

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Intra-Eurasia plate motions based on EUREF, IVS-Europe, and IVScombined solutions

Kamil Teke^{1,2}, Johannes Böhm¹, Tobias Nilsson¹, Hana Spicakova¹, Harald Schuh¹

^{1.} Vienna University of Technology, Institute of Geodesy and Geophysics, Vienna, Austria (<u>kteke@mars.hg.tuwien.ac.at</u>).

^{2.} Hacettepe University, Geomatics Department, Beytepe, Ankara, Turkey.

Motivation of this study

- Since the beginning of the 80ies several European VLBI stations have been observing and some data series cover about 30 years.
- VLBI antennas are providing very accurate and stable measurements (stable quasars e.g. Fey et al., IERS Technical Note 2009).
- Since 23rd of June 1989 every year several (6-12) IVS-Europe sessions have been carried out.
- Last complete solution of IVS-Europe sessions was done about 10 years ago (Campbell et al., 2002).
- Results of IVS-Europe sessions will be compared to those of the global VLBI sessions and to GNSS (EUREF).
- Different VLBI software will be compared in terms of the velocity estimates from their coordinate time series.
- Spectral analysis of VLBI and GNSS coordinate time series at co-located sites in Europe will be done in order to figure out harmonic variations of the station positions.

O'Higgins (9 m)

Wettzell (20 m)

Various VLBI solutions obtained by different IVS Analysis Centers were compared:

- Deutsches Geodaetisches Forschungsinstitut (DGFI) IVS-AC (Germany) solution.
- Bundesamt f
 ür Kartographie und Geod
 äsie (BKG) IVS-AC (Germany) solution.
- NASA, Goddard Space Flight Center (GSF) IVS-AC (USA) solution.
- TU Wien, Institut für Geodäsie und Geophysik (IGG) IVS-AC (Austria) solution.

Why?

Different software was used and different analysis option applied.

Some of the VLBI analysis options

- A priori CRF.
- A priori TRF.
- Mapping function.
- Cut off elevation for observables.
- Elevation dependent weighting.
- Relative clock errors.
- Troposphere zenith delays and gradients.
- CRF, TRF, and EOP.
- Estimation intervals for each parameter group (station wise and global).
- Absolute and relative constraints between piece-wise linear offset estimates.
- Absolute datum constraints or NNT/NNR datum conditions on the estimated TRF.
- Models for station motion: solid Earth tides, ocean loading, tidal and non-tidal atmosphere loading, pole tides, and antenna thermal deformation.
- Models for EOP: IAU2000A precession-nutation, IERS C04 05 combined EOP series, high frequency oceanic tidal terms ...

Vienna VLBI Software (VieVS) specific parameterization (TU-Wien, IGG-AC)

- Case 1
 - All EOP fixed to their a priori values.
 - Wettzell (Germany) antenna fixed to a priori VTRF2008 coordinates.
- Case 2
 - ERPs are estimated.
 - Nutations fixed.
 - Conditions of NNT and NNR on VTRF2008.
- Case 3
 - All EOP fixed to their a priori values.
 - Conditions of NNT and NNR on VTRF2008.

Onsala60 VLBI antenna east coordinate estimates from the solutions of different IVS-ACs

Onsala60 VLBI antenna north coordinate estimates from the solutions of different IVS-ACs

Onsala60 VLBI antenna radial coordinate estimates from the solutions of different IVS-ACs

Leaps in EUREF-GNSS coordinate time series caused by imposing different a priori TRF datum

Comparisons of velocities of VLBI stations between IVS solutions

VLBI sites contributing IVS sessions in Europe	VieVS solution – IGG Special AC case1			VieVS solution - IGG case2			VieVS solution - IGG case3		
	v _{north} cm/year	v _{east} cm/year	v _{radial} cm/year	V _{north}	v _{east}	v _{radial}	V _{north}	v _{east}	V_{radial}
Wettzell (Germany)	fixed	fixed	fixed	1.5	2.0	0.0	1.5	2.0	0.0
Nyales20 (Norway)	1.5	1.0	0.6	1.4	1.0	0.8	1.4	1.0	0.8
Onsala60 (Sweden)	1.5	1.7	0.3	1.5	1.7	0.4	1.5	1.7	0.3
Medicina (Italy)	1.8	2.2	-0.2	1.8	2.2	-0.2	1.8	2.2	-0.2

VLBI sites contributing IVS	DOGS CS <occam DGFI operational AC</occam 			Calc/Solve BKG operational AC			
sessions in Europe	V _{north}	v _{east}	V _{radial}	V _{north}	V _{east}	V _{radial}	
Wettzell (Germany)	1.5	2.0	-0.1	1.4	2.1	-0.1	
Nyales20 (Norway)	1.4	1.1	0.6	1.4	1.1	0.5	
Onsala60 (Sweden)	1.4	1.7	0.2	1.4	1.8	0.2	
Medicina (Italy)	1.7	2.2	-0.3	1.7	2.3	-0.3	

Comparisons of velocities of IVS-AC (DGFI) and EUREF solutions (VLBI and GNSS)

Co-located sites in Europe	IVS-DGFI	EUREF				
	V _{north} (~time span) (cm/year)	v _{east} (cm/year)	V _{radial} (cm/year)	V _{north}	V _{east}	V_{radial}
Wettzell (Germany)-WTZR	1.5 (~26)	2.0	-0.1	1.7 (~14)	2.0	0.1
Onsala60 (Sweden)-ONSA	1.4 (~26)	1.7	0.2	1.6 (~14)	1.7	0.3
Matera (Italy)-MATE	1.8 (~19)	2.4	-0.1	2.0 (~14)	2.3	0.2
Zelenchukskaya (Russia)-ZECK	0.8 (~4)	2.5	0.4	1.3 (~13)	2.5	0.3
Medicina (Italy)-MEDI	1.7 (~22)	2.2	-0.3	2.1 (~14)	2.2	-0.1

global horizontal velocity vectors from IVS-Europe sessions VieVS solution (case2)

3 cm/year

SVETLC

30

70

65

60

55

AEDICHNA ELENCHK MATE YEBES OTO 30 본 -10

ONSALA

WETTZELL

EFLSBERG

10

0

40

relative horizontal velocity vectors w.r.t. Europe plate (intra-plate motions)

-10

Lat [°]

2 cm/year v_{mean (east)} :2.1 cm/year v_{mean (north)} :1.9 cm/year

Lon [°]

What is the goal of determining the spectra? (Motivation)

- After reducing the offsets and rates from the series, low frequency harmonic variations were investigated. Because
 - the estimated TRF coordinates of space geodetic techniques should be tide free according to the IERS Conventions.
 - The corrections to the station coordinates before the parameter estimation (e.g. solid Earth tides, ocean loading) were not perfect what could cause harmonic variations on the station position time series,
 - Geophysical models of station motions may be totally neglected (e.g. atmosphere loading, thermal deformation of the VLBI antenna).

Co-located site Wettzell

Conclusions

- The IVS-ACs (DGFI, BKG, GSF and IGG) solutions, and EUREF weekly solutions show us (for network covering Europe):
 - Estimating EOP or fixing to priori models did not cause significant differences on the velocity estimates in VLBI analysis for regional networks.
 - The horizontal and radial velocity estimates of IVS and EUREF solutions agree at co-located sites within a few millimeters/year level.
 - At some VLBI sites significant low frequency spectra (annual and decadal) were detected. This may be due to not reducing atmosphere loading effect or correcting thermal deformation a priori to the adjustment from the observations
 - EUREF GNSS coordinate time series often have leaps and spectra with larger amplitudes relatively to VLBI antennas at colocated sites.

vielen dank! many thanks for your attention!

Appendices

Co-located VLBI and GNSS sites in Europe related to this study

antenna	solution	total epochs	time span (year)	Mean sampling interval (day)
Wettzell	DGFI	2406	26.09	3.96
WTZR	EUREF	736	14.12	weekly
Nyales20	DGFI	905	15.39	6.22
Svetloe	DGFI	292	6.69	8.39
SVTL	EUREF	690	13.68	weekly
Onsala60	DGFI	531	26.07	17.96
ONSA	EUREF	737	14.12	weekly
Medicina	DGFI	318	22.22	25.60
MEDI	EUREF	726	14.12	weekly
Zelenchk	DGFI	204	4.18	7.51
ZECK	EUREF	610	12.80	weekly
Matera	DGFI	602	19.18	11.65
MATE	EUREF	735	14.12	weekly
Noto	DGFI	121	20.63	62.79
NOT1	EUREF	514	9.87	weekly

The harmonic function LS fit to the radial position estimates of different ACs. The frequencies included in the function were derived from the significant spectral peaks of Lomb-Scargle periodogram.

The harmonic function LS fit to the radial position estimates of different ACs. The frequencies included in the function were derived from the significant spectral peaks of Lomb-Scargle periodogram.

Co-located site Matera

Co-located site Svetloe

Co-located site NOTO

