Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Kamil Teke1,2
Joerg Wresnik1
Johannes Boehm1
Harald Schuh1

(1) IGG, Vienna University of Technology, Austria
(2) Dept. of Geodesy and Photogrammetry Engineering, Karadeniz Technical University, Turkey
VLBI GEOMETRIC MODEL

\[c(\tau_{\text{obs}} - (\tau_{\text{clock}} + \tau_{\text{trop}} + \tau_{\text{ionos}} + \tau_{\text{rel}})) = c(t_2 - t_1) = \hat{k} [r_2(t_1) - r_1(t_1)] + \hat{k} \beta [t_2 - t_1] \]

\(\hat{k} \): direction of the wave front
\(\beta \): mean velocity vector of #2

* Vectors are defined in Solar-System-Barycentric
VLBI TROPOSPHERE MODEL

Total Delay = Ionospheric Delay + Neutral Delay

Zenith Neutral Delay = Zenith Hydrostatic Delay + Zenith Wet Delay

\[
\Delta L(e) = ZHD.mf_h(e) + ZWD.mf_w(e)
\]

\[
\Delta L(e) : \text{Zenith neutral path delay}
\]

\[
mf_{h,w} : \text{Hydrostatic, wet tropospheric mapping functions}
\]

\[
ZHD = f(\varphi, H, P) : \text{Zenith Hydrostatic delay}
\]

\[
ZWD = \text{Estimated in VLBI analysis by piecewise linear function : Zenith wet delay}
\]

\[
\tau_{troposphere} = -\frac{1}{c} (\Delta L_2(e) - \Delta L_1(e)) \quad \text{(for the station 1 and 2)}
\]
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

TROPOSPHERIC MAPPING FUNCTIONS

\[m_{h,w}(e) = \frac{1 + \frac{a_i}{b_i}}{1 + \frac{c_i}{1 + \ldots}} \]

\[\sin(e) + \frac{a_i}{\sin(e) + \frac{b_i}{\sin(e) + \frac{c_i}{\sin(e) + \ldots}}} \]

\(e \) : Elevation cut off angle
\(a_i, b_i, c_i, \ldots = f(\varphi, H, \text{doy}, t, \alpha, \ldots) \)
\(\varphi \) : station latitude
\(H \) : station orthometric height
\(\text{doy} \) : day of year
\(P \) : surface total pressure
\(t \) : surface temperature
\(\alpha \) : temperature lapse rate

Niell Mapping Function
Isobaric Mapping Function
Vienna Mapping Function

Some other mapping functions:
Chao, Ifadis, Davis, MTT, B&E, F&K, UNBabc, UNBab
\[\delta \rho_{trp}(z) = mf(z) \cdot \delta \rho_{trp}(0) \sim 1 / \cos(z) \cdot \delta \rho_{trp}(0) \]

\[\delta \rho_{h}(z) = \cos(z) \cdot \delta \rho_{h}(0) ; \delta \rho_{h}(0) = \delta h \]

\[\delta \rho_{clk}(z) = \delta \rho_{clk}(0) = c \cdot \delta t_R \]
CONT05 was a two-week campaign of continuous VLBI sessions, scheduled for observing during September 2005.

The plan for the CONT05 campaign is to acquire state of the art VLBI data over a two-week period to demonstrate the highest accuracy of which VLBI is capable.
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Regression function of the baseline length repeatabilities and fitting a curve

\[
\sigma = \sqrt{\frac{\sum_{i=1}^{n} (L_i - L_0)^2}{n-2}}
\]

Formal errors as baseline length repeatabilities

Regression function for baseline length repeatabilities

\[
y = a^2 + b^2 ppb^2 L^2
\]

LSM Application

\[
y = \begin{bmatrix} \text{rms}_1^2 \\ \text{rms}_2^2 \\ \vdots \\ \text{rms}_n^2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & ppb^2 L_1^2 \\ 1 & ppb^2 L_2^2 \\ \vdots & \vdots \\ 1 & ppb^2 L_n^2 \end{bmatrix}, \quad x = \begin{bmatrix} a^2 \\ b^2 \end{bmatrix}, \quad W = \begin{bmatrix} 1/s_1^2 & 0 \\ 0 & \vdotsc \end{bmatrix}
\]

\[
x = (A^TWA)^{-1} A^T W y
\]
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Values of the estimated parameters by LSM

<table>
<thead>
<tr>
<th>Mapping Functions</th>
<th>Parameters of the function for different cut off angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5° (6156)</td>
</tr>
<tr>
<td></td>
<td>a (cm)</td>
</tr>
<tr>
<td>VMI</td>
<td>0.505</td>
</tr>
<tr>
<td>GMF</td>
<td>0.524</td>
</tr>
<tr>
<td>NMF</td>
<td>0.528</td>
</tr>
<tr>
<td></td>
<td>10° (5502)</td>
</tr>
<tr>
<td></td>
<td>a (cm)</td>
</tr>
<tr>
<td>VMI</td>
<td>0.501</td>
</tr>
<tr>
<td>GMF</td>
<td>0.500</td>
</tr>
<tr>
<td>IMF</td>
<td>0.500</td>
</tr>
</tbody>
</table>
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

CONT05 baseline length repeatabilities
(cut off : 5°)

Number of observables (CONT05)
6156
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

CONT05 baseline length repeatabilities (cut off : 7°)

Number of observables (CONT 05)

5907
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

CONT05 baseline length repeatabilities (cut off : 10°)

Number of observables (CONT 05) 5502
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

CONT05 baseline length repeatabilities (cut off : 20°)

Number of observables (CONT 05)

3906
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

CONT05 baseline length repeatabilities (VMF1)

Number of observables (CONT 05)

- 6156
- 6028
- 5907
- 5818
- 5646
- 5502
- 5207
- 4730
- 3906
- 2491
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

CONT05 baseline length repeatabilities (VMF1)

Number of observables (CONT 05)

Baseline length uncertainty (m km)

Baseline length (10^6 m)
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Values of the estimated parameters by LSM

Parameter “a” fixed to 0.5 cm

<table>
<thead>
<tr>
<th>Mapping Functions</th>
<th>Parameters of the function for different cut off angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5°(6156)</td>
</tr>
<tr>
<td></td>
<td>a(cm)</td>
</tr>
<tr>
<td>VM1</td>
<td>0.5</td>
</tr>
<tr>
<td>GMF</td>
<td>0.5</td>
</tr>
<tr>
<td>NMF</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>10°(5502)</td>
</tr>
<tr>
<td></td>
<td>a(cm)</td>
</tr>
<tr>
<td>VM1</td>
<td>0.5</td>
</tr>
<tr>
<td>GMF</td>
<td>0.5</td>
</tr>
<tr>
<td>IMF</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Comparison of the parameter “b”

![Graph comparing different tropospheric mapping functions and cut-off angles](image-url)
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

CONT05 baseline length repeatabilities (VMF1)

Parameter “a“ fixed to 0.5 cm

Number of observables (CONT 05)

- 6156
- 6028
- 5907
- 5818
- 5646
- 5502
- 5207
- 4730
- 3906
- 2491
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Simulation Formula

\[\Delta \tau : \text{Observed group delay is simulated} \]

\[\Delta \tau = \Delta \tau_{\text{computed}} + (WZD_2 \text{ mfw}_2(e) + \text{cl}_2) - (WZD_1 \text{ mfw}_1(e) + \text{cl}_1) + \text{wn}_{\text{bsl}(1-2)} \]

\[\sum_{j=1}^{m} (\text{rep}_{\text{real}(j)} - \text{rep}_{\text{simulated}(j)})^2 \Rightarrow \text{min} \]
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Comparison of baseline length repeatabilities derived from simulated and real CONT05 NGS files

\[\sum_{j=1}^{n} d_j d_j = 2.72 \text{ cm} \]

\[\text{Baseline Length (10^6 m)} \]

\[\text{Baseline length uncertainty (\(\text{mm}, \text{cm}\))} \]
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Simulation Results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1st Simulation (A05)</th>
<th>2nd Simulation (B05)</th>
<th>3rd Simulation (D05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>white noise</td>
<td>8psec (2.4 mm)</td>
<td>12psec (3.6mm)</td>
<td>8psec (2.4mm)</td>
</tr>
<tr>
<td>predicted clock</td>
<td>1e-15@15min</td>
<td>1e-15@15min</td>
<td>1e-15@15min</td>
</tr>
<tr>
<td>predicted wet zenith delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARTRAO</td>
<td>0.1</td>
<td>HARTRAO</td>
<td>0.1</td>
</tr>
<tr>
<td>KOOKEE</td>
<td>0.8</td>
<td>KOOKEE</td>
<td>0.8</td>
</tr>
<tr>
<td>TSUKUB32</td>
<td>0.6</td>
<td>TSUKUB32</td>
<td>0.6</td>
</tr>
<tr>
<td>The rest of all stations</td>
<td>0.5</td>
<td>The rest of all stations</td>
<td>0.5</td>
</tr>
<tr>
<td>All stations</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Conclusions

• Similar baseline uncertainty values for cut off angles 5 to 10 degrees but not for 12 to 30 degrees.

• Inspite of the small differences, VM1 gives always the best results.

• If the same amount of observables for simulations with the real ones, cut off angle 7 gives approximately the best outcomes.

• It has been succeeded to create overlapped simulation outcomes with the real ones for cut off angle 7 degree.
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Outlook

- No need to observe quasars below the cut off angle 7 unless the wet zenith delay parameters will be measured accurately and the related models will be improved.

- Future simulations should use the turbulence model for the wet zenith delays.

- Down-weighting of low elevation observations should be tested.
Different Tropospheric Mapping Functions and Cut off Angles Investigated by Processing VLBI CONT05 Sessions

Thank You ...
VLBI GEOMETRIC MODEL

Station \#2 (t_2)

Earth center

r_2(t_2)

\beta \tau

r_2(t_1)

#2 (t_1)

baseline vector

R_2(t_2)

R_2(t_1)

R_c(t_1)

R_1(t_1)

Source

\[c \tau = c (t_2 - t_1) = |R_C (t_1) + r_2 (t_1) + \beta \tau| - |R_C (t_1) + r (t_1)| \]