONT08

ヘロト 人間ト ヘヨト ヘヨト

э

 Spectra of the expected ERP variations due to atmospheric angular momentum variations.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processin

CONT08 EOI

Atmospheric Angular Momentum

EOP Combination

Conclusions

- Spectra of the expected ERP variations due to atmospheric angular momentum variations.
- Amplitudes small compared to those observed with VLBI.

CONT08

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Nilsson et al.

Introduction

VieVS – Vienna VLBI Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Combination of EOP time-series

- Several different techniques exist to measure high frequency Earth rotation (VLBI, GPS, ringlasers etc.). All have their advantages and disadvantages.
- To obtain the highest accuracy, the results from different techniques should be combined.
- Kalman filtering has proven to be a useful technique for combining daily estimates of ERPs.
- One goal of the second phase of the SPEED project is to develop a Kalman filter for combining high frequency EOPs from different techniques.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nilsson et al.

Introduction

VieVS – Vienna VLBI Software

Data Processi

CONT08 EOF

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Combination of ERPs for CONT08

- Combination of VLBI and GPS results using a Kalman filter (following Morabito et al. (1988), with some modifications).
- Kalman filter polar motion estimate close to GPS since the GPS formal errors are smaller than those from VLBI.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processir

CONT08 EOI

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Ringlaser data

- Potential interesting source of high frequency Earth rotation data: Ring laser gyroscopes.
 - Sensitive to the Instantaneous Earth Rotation Pole (IRP). I.e. sensitive to a combination of the polar motion and nutation rate of the Celestial Intermediate Pole (CIP).
- Left: Example of ringlaser measurements from Wettzell, compared to the expected high frequency IRP effects.

Future work

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nilsson et al.

High frequency

EOP Varitaions

VieVS – Vienna VLBI Software

Data Processin

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

- Attempt to include ringlaser data in Kalman filter.
- Include estimation of nutation in the Kalman filter (ringlasers are sensitive to the nutation of the CIP as well as polar motion).
- Investigate the effect of systematic errors in the input data, and how to mitigate them.
- Improve the filter by e.g. using more realistic stochastic processes for the polar motion excitation functions.

Conclusions

High frequency EOP Varitaions

Nilsson et al.

Introduction

VieVS – Vienna VLBI Software

Data Processing

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

- The Earth Rotation Parameters estimated from VieVS agree well with those estimated by Calc/Solve.
- Signals in the spectra of polar motion residuals with periods of +24 h, ± 12 h, +8 h (GPS), and -8 h (in CONT02).
- Signals in LOD (and DUT1) at 24 h and 12 h.
- The contribution from the atmosphere to the sub-diurnal Earth rotation variations is a magnitude lower than the observed variations.
- Diurnal and semi-diurnal signals probably due to incorrect ocean tidal models.
- More accurate time-series of Earth rotation can be obtained by combing results from several techniques using a Kalman filter. Further work is needed in order to optimize the Kalman filter for retrieval of high frequency EOP.

Nilsson et al.

Introduction

VieVS – Vienna VLB Software

Data Processin

CONT08 EOP

Atmospheric Angular Momentum

EOP Combinations

Conclusions

Danke für Ihre Aufmerksamkeit!

< □

500

Ringlaser data

・ロト ・ 雪 ト ・ ヨ ト

Ringlaser data

Nilsson et al.

VieVS – Vienna VLBI Software

Data Processing

CONT08 EOF

Atmospheric Angular Momentum

EOP Combinations

Conclusions

- Spectrum of the ringlaser measurements (after tilt correction and removing Oppolzer terms (effects of nutation of CIP)).
- Compared to what is expected from high frequency polar motion (due to ocean tides).

Ringlaser data

Nilsson et al.

VieVS – Vienna VLBI Software

Data Processing

CONT08 EOF

Atmospheric Angular Momentum

EOP Combinations

Conclusions

 Spectrum of the ringlaser measurements (after correction for tilt and Earth rotation).