Problem Set 1

Part A

The following problems are from Ward Cheney and David Kincaid's text Linear Algebra: Theory and Applications.

1. Solve the following systems of linear equations:

$$
\left[\begin{array}{lll}
3 & 6 & 6 \\
2 & 4 & 5 \\
2 & 5 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
21 \\
16 \\
17
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 3 & 7 \\
2 & 1 & 0 \\
11 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
42 \\
6 \\
76
\end{array}\right]
$$

2. Consider the following system of linear equations:

$$
\left[\begin{array}{cc}
\alpha & 3 \\
\gamma & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
7 \\
-4
\end{array}\right]
$$

For what values of α and γ does the system have a (nontrivial) solution?
3. Consider the following system of linear equations:

$$
\left[\begin{array}{ll}
0.780 & 0.563 \\
0.913 & 0.659
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0.217 \\
0.254
\end{array}\right]
$$

Which solution is better? $(x, y)=(0.341,-0.087)$ or $(x, y)=(0.999,-1.001)$. Explain.
4. Consider the equation $3 x(2 y+5)+\ln \left(x^{2}\right)-2 y(6+3 x)=13+2 \ln (x)$. Explain why this is really a linear equation.
5. Describe the general solution, if any, of the following system of linear equations:

$$
\left[\begin{array}{cccc}
-12 & 0 & -1 & 2 \\
16 & 3 & 1 & 0 \\
20 & 3 & 2 & 4 \\
12 & 3 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

6. Three planes in \mathbb{R}^{3} are given as $3 x+y=6,5 x+y+z=6$ and $3 x+z=1$. Do these planes have a point in common? If so, find this point. If not, explain why not.

Part B

The following problems are from Chiang and Wainwright's text (4th edition).

1. From Exercise 4.2 (page 58): 1 and 2
2. From Exercise 4.3 (page 66): 2
3. From Exercise 4.4 (page 70): 4 and 6
4. From Exercise 4.5 (page 72): 1 and 2
5. From Exercise 4.6 (page 78): 4
6. From Exercise 5.2 (page 93): 4 and 6
7. From Exercise 5.3 (page 98): 4
8. From Exercise 5.4 (page 102): 4, 6, and 7

Part C

Let a linear economic model be given as

$$
A x+B y=z
$$

where $x \in \mathbb{R}^{m}$ is the vector of exogenous variables, $y \in \mathbb{R}^{n}$ is the vector of endogenous variables and $z \in \mathbb{R}^{n}$ is the vector of some constants.

1. Suppose that x, z, A and B are known. Which matrix should be nonsingular for the system to have a solution.
2. Write down the solution for y.
3. Now suppose that y, z, A and B are known but x is unknown. Does this new system have a solution if $m>n$? Why or why not?
