Combination of the two radio space geodetic techniques with VieVS during CONT14

Younghee Kwak ${ }^{1}$, Johannes Boehm ${ }^{1}$, Thomas Hobiger ${ }^{2}$, Lucia Plank ${ }^{3}$, Kamil Teke ${ }^{4}$

${ }^{1}$ Technische Universität Wien,
${ }^{2}$ Chalmers University of Technology,
${ }^{3}$ University of Tasmania
${ }^{4}$ Hacettepe University

CONT14

- 16 IVS stations co-located with IGS stations
- CONT14 VLBI data + co-located GNSS data

May 6, 2014 @ 00:00:00 UT - May 20, 2014 @ 23:59:59 UT at 16 stations

Generate VLBI-like GNSS delays

\checkmark Testbed for GV hybrid concept
\checkmark generate virtual correlator outputs (GNSS delays) based on real data
\checkmark GPS phase measurements during CONT14
\checkmark well corrected w.r.t ionosphere, ambiguity, PCV, phase wind-up effect
\checkmark Take a difference (at the same receiving time)

$$
\tau=\frac{L_{A}-L_{B}}{c}
$$

$\boldsymbol{L}_{\boldsymbol{A}} \& \boldsymbol{L}_{\boldsymbol{B}}$: corrected phase measurements betw. a satellite and ground station A \& B

\Rightarrow corrected single difference

Combined data

```
2014
```

\checkmark GNSS : differenced values from real GNSS measurements (multiple scans at the same epoch)
\checkmark VLBI: CONT14 data
\checkmark sorted by order of time regardless of data type \checkmark processed by modified VieVS

Geometric models

VLBI

- plane wave front
- stable sources

GNSS
Klioner (1991)

- curved wave front
- fast moving sources

- Other geophysical models are the same
- The constraints for parameters are also the same.

General analysis strategy

	Models \& a prioris	
Sources	ICRF2/IGS final orbit	
Station coordinates	ITRF2014	
EOP	IERS 08 C04	
Solid Earth tide	IERS 2010 conventions	
	Parameters	Interval
Clocks	PWL offsets	2 hr
	Clock rate and quadratic term	1 day
ZWD	PWL offset	2 hr
Gradients	East\&west components	6 hr
Station coordinates	NNR/NNT to ITRF2014	1 day

Common parameters at the co-located sites

Common parameters - tropo. gradient

NGR
wtzr

hrao

EGR
wtzr

hrao

Common parameters - ZWD

Common parameters - ZWD difference

Common parameters - clock rate

Common parameters - clock rate differences

[cm/day]

Combination analysis strategy

A_GNSS

partial derivatives for GNSS

H_GNSS

constraint for GNSS
H_VLBI
constraints for VLBI
H_samesite
Constraints for common
parameters at each site
i.e. clock, ZWD, gradients, local tie

Separately estimate parameters

+ give constraints for common parameters

$$
\begin{aligned}
& \checkmark \text { Gradients }(2 \mathrm{~cm}) \\
& \quad N G R_{G N S S}-N G R_{V L B I}=0 \pm 2 \mathrm{~cm} \\
& E G R_{G N S S}-E G R_{V L B I}=0 \pm 2 \mathrm{~cm} \\
& \checkmark \text { ZWD }(1 \mathrm{~cm}) \\
& Z W D_{G N S S}-Z W D_{V L B I}=\Delta Z W D \pm 1 \mathrm{~cm} \\
& \checkmark \text { Clock rates }(1 \mathrm{~cm}) \\
& \text { clk_rate }_{\text {GNSS }}-\text { clk_rate }_{\text {VLLBI }} \\
& =0 \pm 10 \mathrm{~cm} / \text { day }
\end{aligned}
$$

Combination Results - all stations

Mean station position repeatability during 15days
[unit: mm]

cm-level accuracy of the model

Combination Results - Wettzell

Mean station position repeatability during 15days
[unit: mm]

GNSS

Conclusions

- The combined data (CONT14 VLBI + single differenced GNSS) were successfully analyzed in modified VieVS.
© For combination, common parameters (ZWD, troposphere gradients, clock rates) were constrained between two techniques.
- The combination solutions mostly improve station position repeatability in comparison with single solutions.

○ The GNSS geometric model (near-field model) in VieVS needs be improved.

Thank you for your attention!

younghee.kwak@tuwien.ac.at

This work has been supported by the Austrian Science Fund (project No.: M1592-N29 and J3699-N29)

