# Combination of the two radio space geodetic techniques with VieVS during CONT14

#### Younghee Kwak<sup>1</sup>, Johannes Boehm<sup>1</sup>, Thomas Hobiger<sup>2</sup>, Lucia Plank<sup>3</sup>, Kamil Teke<sup>4</sup>

<sup>1</sup>Technische Universität Wien , <sup>2</sup>Chalmers University of Technology, <sup>3</sup>University of Tasmania <sup>4</sup>Hacettepe University



## CONT14

- 16 IVS stations co-located with IGS stations
- CONT14 VLBI data + co-located GNSS data



May 6, 2014 @ 00:00:00 UT - May 20, 2014 @ 23:59:59 UT at 16 stations

## Generate VLBI-like GNSS delays

- ✓ Testbed for GV hybrid concept
- ✓ generate virtual correlator outputs (GNSS delays) based on real data
- ✓ GPS phase measurements during CONT14
- ✓ well corrected w.r.t ionosphere, ambiguity, PCV, phase wind-up effect
- ✓ Take a difference (at the same receiving time)

$$\tau = \frac{L_A - L_B}{c}$$

 $L_A \& L_B$ : corrected phase measurements betw. a satellite and ground station A & B

#### corrected single difference



## **Combined data**

2014 6 0 0 14.00 ZECKGNSS YEBEGNSS PG27 0.00087610986364441 ... SC 2014 5 6 0 0 14.00 ZECKGNSS YEBEGNSS PG32 -0.00743789326648105SC 5 6 0 2 44.00 2014 BADARY NYALES20 1741-038 gg 0.00305870044155989 2014 6 0 2 44.00 BADARY ZELENCHK 1741-038 gg -0.009003849644093745

 ✓ GNSS : differenced values from real GNSS measurements (multiple scans at the same epoch)

- ✓ VLBI : CONT14 data
- ✓ sorted by order of time regardless of data type
- ✓ processed by modified VieVS

## **Geometric models**

#### VLBI

- plane wave front
- stable sources

**GNSS** *Klioner (1991)* 

- curved wave front
- fast moving sources



- Other geophysical models are the same
- The constraints for parameters are also the same.

## **General analysis strategy**

|                     | Models & a prioris    |
|---------------------|-----------------------|
| Sources             | ICRF2/IGS final orbit |
| Station coordinates | ITRF2014              |
| EOP                 | IERS 08 C04           |
| Solid Earth tide    | IERS 2010 conventions |

|                     | Parameters                    | Interval |
|---------------------|-------------------------------|----------|
| Clocks              | PWL offsets                   | 2 hr     |
|                     | Clock rate and quadratic term | 1 day    |
| ZWD                 | PWL offset                    | 2 hr     |
| Gradients           | East&west components          | 6 hr     |
| Station coordinates | NNR/NNT to ITRF2014           | 1 day    |

#### **Common parameters at the co-located sites**



#### **Common parameters – tropo. gradient**



#### **Common parameters – ZWD**



#### **Common parameters – ZWD difference**



### **Common parameters – clock rate**



11/16

#### **Common parameters – clock rate differences**



## **Combination analysis strategy**



## **Combination Results – all stations**

Mean station position repeatability during 15days [unit: mm]



cm-level accuracy of the model

## **Combination Results – Wettzell**

Mean station position repeatability during 15days [unit: mm]



## Conclusions

- The combined data (CONT14 VLBI + single differenced GNSS) were successfully analyzed in modified VieVS.
- For combination, common parameters (ZWD, troposphere gradients, clock rates) were constrained between two techniques.
- The combination solutions mostly improve station position repeatability in comparison with single solutions.
- The GNSS geometric model (near-field model) in VieVS needs be improved.

# Thank you for your attention!

younghee.kwak@tuwien.ac.at

This work has been supported by the Austrian Science Fund (project No.: M1592-N29 and J3699-N29)