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Vortices in trapped boson-fermion mixtures
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We consider a trapped system of atomic boson-fermion mizture with a quan-
tized vortex. We investigate the density profiles of bosonic and fermionic
components as functions of the boson-boson and boson-fermion short-range
interaction strengths within the mean-field approach. Stability of a vortex
and conditions for the phase segregation are studied. We compare and con-
trast our results with the related system of droplets of  He-* He miztures.

PACS numbers: 05.30.-d, 03.75.5s, 67.60.-g, 67.40.Vs.

1. INTRODUCTION

After the successful achievement of Bose-Einstein condensation in di-
lute alkali gases' under magneto-optical trap potentials, a vast theoretical
and experimental activity on cold degenerate quantum gases has followed.?
More recently, fermionic gases are cooled to quantum degeneracy tempera-
tures facilitated by mixing with cold bosonic gases by a process known as
sympathetic cooling. Experimental progress in this direction has culminated
in achieving the realization of quantum degenerate Bose-Fermi mixtures by
several groups.>® Currently there are a number of experiments on boson-
fermion mixtures in harmonic traps. In the Paris experiment* 6Li-"Li mix-
ture with a repulsive boson-fermion scattering length, and in the Florence
experiment® “°K-8"Rb mixture with an attractive boson-fermion scattering
length are realized. Furthermore, using Feshbach resonances many groups
have tuned the scattering length both for bosons and fermions. Theoret-
ical studies on trapped boson-fermion mixtures employed the mean-field
theory at zero temperature to determine the density profiles of respective
components.? 2 Related properties such as the stability against phase sepa-
ration and collapse were also investigated.'®'* The temperature effects and
their role in phase separation were addressed by Akdeniz et al.'® The critical
temperature of the Bose-Einstein condensation in a trapped mixture were

611

0022-2291/05/0200-0611/0 © 2005 Springer Science+Business Media, Inc.



612 M. E. Tasgm et al.
considered by several groups.!6:17

Motivated by these recent experiments on boson-fermion mixtures of di-
lute alkali gases, in this paper, we study the ground state properties of such
system in the presence of a single vortex. The quantized vortices are im-
portant in establishing the superfluid nature of Bose condensates.? Recently
there has been numerous experimental works devoted to the creation and
investigation of properties of quantized vortices in trapped condensates.'®
We are also motivated by the analogies and differences of trapped quantum
gases and Helium droplets as prototypes of finite quantum fluids as recently
surveyed by Dalfovo and Stringari.!® To this end, we make contact with
recent theoretical calculations of a vortex state in 3He-*He droplets.?0-22

We employ the mean-field theory at zero temperature to consider a
mixture of Bose condensed atoms and spin-polarized gas of fermions in a
harmonic trap. Introducing a single quantized vortex through the Feynman-
Onsager ansatz we study the ensuing density profiles of respective species.
The density profiles are obtained by solving the mean-field equations for the
trapped boson-fermion mixture using a variational ansatz.

2. MODEL AND THEORY

We consider Ng bosons of mass mpg in the condensed state and N
fermions of mass mp in respective trap potentials Vg = impw%r? and
Ve = %meQFTQ in the form of isotropic harmonic oscillators. wg and wg
are the trap frequencies for bosonic and fermionic species, respectively. The
ground-state energy functional of a mixture of bosons and fermions in the
mean-field approximation is given by

Enp(r),nr(r)] = /dr (Ep + Er + Er) .

The energy density of bosons is

hZ
2mB

VT () + Va(r)ns(r) + Inp(r)?, (1)

E =
B 2

where U(r) is the condensate wavefunction, ng(r) = |¥(r)|? is the con-
densate density distribution, and g is the boson-boson interaction strength.

Since the fermions are assumed to be noninteracting, we have
Ep =Trp[np(r)] + Ve(r)np(r), (2)

where the kinetic energy functional for fermions with single spin species in
the Thomas-Fermi approximation®!014 is Tp = (67r2np)5/ 3/20m*mp and
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the fermion density distribution is ng(r) = %[E}r — Vip(r) — hng(r)]?/?
with er the Fermi energy. The boson-fermion interaction energy density
is Egr = hnp(r)np(r), where h is the boson-fermion interaction strength.
The total energy-density for the mixture now becomes

2
Elng,ne] = [ d'r [QZB VIO + Ve ()| 20 + 1w

Tr(nr) + Vr(r)nr(r) + hnF(T)I‘P(T)IQ] : (3)

We have assumed that the fermionic component of the mixture is spin-
polarized whereby the s—wave scattering between the fermions is inhibited
by the Pauli principle. g and h are the boson-boson and boson-fermion in-
teraction strengths, respectively, related to the s—wave scattering lengths
app and apr as measured in experiments,*® viz. g = 4rwh’app/mp and
h = 4xhapp /uBr, where ppr is the reduced mass. We introduce a quan-
tized vortex through the Feynman-Onsager ansatz, ¥(r) = v(r)e’®, which
amounts to adding a centrifugal energy term %ﬂzﬂ? to the total energy
functional. Our goal is to minimize the total energy functional subject to
the normalization conditions [drnp(r) = Np and [drnp(r) = Np.

To study the density profiles of boson and fermion components of the
mixture, we now introduce the variational wavefunction for the condensate
with a vortex, ¥U(r, ¢) = Arei®e=o” where A is the normalization constant
and « is the variational parameter. The normalization integral for Np bosons
yields A = N/%(12807 /973).

3. RESULTS AND DISCUSSION

We have minimized the total energy of the mixture with respect to the
variational parameter o and the fermion density np(r) using the number
of particles Np and Np as constraints. We have assumed the same mass
mp = mp for both species and the same trap frequency wp = wp for
simplicity. The boson-boson and boson-fermion interaction strengths are
treated as tunable parameters.

In Fig.1 we show the density profile of fermion species np(r) as a
function of the radial coordinate for various values of the repulsive boson-
fermion interaction strength. For fixed boson-boson repulsive interaction
(g = 0.005hwa};, in the examples shown) we observe a depletion in the
central region of the fermion density as boson-fermion interaction strength
increases. The dip in the central region of npg(r) coincides with the maximum
of the density profile of the condensate with a vortex. Further increase in h
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Fig. 1. Density profile of fermions ny(r) (dashed lines) for g = 0.005hw a3,
and Ng = Np = 10* particles. h* = h/(hwa};). Solid lines indicate the
boson density np(r).

causes the break up of fermion density into two parts, one filling the vortex
core, the other part pushed to the outer region [Fig. 1(c)]. Eventually, when
h becomes very large, the fermions disappear from the vortex core region
and occupy only the outer region surrounding the condensate [Fig.1(d)].
This last situation is the phase separated case of two species, similar to the
theoretically calculated case of trapped boson-fermion mixtures without a
vortex.5” The small overlap of boson np(r) and fermion np(r) densities is
an artifact of Gaussian variational wavefunction which would give in to a
complete phase segregation in more elaborate calculations.

We point out the similarity between our results shown in Fig. 1 and those
of Mayol et al.?® who considered quantized vortices in *He-*He droplets.
They have found that even a small number of 3He atoms fills the vortex
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Fig. 2. Density profile of fermions np(r) (dashed lines) for g = 0.005hw a3,
and Np = Np = 10* particles. h* = h/(hwa};;). Solid lines indicate the
boson density np(r).

core provided by the quantized vortex in a *He condensate. Whereas in
the case of 3He-*He mixtures the strong interaction potential between He
atoms is fixed, the interactions between the alkali atoms can be tuned by
Feshbach resonances to study a wider range of density profiles and possible
phase separations.

We next consider attractive interactions between bosons and fermions.
As shown in Fig.2 an attractive boson-fermion interaction strength causes
the central region of the fermion density ng(r) to increase. At a critical
value of h the system becomes unstable and the fermionic component col-
lapses much like the situation in vortex-free boson-fermion mixtures studied
previously.”-

Our variational calculations employing a Gaussian ansatz may be im-
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proved by choosing better variational wavefunctions or numerically solving
the coupled Euler-Lagrange equations for the mixture. We surmise, however,
the results reported here should be qualitatively correct.
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