

Vie_LSM and Vie_LSM_scan (version 2.1)

Kamil Teke and Johannes Böhm

VieVS User Workshop 9 – 10 September, 2013 Vienna

Introduction

- "vie_lsm" is a module of "VieVS", which estimates geodetic parameters with least squares adjustment from VLBI observations.
- All the parameters can be estimated as <u>continuous piece-wise linear offsets</u> (CPWLO) in sub-daily and daily temporal resolution.

Estimated parameters are:

- Clocks (offset (cm), rate (cm/day), quadratic term (cm/day²), CPWLO (cm)),
- E Zenith wet delays (cm) as CPWLO,
- Troposphere gradients (cm) as CPWLO,
- EOP (mas and ms) as CPWLO,
- Antenna coordinates in TRF (cm) as one offset per session or as CPWLO,
- Source coordinates in CRF (declinations in mas and right ascensions in ms) as CPWLO.

continuous piece-wise linear offsets (CPWLO)

VieVS User Workshop 2013

Partial derivatives of the delay model w.r.t. a sub-daily parameter

 $t_{j} < t < t_{j+1}$

VieVS User Workshop 2013

$$A = \begin{bmatrix} A(1).sm & \cdots & A(15).sm \end{bmatrix} \bigoplus \text{ design matrix of real observation equations}$$
$$H = \begin{bmatrix} H(1).sm & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & H(15).sm \end{bmatrix} \bigoplus \text{ design matrix of pseudo-observation equations (constraints)}$$
$$N = \begin{bmatrix} A^T PA + H^T P_H H & C^T \\ C & 0 \end{bmatrix} b = \begin{bmatrix} A^T Poc + H^T P_H och \\ b_c \end{bmatrix} b^c \text{ is a zero vector (due to NNT and NNR conditions)}}$$
$$Parameter vector (estimates)$$
$$x = N^- b \qquad m_0 = (v^T Pv + v_H^T P_H v_H) / (n_{obs} + n_{constr} - n_{unk})$$
$$K_x = m_0 N^- \bigoplus \text{ variance-covariance matrix of the estimates}$$

VieVS User Workshop 2013

Estimation Settings

Vienna VLBI Software 2.1	
File Parameters Estimation Global solution Scheduling Simulation Run	Plotting Help 🏻 🗣
- VieVS estimation settings-	
- First solution	Vienna VLBI Software 2.1
Run first solution (only following clock function)	File Parameters Estimation Global solution Scheduling Simulation
one offset per clock	Process list
one offset & one rate per clock	2008/08AUG12XA_N004 Browse for sessions
one offset, one rate & one quadratic term per clock KOKEE	MATERA 56457.213020833333 Browse for process_lists
Manually find clock breaks KOKEE	WETTZELL 56457.141226851854
KOKEE	MATERA 56457.383483796293 Add previous
FORTLEZA	MATERA 56457.416435185187
Run main solution (parameter estimation)	MATERA 56457.653912037036
Simple outlier test (c * m0)	NVALES20 56457 141226851854 Characterist
Normal outlier test (c * m0 * sort(avv))	NIALES20 30437.141220031034 Clear selected
	OPT file-
Estimate parameters (otherwise: only N matrix created)	OPT directory VIENNA -
Write all parameters to ASCII file Save as	Outlier file
Allow for stationwise and sourcewise parameterization for each session	Outlier directory

The first solution is meant to remove large clock offsets (and rates and quadratic terms) for numerical reasons. (Clock offsets can be several kilometers.)

Parametrization for least squares

VLBI clock error

$$\Delta \tau_{clk}^{poly}(t) = \beta_0 + \beta_1 (t - t_0) + \beta_2 (t - t_0)^2 \Longrightarrow$$

quadratic polynomial for each clock

$$\Delta \tau_{clk}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_2 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_1 - x_1) \implies \mathbf{c}_{t_1}^{CPWLO}(t) = x_1 + \frac{t - t_1}{t_2 - t_1} (x_1 - x_1) \implies$$

CPWLO for each clock e.g. at each UTC integer hour (t₁ and ⁽¹²⁾

$$\Delta \tau_{clk}(t) = \Delta \tau_{clk}^{poly}(t) + \Delta \tau_{clk}^{CPWLO}(t) \implies \text{ total clock error at epoch t}$$

Parametrization for relative clock errors

Vienna VLBI Software 2.1	
le Parameters Estimation Global solution Scheduling Simulation Run Plotting I	Help 🏻 🔊
Clock estimation (least squares)	
✓ Use clock breaks (from OPT file)	CLOCK REFERENCE:
Estimate clocks	WEITZEHL
piecewise linear (pwl) offset per clock	CLOCK BREAKS: 0
pwl offset & one rate per clock	STATIONS TO BE EXCLUDED: 0
pull offset, one rate & one guadratic term per clock	SOURCES TO BE EXCLUDED: 0
	bookons to be highered.
	#Outliers!
Introduce relative constraints between pwl clock offsets	#Benedikt Soja 2013-04-20
Clock constraints [cm] 1.3 after 60 minutes	# example
	#
	# CLOCK REFERENCE:
\uparrow	# WETTZELL
	# CLOCK BREAKS: 2
This completion odds relative constraints on	# BADARY 55454.4
	1 (Heredicien , Offsets;69
Actually, observation equations are added to	the design matrix which 1
tell that the difference between two adjacent	piecewise linear clock
offecte is zero + a cortain standard doviation	- #/These constraints area
onsets is zero \pm a certain standard vertation	U.#(#449CSCCOPISH CANCELC3 # WETTZELL ZELENCHK
mainly important to bridge gaps without obse	rvations to avoid the
sinaularity of the normal equation system.)	# BADARY ZELENCHK
	# # SOUDCES NO EE EVOLUDED. 1
Begin session on d	# 1936+095
E Se	
	Save runp Save + Run

Troposphere delay

$$\Delta \tau_{trop} = 10^{-6} \int_{0}^{H_{trop}} \left[N_{h}(s) + N_{w}(s) \right] ds$$

Parametrization for ZWD and gradients

Vienna VLBI Software 2.1							>
File Parameters Estima	on Global solution	Scheduling	Simulation	Run	Plotting	Help	
- Troposphere estimation (leas	squares)						
Zenith wet delays							
Estimate zenith wet d	ays	_					
ZWD interval [min]	60						
✓ introduce relative	constraints between p	wl zenith wet del	ay offsets				
ZWD constrain	s [cm]	1.5 aft	er 60 minutes]			
				-			
- Gradients	_						
Estimate north gradier	s						
NGR interval [min]	360		_				
introduce relative	constraints between p	wINGR offsets		•			
NGR constrain	s [cm]	0.05 aft	er 360 minutes	J			
introduce absolu	constraints between	pwl NGR offsets					
NGR abs. con:	r. [cm]	0.1					
Estimate east gradient							
EGR interval [min]	360						
introduce relative	constraints between p	wIEGR offsets					
EGR constrain	s [cm]	0.05 aft	er 360 minutes				
introduce absolu	constraints between	pwl EGR offsets					
EGR abs. cons	r. [cm]	0.1					

12

Save + Run

Parametrization for EOP

🚧 Vienna VLBI Software 2.1		
File Parameters Estimation Global solution	n Scheduling Simulation Run Plotting Help	ע
EOP estimation (least squares)		
	estimation interval [min] relative	
Estimate Xpol (inter. pole coor. in TRF)	1440 V constraints [mas]	1.0e-4 after 1440 minutes
Estimate Ypol (inter. pole coor. in TRF)	1440 V constraints [mas]	1.0e-4 after 1440 minutes
Estimate dUT1 (rotation angle)	1440 V constraints [mas]	1.0e-4 after 1440 minutes
Estimate nutdx (CIP coor. in celes. long.)	1440 V constraints [mas]	1.0e-4 after 1440 minutes
Estimate nutdy (CIP coor. in obliquity)	1440 🔽 constraints [mas]	1.0e-4 after 1440 minutes

If you want to estimate one constant value per session, the recommendation is to set the parameterization as shown above. Very strong relative constraints of 1e-4 m(a)s/day take care that the estimates are the same over the session.

Example: The session is from 18 UT to 18 UT. Then, three piecewise linear offsets are set up for each EOP. (They are set up a midnight before the session, at midnight during the session, and at midnight after the session.) The strong constraints take care that all three estimates per session are the same.

Save + Run

Parametrization for Station Coordinates

wa Vienna VLBI Software 2.1	
File Parameters Estimation Global solution Scheduling Simulation Run Plotting Help	۲
- Station coordinates estimation (least squares)	
Estimate station coordinates as one offset per session by introducing NNT/NNR condition equations	
Vo Net Translation (NNT)	
Vo Net Rotation (NNR)	
No Net Scale (NNS)	
Non-TRF stations are estimated in any case! Select "Sessionwise parameterization"	
to force fixing of also non-TRF stations.	

Save + Run

Parametrization for Source Coordinates

w Vienna VLBI Software 2.1
File Parameters Estimation Global solution Scheduling Simulation Run Plotting Help 🏻 🍟
- Source estimation (least squares)
Image: Stimate source coordinates as pwl offsets 1440 Image: Stimate source coordinates as pwl offsets 1.0e-4 after 1440 minutes
Only non-CRF sources are estimated if this checkbox is ticked (select "Sessionwise parameterization" if you want otherwise)
Save runp Save + Run

a Vi	enna VLBI Soft	ware 2.1								_ _ X
File	Parameters	Estimation	Global solution	Scheduling	Simulation	Run	Plotting	Help		
Vie	VS estimation se	ettings								
F	irst solution —									
	Run first so	lution (only follo	wing clock function)							
	one offs	set per clock								
	one offs	set & one rate p	er clock							
	one offs	set, one rate & c	one quadratic term pe	er clock						
	Manually	/ find clock brea	aks							
	lain solution—									
	🔽 Run main so	olution (paramet	ter estimation)							
	Simple o	utlier test (c * n	n0)	с 5						
	Normal (outlier test (c * r	m0 * sqrt(qvv))							
	Estimate paran	ootere (otherwi	ee: ook N matrix cre	atad)						
Wr	rite all parameter	rs to ASCII file	Save as	neu,						
	Allow for static	onwise and sou	urcewise parameteri:	zation for each	session					
_										
									Save rupp	Save + Dun
									Saverunp	Save + Run

🚺 vie_lsm_gui_clock					_ • ×
vie_lsm [single s	ession clo	cks]			
parameterization for clocks	_	clock constraints	clock interval	reference clock	
✓ estimate clocks	TSUKUB32	1.3000	60		<u> </u>
	WETTZELL	1.3000	60		
 piecewise linear (pwi) offsets per clock 	SVETLOE	1.3000	60		
pwl offsets & one rate per clock	ZELENCHK	1.3000	60		
pwl offsets, one rate, & one quadratic term per clock	ONSALA60	1.3000	60		-
	NYALES20	1.3000	60		=
✓ Introduce relative constraints between pwl clock offsets	HARTRAO	1.3000	60		
Default reference also been not any also been b	KOKEE	1.3000	60		
- Default reference clock has not any clock break.	WESTFORD	1.3000	60		
OR if any OPT file of the session exists fixed clock is from OPT file	MEDICINA	1.3000	60		
 Unit of clock estimation intervals is minutes. 		1 3000	03		v
- Unit of clock constraints is centimeters E.g. 1.3 cm after 1 hour is relatively loose.				Back	Next

	vie_lsm_gui_tropo	
	vie_lsm [single session tropo	osphere]
Г	apply relative constraints between tropospheric offset estimates	
	✓ introduce RELATIVE CONSTRAINTS between pwI ZENITH WET DELAY offsets	- unit of estimation intervals is minute. - unit of ZWD relative constraints is cm e.g. 1.5 cm after 1 hour is relatively loose
	✓ introduce REALTIVE CONSTRAINTS between pwl tropo. NORTH GRADIENT offsets	- unit of NGR & EGR relative constraints is cm, e.g. 0.05 cm after 6 hours is
	✓ introduce RELATIVE CONSTRAINTS between pwl tropo. EAST GRADIENT offsets	- unit of NGR & EGR absolute constraints is cm, e.g. 0.1 cm absolutely
	introduce ABSOLUTE CONSTRAINTS between pwl tropo. NORTH GRADIENT offsets	loose.
	introduce ABSOLUTE CONSTRAINTS between pwl tropo. EAST GRADIENT offsets	

	ZWD coef.	NGR rel. coef.	EGR rel. coef.	NGR abs. coef.	EGR abs. coef.	ZWD int.	NGR int.	EGR int.	est. ZWD	est. NGR	est. EGR	
TSUKUB32	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	
WETTZELL	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	
SVETLOE	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	
ZELENCHK	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	
ONSALA60	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	Ξ
NYALES20	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	
HARTRAO	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	
KOKEE	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V	V	
WESTFORD	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360	V	V		
MEDICINA	1.5000	0.0500	0.0500	0.1000	0.1000	60	360	360				-

Back

Next

Case 1: NNT/NNR (one coordinate offset per session)

vie_lsm [sing	le session	station o	oordina	tes]			
general options for estimation of stations coordinates—		NNT	NNR	NNS	XYZ_est	constraints	coor. intervals
✓ estimate station coordinates	TSUKUB32	V	V			10	360
	WETTZELL	V	V		V	10	360
one offset per session	SVETLOE					10	360
NNT/NNR	ZELENCHK	V	V		V	10	360
	ONSALA60		V		V	10	360
Fix some stations	NYALES20	V	V		V	10	360
o pwl offsets per session	HARTRAO		V		V	10	360
	KOKEE	V	V		V	10	360
	WESTFORD					10	360
	MEDICINA	V	V		V	10	360

Case 2: Fix some station coordinates (one coordinate offset per session)

vie_lsm [sing	le session	station o	oordina	tes]			
general options for estimation of stations coordinates	1	NNT	NNR	NNS	XYZ est	constraints	coor. intervals
V estimate station coordinates	TSUKUB32	V	V		V	10	360
	WETTZELL					10	360
one offset per session	SVETLOE	V			V	10	360
	ZELENCHK	\checkmark				10	360
O NNT/NNR	ONSALA60	V	V		V	10	360
• Fix some stations	NYALES20	\checkmark				10	360
	HARTRAO	V			V	10	360
pwi offsets per session	KOKEE	V				10	360
	WESTFORD	V				10	360
	MEDICINA	V				10	360
	TICOCONC	52				10	260

Case 3: Fix some station coordinates (CPWLO coordinates)

vie_lsm_gui_statcoor		otation	oording	too 1				
general options for estimation of stations coordinates		NNT	NNR	NNS	XYZ est	constraints	coor. intervals	
✓ estimate station coordinates	TSUKUB32	V	V		V	10	360	
	WETTZELL	V	V			10	360	
one offset per session	SVETLOE	V	V		V	10	360	
	ZELENCHK	\checkmark	V		V	10	360	
	ONSALA60	V	V		V	10	360	
	NYALES20		V			10	360	
	HARTRAO	V				10	360	
o pwl offsets per session	KOKEE	V	V			10	360	
 Fix some stations 	WESTFORD	V	V			10	360	
✓ introduce relative constraints between pwl coordinate offsets	MEDICINA	V	V		V	10	360	
	TIGOCONIC					10	0.82	
Unit of TRF relative constraints is cm, e.g. 10 cm after 6	hours is relativel	y loose.				Back	Next	t

	include model	estimation interval	use constraints	constraints	
Xpol (inter. pole coor. in TRF)		1440	V	1.0000e-04	
Ypol (inter. pole coor. in TRF)		1440		1.0000e-04	
dUT1 (rotation angle)		1440	V	1.0000e-04	
nutdx (CIP coor. in celes. long.)		1440		1.0000e-04	
nutdy (CIP coor. in obliquity)		1440	V	1.0000e-04	

Vie_lsm_gui_sourcoor

vie_lsm [single session source coordinates]

estimate coordinates of sources as pwl offsets [all the unselected sources will be fixed to CRF]

introduce relative constraints between pwlo source coordinates

- unit of constraints is mas.

- unit of coordinate estimation intervals in minutes.

- Please, fix at least one source which has more than 1 observation

if you select estimate sources

- Non-CRF sources will be estimated as default.

	source name	total observations	est. coor.	constraints	coor. interval	
34	1044+719	80		1.0000e-04	1440	
35	5 1308+326	4		1.0000e-04	1440	
36	5 2201+315	35		1.0000e-04	1440	
37	7 0656+082	7		1.0000e-04	1440	
38	3 1034-293	41		1.0000e-04	1440	
39	1124-186	110	V	1.0000e-04	1440	
40) 1219+044	6		1.0000e-04	1440	
41	3C274	77		1.0000e-04	1440	
42	2 1351-018	8		1.0000e-04	1440	
43	3 0106+013	38		1.0000e-04	1440	
44	1 0749+540	35		1.0000e-04	1440	E
45	5 0805+410	3		1.0000e-04	1440	
46	5 0743+259	36		1.0000e-04	1440	-
47	7 2243-123	23		1.0000e-04	1440	
48	3 3C371	90		1.0000e-04	1440	
49	1739+522	13	V	1.0000e-04	1440	
50) 1954-388	14		1.0000e-04	1440	
51	1156+295	26		1.0000e-04	1440	
52	2 2121+053	49		1.0000e-04	1440	

Back

Next

х

vie_lsm_gui_global						
	vie_lsm [sing	le sessi	on output]			
Estimate parameters according to the second seco	he options in previous (GUIs				
Prepare N_global and b_global	🔽 write data into SI	NEX file ([DATA/SNX/)			
for global solution	parameters ir	nclude into SINEX file	reduce from N_sinex	parameters	include into SINEX file	reduce from N_sinex
No parameters are reduced. (Reduction can be done in VIE_GLOB.) Constraints according to previous CIUB. Conditions on station	clock parameters		۲	source coordinates		
coordinates are removed. N and b will be	zenith wet delay	۲	\odot	station coordinates	۲	
stored in DATA/LEVEL2/	tropospheric gradients	۲	\odot	EOP	۲	\odot
Add extra parameters to the N matrix source coordinates (all sources - datum station velocities:	rfree) ATTENTION! Don't e	stimate sou	rces from single se	ession if you want to store	them in the N	l matrix!!!
				E	Back	Finish

vie_lsm scan-wise update

🐱 Vienna VLBI Software 2.1								_ _ ×
File Parameters Estimation	Global solution	Scheduling	Simulation	Run	Plotting	Help		3
- Run options								
- Scheduling-								
				F	lun vie sche	ed		
- Simulation					_			
				F	lun vie_sim			
VieVS-								
one subdirectory (recommer	nded)	forwork	shop					
Ø different subdirectories								
vie_init ->	vie_mod ->	/LEVEL1/	vie_lsm -	>	/LEVEL3/			
					/LEVEL2/			
			vie_glob	->				
				V F	lun vie_init			
				V F	≀un vie_mod	_		
	🔽 Run	vie_lsm scanv	vise update	F	tun vie_lsm			
		Run parallel	Number of	cores	auto 👻			
	Inf	o: Faster for >1	sessions, but	L				
	Co	mmand Windov	v output is disa	rranged				
Global solution								
Path to LEVEL2 data	/DATA/LEVEL2	Get det	fault					
LEVEL2 subdirectory	TEST_LEVEL2							
Output directory for vie_glob	TEST_OUT			F	lun vie_glob			
							Save runp	Save + Run

Scan-wise update of normal equation system

1 A-matrix per scan

j : number of scans in the session

Claudia Tierno Ros, Third VieVS user workshop, 11-13 September, 2012 27

Scan-wise update of normal equation system

Same procedure with H matrix: 15 H-matrixes

 $N_1 = H_1^T \cdot Ph \cdot H_1$ $N_H = N_1 + N_2 + \dots + N_{15}$

 $b_1 = H_1^T \cdot Ph_1 \cdot oc_1$

 $N=A^{T} \cdot P \cdot A \quad \rightarrow N = N_{A} + N_{H}$ b=A^T · P · oc $\rightarrow b = b_{A} + b_{H}$ x=N⁻¹ · b

$$b_{H} = b_{1} + b_{2} + \dots + b_{15}$$

Claudia Tierno Ros, Third VieVS user workshop, 11-13 September, 2012 28

Command window – vie_lsm

vie mod successfully finished! Welcome to VIE LSM!!!!! number of scans : 1151 number of antennas : 11 number of sources : 76 number of obs. : 9917 CREATING DEFAULT OPTIONS FORMING THE WEIGHT MATRIX OF THE OBSERVATIONS "Pobserv" apriori std. dev. of unit weight. : 1.1217 obs. of the antenna TSUKUB32 : 1957 obs. of the antenna WETTZELL : 2326 obs. of the antenna SVETLOE : 2457 obs. of the antenna ZELENCHK : 1420 obs. of the antenna ONSALA60 : 2465 obs. of the antenna NYALES20 : 2354 obs. of the antenna HARTRAO : 1073 obs. of the antenna KOKEE : 1456 obs. of the antenna WESTFORD : 1769 obs. of the antenna MEDICINA : 2269 obs. of the antenna TIGOCONC : 288 4. FORMING THE REDUCED OBSERVATION VECTOR "oc observ" clock WETTZELL is selected as the ref. clock for the first solution chi-squared of first solution: 23.3393 FORMING THE DESIGN MATRICES "A(i).sm" ... FORMING THE CONSTRAIN MATRIX and WEIGHT MATRIX OF CONSTRAINTS 7. ESTIMATING THE PARAMETERS WITH LEAST SOUARES !!! some or all station coordinates are not estimated (selected as fixed)!!! clock WETTZELL is selected as the ref. clock for the main solution

chi-squared of main solution vTPv/degOfFreedom: 1.2136

Command window – vie_lsm

detecting outliers
num. of outliers : 2
writing outliers to file/DATA/OUTLIER/2008/08AUG12XA_N004.OUT
total 2 outlier observations are found but NOT eleminated
total number of estimated parameters: 735
total clock offsets: 238
total rate and quad. terms of clock funct.: 20
total zenith wet delay offsets: 263
total tropo. north gradients: 53
total tropo. east gradients: 53
total pole coor. (x-pol) offsets: 2
total pole coor. (y-pol) offsets: 2
total dUT1 offsets: 2
total celestial pole (nutation dx) offsets: 2
total celestial pole (nutation dy) offsets: 2
total right ascension offsets of sources : 4
total declination offsets of sources : 4
antenna coor. dx offsets: 30
antenna coor. dy offsets: 30
antenna coor. dz offsets: 30

estimated parameters are saved as ../VieVS/DATA/LEVEL3/forworkshop/x_08AUG12XA_N004.mat estimation options are saved as ../VieVS/DATA/LEVEL3/forworkshop/opt_08AUG12XA_N004.mat normal equation matrix is saved as ../VieVS/DATA/LEVEL3/forworkshop/atpa_08AUG12XA_N004.mat right hand side vector is saved as ../VieVS/DATA/LEVEL3/forworkshop/atpl_08AUG12XA_N004.mat residuals are saved as ../VieVS/DATA/LEVEL3/forworkshop/res_08AUG12XA_N004.mat Data for GLOBAL SOLUTION is saved as ../VieVS/DATA/LEVEL2/forworkshop/08AUG12XA_N004_an_glob.mat Data for GLOBAL SOLUTION is saved as ../VieVS/DATA/LEVEL2/forworkshop/08AUG12XA_N004_par_glob.mat Data for GLOBAL SOLUTION is saved as ../VieVS/DATA/LEVEL2/forworkshop/08AUG12XA_N004_par_glob.mat

Reduced N and b for SINEX output are saved in ... /VieVS/DATA/LEVEL3/forworkshop/SINEX/

Conclusions

- vie_lsm corrects clock breaks and detects outlier observations.
- vie_lsm provides SINEX input and datum free normal equations for global solutions (vie_glob).
- CPWLO estimates of VieVS are in a good agreement with those derived from other space geodetic techniques.
- Scan-wise update of normal equation system ensures a successful process of the future sessions with lots of observations.

Thank you so much for your attention!

VieVS User Workshop 2013