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The Connection between real-ω and real-k
Approaches in an Absorbing Medium

Mehmet Emre Taşgın

Abstract—We investigate the transmission and reflection of a
pulse that is incident from air on to an absorbing medium of
frequency dependent dielectric. In the literature solution on the
absorbing part is expressed as the fourier integral over all real
frequency (ω) range, with corresponding complex wave-vectors
k = kR(ω)+ ikI(ω). We show that, the solution in the absorbing
part must be written as the Fourier sum of all real wave-vectors
(k), with the corresponding complex frequencies ω = ωR(k) +
iωI(k). Then, we try to show that these two approaches result in
different function, in space and time, for the transmitted pulse.
On the contrary, we show that two approaches give the same
result.

On the other hand, we manage to derive a mathematical con-
nection between the fourier components of the two approaches.
This makes the comparison of the two types of group velocities
accessible; with fixed position and with fixed time. We calculate
a velocity in two different ways: using the i) real-ω and ii) real-
k approaches. Then we compare the two results and decide
if the velocity definition is reliable or not. This paper is the
complementary work leading to Ref. [1]

Index Terms—group velocity, dispersive medium, superluminal
propagation, real frequency, complex frequency, pulse reshape.

I. INTRODUCTION

We consider the problem of pulse transmission from air
to an absorbing medium of complex dielectric susceptibility
ϵ(ω) = ϵR(ω)+ iϵR(ω) which gives a complex index n(ω) =
nR(ω) + inI(ω).

The solution of the Maxwell equations in complex indexed
medium is given, [2], [3], by the integral sum of the real
frequency fourier components such as

E(x, t) =

∫ ∞

−∞
dωe−iωt

(
C1(ω)e

in(ω)ωx/c

+D1(ω)e
−in(ω)ωx/c

)
. (1)

In section II-A we show that, in the general solution of the
Maxwell equations in complex indexed medium, wave-vector
k must be treated real. Treating k as a real variable brings out
the complexity of the frequency ω. Furthermore, according to
the usual model of absorption, as well as the polarization, this
phenomenon is a behavior due to the time response of the
atoms. This brings out the decision that the solutions must
decay in time, locally.
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In contrast to the literature solution (1), we show that the
general solution must be in the form of

E(x, t) =

∫ ∞

−∞
dkeikx

(
C2(k)e

i ck
n(k)

t +D2(k)e
−i ck

n(k)
t
)
,

(2)
where n(k) is the index as a function of the real wave-vector
k, treated in section II-B.

After then, we try to show the difference in between the
two approach; real-ω approach and real-k approach. We use
the boundary conditions(BC) in order to establish a connection
between the fourier components of the two approaches in
section III. The suspicion of the inequality of two approaches
originates from the following decision. The equality of the
sum of the fourier components at the boundary∫ ∞

−∞
dωD1(ω)e

−iωt =

∫ ∞

−∞
dkD2(k)e

−i ck
n(k)

t (3)

does not imply the equality of the electric fields∫ ∞

−∞
dωD1(ω)e

iωn(ω)x/ce−iωt

=

∫ ∞

−∞
dkD2(k)e

ikxe−i ck
n(k)

t (4)

in whole space and time. Carrying the integration over com-
plex ω space may change the result of the two integrals in (4),
due to the enclosed poles or branch cuts of D1(ω), D2(k) or
n(k).

In section IV we try to show the difference of two ap-
proaches. For the cases, we considered here, there occurs no
difference between results of the two approaches. However,
we limited the behaviors of the functions such as the index
n(ω) and the frequency distribution of the incident pulse
A(ω). In example we limited A(ω) to convergent to zero
at all infinities in the whole complex plane. This excludes
the Gaussian functions, in example. Furthermore, in some
dielectric mediums, created using three level systems, index
n(ω) may exhibit strange behaviors, out of the lorentzian type.

So that, there exists the possibility of the presence of
deviation from the equivalence of the two approaches for other
types of incident pulse shapes.

Beyond the discussion of the equivalence/inequality of
the two approaches, we managed to establish a connection
between the fourier components of the two approaches. This
opens the feasibility of some research topics, discussed in
several papers.

Reference [4] examined the group velocity of a pulse,
propagating in an absorbing medium. They derived the average
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of the time ⟨t⟩x that describes where the pulse is in time, for
a given space point x. They also announced, eighth reference
in this paper, that they would publish a second paper, where
they were going to treat the average pulse position ⟨x⟩t for
a given time. They, however, did not publish such a paper.
We performed this study, which is very very similar to the
method discussed in [4]. The result of ⟨t⟩x contains the fourier
components in real-ω approach D1(ω). The result of ⟨x⟩t,
however, contains the fourier components in the real-k space
D2(k). Since the two approaches have been unable to be
connected, they could not compare the velocity from the two
approaches. This is the probable reason for not to publish.

Being established the connection, we plan to investigate
average pulse position ⟨x⟩t and compare the results with the
⟨t⟩x of reference [4]. For a beginning research we observed
that, see figure 9, we showed the group velocity in the two
approaches are different. Tracking the propagation of the pulse
position (v2) always results in higher average velocity than the
tracking of the arrival time (v1). This is going to be considered
in a separate report.

In the band structure calculations for the frequency depen-
dent dielectric materials, the method of k-real (complex-ω)
is also used, [5], in order to compare the results with the
ω:complex(k:real) method. The parallel behavior is exhibited.
However, the direct relationship between the band structures
were not derived.

A proper definition of the group velocity in complex indexed
medium, whether uniform or not, has not been established yet.
Whatever the formula for a group velocity is, it must generate
the same results in both approaches. The closer values of the
velocities in two approaches, the generated formula of group
velocity is closer to reality.

II. MAXWELL EQUATIONS IN ABSORBING
MEDIUM

A. Realness of k

In this section we show that the solution of the Maxwell
equations in an absorbing medium is the Fourier integral of
real k vectors and complex frequency ω.

Maxwell equations are

∇ ·D = 0 ∇ ·B = 0
∇E = −∂B

∂t ∇H = ∂D
∂t .

(5)

For auxiliary magnetic field field we assume vacuum per-
meability H = B

µ0
. Displacement field depends on the the

electric field as

D(x, t) = ϵ0E(x, t) +

∫ ∞

−∞
χ(τ)E(x, t− τ)dτ. (6)

The physical interpretation of equation (6) is as follows.
Electron, about the atomic or molecular core, response to the
applied electric field in a finite time which is less than the
frequency of the light. This creates an electric dipole moment
oscillating in time and a magnetization at later times . The
dipole moment M(x, t) at time t, generated by the applied
electric field E(x, t−τ) at time t−τ , superposes with the the
electric field E(x, t) at time t. Absorbtion of the incident E
field is modelled as the interference with the dipole moment

of the medium. This shows, even before attempting to solve
Maxwell equations, that the attenuation shall be considered in
time.

Due to causality, χ(τ) = 0 for τ < 0. dielectric function
becomes

D(x, t) = ϵ0E(x, t) +

∫ ∞

0

χ(τ)E(x, t− τ)dτ. (7)

Now, lets solve the Maxwell equations (5) more carefully.
Using the third and the fourth equations in (5) we obtain the
wave equation

∇2E(x, t) =
1

c2
∂2E

∂t2
+

1

c2

∫ ∞

0

χ(τ)
∂2E

∂t2
(x, t− τ)dτ (8)

for the electric field. Since there is no source ∇ · E = 0.
We reduce our problem to one dimension, assuming normal
incidence. We separate the equation into two, by separation of
variables E(x, t) = E1(x)E2(t), in time and in space

−c2k2E2(t) =
d2E2(t)

dt2
+

∫ ∞

0

χ(τ)
d2E2

dt2
(t− τ)dτ (9)

−k2E1(x) =
d2E1(x)

dx2
. (10)

k2 is the separation constant, which we have equated to the
− 1

E1(x)
∂2E1(x)

∂x2 . The solution of space equation (10) is straight
forward E2(x) = A2cos(kx) +B2sin(kx) with E2(x) real.

On the time equation (9) we apparently see that k2 must be
real, since both χ(t) and E2(t) are real. Note that the condition
for E(x, t) = E1(x)E2(t) to be real is both E1(x) and E2(t)
are to be real. After fixing(choosing) a k value, due to equation
(10), we must solve equation (9) for this k value.

To be able to determine E2(t; k), we Fourier expand the
time function of electric field and the dielectric susceptibility
as

E2(t) =
∫∞
−∞ E2(ω)e

−iωtdω , (11)

χ(τ) =
∫∞
−∞ χ(ω)e−iωτdω (12)

with E2(−ω) = E∗
2 (ω) and χ(−ω) = χ∗(ω). Putting (12) in

(9) we determine that E2(ω; k) = 0 for all ω, except for the
ω̄ with ω̄2(1+χ(ω̄)) = c2k2. This equation has two solutions
ω̄1,2 = ±|ω̄|, since χ(ω) is symmetric function. (This is also
valid for complex ω case when ωR → −ωR and ωI → ωI .)

Then solution, for a fixed k value, is E2(t; k) =
C2e

i|ω(k)|t+D2e
−i|ω(k)|t. C2 and D2 are totally unconnected,

except that E(x, t) must be real.
Note that, the form of this solution E2(t; k) is independent

of the solution we chose for E1(x).
If we use E1(x) = cos(kx) or E1(x) = sin(kx), the

time solution would be E2(t; k) = Re{C2}cos(ω(k)t) +
Im{C2}sin(ω(k)t). The solution equivalently can be written
in the form

E1(x)E2(t) = eikx(C2e
i|ω(k)|t +D2e

−i|ω(k)|t)

+e−ikx(C∗
2e

−i|ω(k)|t +D∗
2e

i|ω(k)|t). (13)
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The most general solution, which may contain any k, can be
written as

Eb(x, t) =

∫ ∞

−∞
dkeikx

(
C2(k)e

iω(k)t

+D2(k)e
−iω(k)t

)
, (14)

not as

Ea(x, t) =

∫ ∞

−∞
dωe−iωt

(
C1(ω)e

−ik(ω)t

+D1(ω)e
ik(ω)t

)
. (15)

For real χ(ω) functions (14) and (15) are equivalent. They
are only scaled versions of each other. When χ(ω) is complex,
however, for a given incident pulse the transmitted pulse(so
reflected) may differ in two approaches.

B. Index n(k) and real-k integration

Since ω and k are dependent on each other via ωn(ω) = ck,
we may write equations (14) and (15) as

Eb(x, t) =

∫ ∞

−∞
dkeikx

(
C2(k)e

ickt/n(k)t

+D2(k)e
−ickt/n(k)

)
, (16)

Ea(x, t) =

∫ ∞

−∞
dωe−iωt

(
C1(ω)e

−iωn(ω)x/c

+D1(ω)e
iωn(ω)x/c

)
. (17)

For real ϵ(ω) = n2(ω), n(k) and n(ω) are the same within
only a transform of the arguments k → ωn(ω)/c. When
ϵ(ω) is complex, however, n(k) and n(ω) differs functionally.
Moreover, n(k) can not be determined analytically due to the
nonlinearity in n(ω).

When k is constrained to be real, we find index n(ω) as
follows. Equation n(ω)ω = ck is now separated into two
equations

ωRnI +ωInR = 0 and ωRnR+ωInI = ck . (18)

Since nR(ω) and nI(ω) are given functions of ω, ωR and
ωI are solved computationally for a given value of real k.
Then, these ωR and ωI values are substituted in n(ωR + iωI)
in order to determine the index value for the real k value,
n(k) = nR(k) + inI(k).

In figure 1a we plotted the real and imaginary parts of
index with respect to real k. And in figure 1b we depicted the
corresponding ωR(k) and ωI(k) values for the real parameter
space k = −2 . . . 2. We observe similar properties for n(k),
nR(−k) = nR(k) and nI(−k) = −nI(k), as it is for n(ω). A
zoomed version of n(k) is plotted in figure 2, that is compared
with n(ω). We see that n(k) and n(ω) are almost the same
except that n(k) is little bit greater at both nR and nI peaks.
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Fig. 1. (a) Complex index as a function of real-k. (b) Corresponding complex
frequency ω(k) = ωR(k)+iωI(k) values. This is the real-k integration path∫
C
dω, represented in the complex-ω plane. Red line is the real-ω integration

path.
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Fig. 2. Complex index for real-ω values n(ω) and for real-k values. n(k)
also exhibits lorentzian type behavior, although analytically not achievable.

C. Integration path in the complex ω plane:

In order to be able to compare functions (16) and (17), we
write (14) as∫

C

dω

(
dk

dω

)
eiωn(ω)x/c

(
C2

(
ωn(ω)

c

)
e−iωt

+D2

(
ωn(ω)

c

)
eiωt

)
(19)

Integration is in the complex ω plane, on the line of constraint
k is real. The curve is given in figure 1b with black line.
Black arrows indicate the direction of integration, whose limits
approaches the real ω axis. The integration with real ω in 17 is
drawn with a red line, which is on the real axis. The direction
of real ω integration is also indicated with red arrows.

In the next sections we determine the coefficients D1(ω),
D2(k) ≡ D2

(
n(ω)ω

c

)
and investigate the difference of func-

tions Ea(x, t) (real ω) and Eb(x, t) (real k).

III. PULSE TRANSMISSION THROUGH AN ABSORBING
MEDIUM

In this section we investigate the pulse transmission through
an absorbing medium in 1D. We solve the boundary match
problem for the two approaches expressed by electric fields
(15) for real ω and (16) for real k.
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n = 1 n(ω) = nR(ω) + inI(ω)

EL(x, t) = ER(x, t) =∫∞
−∞ dωA1(ω)e

i(kx−ωt)
∫∞
−∞ dωD1(ω)e

i(k1(ω)x−ωt)

+
∫∞
−∞ dωB1(ω)e

i(kx+ωt)

k = ω/c k1 = ωn(ω)/c

Fig. 3. The pulse A(ω), travelling to right, is incident on the plane interface
from the air n = 1. There exist a reflected wave B1(ω) on the LHS. On the
RHS there is only right travelling wave with frequency components D1(ω).
The solution on the RHS is considered in real-ω approach.

In subsection III-A we determine the fourier coefficients for
real ω case, which we use them to determine Ea(x, t) in the
absorbing medium.

In subsection III-B we determine the fourier coefficients
for real k case, which we use them to express Eb(x, t).
However, we perform this approach in two steps.First for
constant dielectric ϵ case, in order to show the equivalence
between the two approaches for real n(ω) case (part III-B1).
Second for complex index n(ω), where two approaches depart
from each other (part III-B2).

A. Real ω Approach

We assume a plane interface, see figure 3 , between air
n = 1 and an absorbing medium of complex dielectric n(ω) =
nR(ω) + inI(ω). Since the incident wave approach from the
left(L), there is no left travelling wave on the RHS.

We apply the boundary conditions(BC) EaL(0, t) =
EaR(0, t) and ∂EaL

∂x (0, t) = ∂EaR

∂x (0, t) to obtain the equations
at x = 0 as∫ ∞

−∞
dωA1(ω)e

−iωt+
∫∞
−∞ dωB1(ω)e

iωt

=

∫ ∞

−∞
dωD1(ω)e

−iωt(20)

∫ ∞

−∞
dωωA1(ω)e

−iωt −
∫ ∞

−∞
dωωB1(ω)e

iωt

=

∫ ∞

−∞
dωωD1(ω)e

−iωt.(21)

We use the sufficient condition that the integrands are equal
for each frequency ω component. Then, fourier components
are given by

B1(ω) =
1− n(ω)

1 + n(ω)
A1(ω),

D1(ω) =
2

1 + n(ω)
A1(ω). (22)

The behavior of the transmitted wave in space and time, is
then, given by

EaR(x, t) =

∫ ∞

−∞
dω

2

1 + n(ω)
ei(n(ω)ωx/c−ωt) , (23)

where each frequency component decay in space with expo-
nential e−nI(ω)ωx/c. However the physical intuition (in addi-
tion to mathematics) tells that each frequency component must

n = 1 n=const.

EL(x, t) = ER(x, t) =∫∞
−∞ dkA2(k)e

i(kx−ωt)
∫∞
−∞ dkD2(k)e

i(kx−ω1t)

+
∫∞
−∞ dkB2(k)e

i(kx+ωt)

ω = ck ω1 = ck/n

Fig. 4. Real-k approach for the constant dielectric. Two approaches are
equivalent for real n(ω).

decay in time. This is easily seen by considering an oscillating
dipole, which has no interaction with the neighboring dipoles.
Since absorption is a local interference effect, the solution
must decay in time for a fixed position. One may also tell that
equation (23) is only a representation and the decay in time
is transferred to the an effective decay in space. We will see
in the next section, however, that real k solution differs from
(23).

B. Real k Approach
1) Constant Dielectric Case: ϵ : In this part we introduce

the real k approach and we show the equivalence (and indicate
the reasons of equivalence) between the two approaches when
index n is real, see figure 4.

When dielectric response is constant and real, the dispersion
ck = nω relation comes out only as a scaling transformation
between ω and k.

Applying the same BCs, EbL(0, t) = EbR(0, t) and
∂EbL

∂x (0, t) = EbL(0, t) = EbR(0, t) and ∂EbR

∂x (0, t), we obtain
the integral equations∫ ∞

−∞
dkA2(k)e

−ikct +

∫ ∞

−∞
dkB2(k)e

ikct

=

∫ ∞

−∞
dkD2(k)e

−i k
n ct, (24)

∫ ∞

−∞
dkkA2(k)e

−ikct −
∫ ∞

−∞
dkkB2(k)e

ikct (25)

=

∫ ∞

−∞
dk

k

n
D2(k)e

−i k
n ct.(26)

For only mathematical reasons we may define frequency
transformations ω = ck on the LHS and ω1 = ck

n on the
RHS. Equations transform to

1

c

∫ ∞

−∞
dωA2(

ω
c )e−iωt +

1

c

∫ ∞

−∞
dωB2(k)e

iωt

=
n

c

∫ ∞

−∞
dω1D2(

nω1

c
)e−iω1t, (27)

1

c2

∫ ∞

−∞
dω ωA2(

ω

c
)e−iωt − 1

c2

∫ ∞

−∞
dωωB2(k)e

iωt

=
n2

c2

∫ ∞

−∞
dω1ω1D2(

nω1

c
)e−iω1t. (28)

Since ω and ω1 are dummy variables we equate the integrands
to obtain the relations

A2

(ω
c

)
+B2

(
−ω

c

)
= nD2

(nω
c

)
(29)
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n = 1 n(ω) ≡ nR(k) + inI(k).

EL(x, t) = ER(x, t) =∫∞
−∞ dkA2(k)e

i(kx−ωt)
∫∞
−∞ dkD2(k)e

i(kx−ω1t)

+
∫∞
−∞ dkB2(k)e

i(kx+ωt)

ω = ck ω1 = ck/n(k)

Fig. 5. Same configuration of 3, but this time problem is treated with the
real-k approach: RHS is expressed as the sum over real-k plane waves of
fourier coefficients D2(k).

ωA2

(ω
c

)
− ωB2

(
−ω

c

)
= n2ωD2

(nω
c

)
(30)

between the fourier components. In 30 ω cancels. However,
we kept ω in order to remind the reader that ω = ck on the
LHS, but it is ω = ck

n on the RHS. Consequently the fourier
components are calculated to be

B2

(ω
c

)
=

1− n

1 + n
A2

(ω
c

)
,

D2

(nω
c

)
=

2

n(1 + n)
A2

(ω
c

)
. (31)

Solution of D2(k) seems different than real ω result (22).
However, if it is put in the form nD2

(
nω
c

)
= 2

1+nA2

(
ω
c

)
, it

is seen that∫ ∞

−∞
dkD2(ω)e

ikx− k
n ct =

∫ ∞

−∞
dω

2

1 + n
eiωx/c−ωt. (32)

When n is real the results (31) and (22) are equivalent,
in determining Ea(x, t) ≡ Eb(x, t) = E(x, t). However, the
usual physical interpretation ”Frequency does not change for
light changing medium between dielectrics.” here transforms
to only a mathematical scaling transformation which cannot
be performed in the complex ϵ(ω) case.

2) Complex (frequency-dependent) Dielectric Case: ϵ(ω) =
ϵR(ω) + iϵI(ω) : In this part we discuss the pulse trans-
mission/propagation into/through an absorbing medium. We
extend the real-k approach to frequency dependent complex
index, n(ω) = nR(ω) + inI(ω). We determine the integral
equations connecting the fourier components A2(k), B2(k)
and and D2(k). The explicit connection, however, is not
straightforward to obtain as it is in the real-ω approach. This
is left to section IV.

The solutions on the LHS and RHS, see figure 5, are given
by

EbL(x, t) =

∫ ∞

−∞
dkA2(k)e

i(kx−kct)

+

∫ ∞

−∞
dkB2(k)e

i(kx+kct) (33)

EbR(x, t) =

∫ ∞

−∞
dkD2(k)e

i
(
kx− k

n(k)
ct
)

. (34)

Applying the BC.s EbL(0, t) = EbR(0, t) and ∂EbL

∂x (0, t) =

∂EbR

∂x (0, t), as usual, we obtain the integral equations∫ ∞

−∞
dkA2(k)e

−ikct +

∫ ∞

−∞
dkB2(k)e

ikct

=

∫ ∞

−∞
dkD2(k)e

−i k
n(k)

ct,(35)

∫ ∞

−∞
dkkA2(k)e

−ikct +

∫ ∞

−∞
dkkB2(k)e

ikct

=

∫ ∞

−∞
dkkD2(k)e

−i k
n(k)

ct.(36)

This time, however, the fourier components A2(k) and B2(k)
cannot be connected to D2(k) easily. This is because we
cannot equate the integrands directly, as it is in real-ω approach
III-A, or with a scaling transformation, as it is in constant
index case III-B1.

One may try to perform the transformation ω = ck an
the LHS and ω2 = ck

n(k) on the RHS. This time, however,
the integral on the RHS transform to a line integration over
the complex ω2 plane as is mentioned in subsection II-B. So,
integrands cannot be equalized.

C. The Connection between Fourier Components D2(k) and
D1(ω)

The incoming pulses are common in both approaches. So
that we equate∫ ∞

−∞
dkA2(k)e

i(kx−ckt) =

∫ ∞

−∞
dωA1(ω)e

i(ωx/c−ωt) (37)

in order to obtain the relation 1
cA2(k) = A1(ω).

Before solving equations (35) and (36) for D2(k) explicitly,
it is not possible to obtain B2(k) in terms of A2(k). Without
any proof, however, we take

B2(k) =
1− n(k)

1 + n(k)
A2(k) . (38)

This is because we aim to show that the resultant electric fields
EaR(x, t) and EbR are different in the absorbing medium.
Equation (38) corresponds to taking fourier coefficients equal
on the LHS.

When the fourier components on the LHS are the same,
functional behavior of EaL(x, t) and EbL(x, t) also match due
to scaling transformation ω = ck. Then, the integrals of fourier
coefficients on the RHS are also equal∫ ∞

−∞
dkD2(k)e

−i k
n(k)

ct =

∫ ∞

−∞
dωD1(ω)e

−iωt. (39)

Due to the complexity of the transformation ω2 = ck
n(k) ,

integrands are not able to be equalized. Furthermore, due to
the line integration over the complex ω2 plane, the presence
of equation∫

C

dω

(
dk

dω

)
D2

(
ωn(ω)

c

)
e−iωt

=

∫ ∞

−∞
dω̄D1(ω̄)e

−iω̄t (40)
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Fig. 6. The behavior of dk
dω

for real-k case. The real part is symmetric, the
imaginary part is anti-symmetric.

originating from equation (39), does not imply the equality∫
C

dω

(
dk

dω

)
D2

(
ωn(ω)

c

)
ei(k(ω)x−ωt)

=

∫ ∞

−∞
dω̄D1(ω̄)e

i(k(ω̄)x−ω̄t), (41)

in general. This is because of the possibility of including any
pole or branch cut of D2

(
n(ω)ω

c

)
. The bar symbol refers to

the reality of frequency.

IV. DIFFERENCE BETWEEN TWO APPROACHES

In the previous section we obtained a direct connection
between he fourier components of real-ω approach D1(ω)
and the ones for the real-k approach D2(k), at equation (40).
In this section we aim to show that this connection leads to
different functions for the transmitted pulses EaR(x, t) and
EbR(x, t), in the absorbing medium.

We assume that D2

(
n(ω)ω

c

)
converges to zero at all infini-

ties, as |ω| → ∞. WE make this assumption to be able to use
the contour integral formalism; that integration over infinite
circles does not contribute.

If ω, on the LHS of equation (40) were real we could use
the Dirac delta function formula

∫∞
−∞ e−(ω−ω̄)tdt = δ(ω− ω̄)

in order to connect
(
dk
dω

)
D2

(
n(ω)ω

c

)
to D1(ω). The existence

of imaginary part of ω, however, makes the time integral
divergent. Above, bar symbol ω̄ implies the reality of the
variable.

In order to overcome this difficulty we integrate for a finite
time, t = T . . . T , after then we take the limit T → ∞. The
fourier component of the real-ω approach is given in terms o
the real-k approach as

2πD1(ω̄) = lim
T→∞

∫
C

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
×
∫ T

t=−T

dte−i(ω−ω̄)t, (42)

which transforms to

2πD1(ω̄) = lim
T→∞

∫
C

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
×ei(ω−ω̄)T − e−i(ω−ω̄)T

i(ω − ω̄)
(43)

when the time integration is carried out.
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Fig. 7. Real-k integration path,
∫
c
dω, in the complex-ω plane.The contours

C1,2 are the branch cuts of lorentzian n(ω). There exists no pone nor branch
cut of D2

(
n(ω)ω

c

)
in between the curve C and the real-ω axis. The ω̄ is

the single pole of equation (47) .

In equation (43) we obtained D1(ω̄) in terms of
D2

(
n(ω)ω

c

)
. So, our strategy becomes to place (43) into the

solution for the real-ω approach

EaR(x, t) =

∫ ∞

−∞
dω̄D1(ω̄)e

i(k(ω̄)x−ω̄t) (44)

to be able to compare EaR(x, t) with the real-k approach
solution

EbR(x, t) =

∫
C

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
ei(k(ω)x−ωt) (45)

where integration path C is depicted in figure 1 that is not
closed. Equation (45) originates from equation (34).

A. D2

(
n(ω)ω

c

)
has no pole , no branch cut

If D2

(
n(ω)ω

c

)
does not have any pole nor branch cut, see

figure 7, integrand in equation (43) has pole only at ω = ω̄ and
branch cut below the real-k contour due to

(
dk
dω

)
. The ω = ω̄

pole contributes if real-k contour is closed up for ei(ω−ω̄)T

term and branch cuts contribute if if real-k contour is closed
down for e−i(ω−ω̄)T term. We obtain the relation

D1(ω̄) =

(
dk

dω

)
ω=ω̄

D2

(
n(ω̄)ω̄

c

)
− lim

T→∞

∑
1,2

∮
C1,2

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
e−i(ω−ω̄)T

2πi(ω − ω̄)
. (46)

When we put (46) into (44), electric field for the real-ω
approach becomes

EaR(x, t) =

∫ ∞

−∞
dω̄

(
dk

dω

)
ω=ω̄

D2

(
n(ω̄)ω̄

c

)
ei(k(ω̄)x−ω̄t)

− lim
T→∞

∑
1,2

∮
C1,2

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
×

×e−iωT

2πi

∫ ∞

−∞
dω̄

eiω̄T

(ω − ω̄)
. (47)

The last integral of the last term of (47) is evaluated by closing
the contour up. Defined by C1,2 contours, ω is always below
the real-ω line. So that, the second term in (47) is zero. Then,
electric field for the real-ω approach comes out to be

EaR(x, t) =

∫ ∞

−∞
dω̄

(
dk

dω

)
ω̄

D2

(
n(ω̄)ω̄

c

)
ei(k(ω̄)x−ω̄t)

(48)
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Fig. 8. Real-k integration path,
∫
c
dω, in the complex-ω plane. We assume

that D2

(
n(ω)ω

c

)
has two symmetric poles at ω1 = ω1R − iω1I and ω1 =

−ω1R − iω1I . Equation (51) has three poles at ω1,2 and ω̄.

which is equal to the real-k approach one

EbR(x, t) =

∫
C

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
ei(k(ω)x−ωt) ,

(49)
because there is no pole nor branch cut of D2

(
n(ω)ω

c

)
in

between the integration paths of (48) and (49). In this case
both approaches give the same result.

B. D2

(
n(ω)ω

c

)
has pole in between the integration lines

We assume, in difference to the previous case IV-A, that(
dk
dω

)
D2

(
n(ω)ω

c

)
has pole between the two integration lines,

see figure 8. If it has a pole at ω1 = ω1R − iω1I , due to
the symmetry property, there must be another pole at ω2 =

−ω1R − iω1I . Then we may express
(
dk
dω

)
D2

(
n(ω)ω

c

)
as

(
dk

dω

)
D2

(
n(ω)ω

c

)
=

F (ω)

[ω − (ω1R − iω1I)][ω − (−ω1R − iω1I)]
,(50)

where F (ω) has the symmetry as ωR → −ωR. Note that ωI

has same symmetry as ωR → −ωR.
Closing the contours up, for ei(ω−ω̄)T , 3 poles contribute

to D1(ω) in (43). Closing the contour down, for e−i(ω−ω̄)T

term, only branch cuts due to
(
dk
dω

)
contribute. We obtain

D1(ω̄) =

(
dk

dω

)
ω̄

D2

(
n(ω̄)ω̄

c

)
+ 2πi

F (ω1R − iω1I)

2ω1R

ei(ω1R−ω̄)T eω1IT

2πi(ω1 − ω̄)

+ 2πi
F (−ω1R − iω1I)

−2ω1R

ei(−ω1R−ω̄)T eω1IT

2πi(ω2 − ω̄)

− lim
T→∞

∑
1,2

∮
C1,2

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
e−i(ω−ω̄)T

2πi(ω − ω̄)
.(51)

When this is put into equation (44) the last term gives zero,
since eiω̄T is closed up of the real-ω axis. Due to the symmetry
property F (ω1) = F (ω2). Fourier component of the real-ω

case becomes

D1 (ω̄) =

(
dk

dω

)
ω̄

D2

(
n(ω̄)ω̄

c

)
+

F (ω1)

2ω1R
eω1IT e−iω̄T ×

×
(

eiω1RT

(ω1R − iω1I − ω̄)
− e−iω1RT

(−ω1R − iω1I − ω̄)

)
.(52)

We put (52) into (44) to determine the electric field for the
real-ω approach as

EaR (x, t) =

(
dk

dω

)
ω̄

D2

(
n(ω̄)ω̄

c

)
ei(k(ω̄)x−ω̄t)

+ lim
T→∞

F (ω1)

2ω1R
eω1IT

∫ ∞

−∞
dω̄e−iω̄T ei(k(ω̄)x−ω̄t)

×
(

eiω1RT

(ω1R − iω1I − ω̄)
− e−iω1RT

(−ω1R − iω1I − ω̄)

)
.(53)

Since T to∞, due to the e−iω̄T term real ω̄ integration is
closed down. The contour includes two poles at ω̄ = ω1R −
iω1I and ω̄ = −ω1R − iω1I and two branch cut loops C1,2.
Branch cuts occur due to the eik(ω̄) term. Each branch cut is
marked with two points ωb1 = ωbR1−iωbI , ωb2 = ωbR2−iωbI

for the contour C1 and ωb3 = ωbR3− iωbI , ωb4 = ωbR4− iωbI

for the contour C2. All have same imaginary part. Electric
field becomes

EaR(x, t) =

∫ ∞

−∞
dω̄

(
dk

dω

)
ω̄

D2

(
n(ω̄)ω̄

c

)
ei(k(ω̄)x−ω̄t)

+ lim
T→∞

F (ω1)

2ω1R

(
eik(ω1)x−ω1t − eik(ω2)x−ω2t

)
+ lim

T→∞

F (ω1)

2ω1R
eω1IT e−ωbIT

×
(∫ ωbR2

ωbR1

dωbRf(ωbR) +

∫ ωbR2

ωbR1

dωbRf(ωbR)
)
, (54)

where the integrals on the last term are carried over the
two sides of the each branch cut line. The last term does
not contribute, because limT→∞ eω1IT e−ωbIT = 0 since
|ωbI | > |ω1I |.

Then the electric field for the real-ω approach (54) is the
same with the real-k approach

EbR(x, t) =

∫
C

dω

(
dk

dω

)
D2

(
n(ω)ω

c

)
ei(k(ω)x−ωt). (55)

This is because, the open contour C, joined with the reverse
real axis integration, also contains the poles ω1,2.

In this case, too, no difference between the two approaches
exists.

V. AVERAGE ENERGY FLOW OF OPTICAL PULSES IN
DISPERSIVE MEDIUM

Peatross et. al. [4] analytically derived an expression for
the average velocity of a pulse in an absorbing medium. They
used the Poynting vector to calculate the average time

⟨t⟩x =

∫∞
−∞ dt t S(x, t)∫∞
−∞ dtS(x, t)

(56)
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at which the pulse is on the space point, let it be a detector,
x. WE simplified the problem to 1D.

The same problem can be treated in a different point of
view: Average spatial position

⟨x⟩t =
∫∞
−∞ dx x S(x, t)∫∞
−∞ dxS(x, t)

(57)

where the pulse is at time t.
One may calculate the pulse velocity referring both to

(56) and (57). If Poynting vector average is a good identity
to determine the group velocity of a signal, then these two
approaches must give similar velocities.

When the index of the medium is complex, (56) is easily
treated in the real-ω approach [4] since S(x, t). is easily fourier
transformed. Average position (57), however, is easily treated
in the real-k approach.

Since the mathematical procedure relating the fourier coeffi-
cients E(x, ω) and E(k, x) has not been studied in a complex
indexed medium, however, two group velocity could not be
compared.

Being derived the aforementioned connection in the previ-
ous subsection III-C, we managed to compare the time arrival
velocity (from (56)) and pulse center propagation velocity
from (from (57)).

In subsections V-A and V-B we shortly mention the velocity
derivation using the real-ω and real-k approaches, respectively.
In subsection V-C we compare the two velocities, nothing that
they belong to the same pulse.

A. ⟨t⟩x Real-ω Approach

Since the time average is considered we expend the electric
field and magnetic field as

E(x, t) =
1√
2π

∫ ∞

−∞
dωE(x, ω)e−iωt,

H(x, t) =
1√
2π

∫ ∞

−∞
dωH(x, ω)e−iωt, (58)

where H(x, ω) = k
ωE(x, ω). Then we can write the average

Poynting vector(flux) as the frequency component summation∫ ∞

−∞
dtS(x, t) =

∫ ∞

−∞
dωE(x, ω)H∗(x, ω), (59)

and the average time∫ ∞

−∞
dt t S(x, t) = −i

∫ ∞

−∞
dω

∂E(x, ω)

∂ω
H∗(x, ω), (60)

where we have used the integration by parts, E(x, ω =

±∞) = 0, and t = 1
−i

∂e−iωt

∂ω .
Time of arrival of a signal from a source at position x0 to

the detector at position x0 is given by ∆t = ⟨t⟩x − ⟨t⟩x0 .
When we express the temporal dependence explicitly as

E(x, ω) = eik∆xE(x0, ω), (61)
H(x, ω) = eik∆xH(x0, ω) (62)

the arrival time becomes

∆t = −i×

×
[e−2kI∆x

∫∞
−∞ dωF(ω;∆x, x0)H

∗(x0, ω)

e−2kI∆x
∫∞
−∞ dωE(x0, ω)H∗(x0, ω)

(63)

−
∫∞
−∞ dω ∂E(x0,ω)

∂ω H∗(x0, ω)∫∞
−∞ dωE(x0, ω)H∗(x0, ω)

,
]

(64)

where

F(ω;∆x, x0) =

{(
∂k

∂ω
∆x

)
E(x0, ω) +

∂E(x0, ω)

∂ω

}
.

(65)
This results in a simple arrival time velocity(inverse)

1

v1
=

∆t

∆x
=

∫∞
−∞ dω ∂k

∂ωS(x0, ω)∫∞
−∞ dωS(x0, ω))

, (66)

where complex harmonic Poynting vector is defined as
S(x0, ω) = E(x0, ω)H

∗(x0, ω). Note that wave-vector k is
complex.

B. ⟨x⟩t Real-k Approach

When the spatial average is considered we expend the
electric field and magnetic field as

E(x, t) =
1√
2π

∫ ∞

−∞
dkE(k, t)eikx, (67)

H(x, t) =
1√
2π

∫ ∞

−∞
dkH(x, ω)eikx, (68)

where H(k, t) = k
ωE(k, t), again. Then we can write the

average Poynting vector(flux) as the frequency component
summation∫ ∞

−∞
dxS(x, t) =

∫ ∞

−∞
dkE(k, t)H∗(k, t), (69)

and the average spatial pulse position∫ ∞

−∞
dx x S(x, t) = i

∫ ∞

−∞
dk

∂E(k, t)

∂k
H∗(k, t), (70)

where we have used the integration by parts, E(k = ±∞, t) =

0, and x = 1
i
∂eikx

∂k .
The change of the pulse center position from at time t0 to

at time t is given by ∆x = ⟨x⟩t − ⟨x⟩t0 . When we express
the temporal dependence explicitly as

E(k, t) = e−iω∆tE(k, t0), (71)
H(k, t) = e−iω∆tH(k, t0), (72)

we obtain the pulse center propagation velocity

v2 =
∆x

∆t
=

∫∞
−∞ dk ∂ω

∂kS(k, t0)∫∞
−∞ dkS(k, t0))

. (73)

complex Poynting vector is defined as

S(k, t0) = E(k, t0)H
∗(k, t0). (74)

Now, frequency ω is complex.
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Fig. 9. (solid-line) Group velocity calculated by Poynting vector average
⟨t⟩x0 for fixed position x0. Treated in real-ω approach. (dotted-line) Group
velocity calculated by Poynting vector average ⟨x⟩t0 for fixed time x0.
Treated in real-k approach.

C. Comparison of the Velocities
We assume fourier distributions D1(ω) and D2(k) which

does not have any poles nor branch cuts in between the
integration paths depicted in figure 1. Then we are able to
use the identity (46), D1(ω̄) =

(
dk
dω

)
ω̄
D2

(
ω̄n(ω̄)

c

)
. Note that

the second term in (46) approaches zero as T → ∞, since all
ω on C1,2 are complex.

The fourier components are E(x0, ω) ≡ D1(ω) and
E(k, t0) ≡ D2(k). Magnetic field components are H(x0, ω) ≡
k(ω)
ω D1(ω) = n(ω)D1(ω) and E(k, t0) ≡ k

ω(k)D2(k) =

n(k)D2(k). Then the first velocity becomes

v1 =

∫∞
−∞ dω̄n∗(ω̄)|D1(ω̄)|2∫∞

−∞ dω̄n∗(ω̄) dkdω (ω̄)|D1(ω̄)|2
, (75)

where ω̄ indicates the reality of the frequency.
Since there is no pole between the integration paths, Fig. 7,

second velocity can be written as

v2 =

∫
C
dω dk

dω
dω
dk n

∗(ω)|D2(k(ω))|2∫
C
dω dω

dk n
∗(ω)|D2(k(ω))|2

(76)

=

∫∞
−∞ dω̄n∗(ω̄)|D2(k(ω̄))|2∫∞

−∞ dω̄ dω
dk (ω̄)n

∗(ω̄)|D2(k(ω̄))|2
.

If we use (46) as D2(k(ω̄)) =
(
dω
dk

)
ω̄
D1(ω̄), we transform v2

into the form

v2 =

∫∞
−∞ dω̄n∗(ω̄)

∣∣dω
dk (ω̄)

∣∣2 |D1(ω̄)|2∫∞
−∞ dω̄ dω

dk (ω̄)n
∗(ω̄)

∣∣dω
dk (ω̄)

∣∣2 |D1(ω̄)|2
. (77)

Since v2, in equation (77), is written in terms of the fourier
coefficients of the real-ω approach, we are able to compare
the results of the two velocities (75) and (77).

For the frequency spectrum we chose a lorentzian dis-
tribution D1(ω) = 1

[ω−(ν0+∆ω−iζ)][ω−(−ν0−∆ω−iζ)] ,
whose poles are below the lorentzian index n(ω) =
[ω−(β0−iρ)]1/2[ω−(−β0−iρ)]1/2

[ω−(ν0−iρ)]1/2[ω−(−ν0−iρ)]1/2
, since ζ > ρ. We used ρ = γ/2

and ν20 = ω2
0 + ρ2, which are defined in [2].

The numerical results are depicted in figure 9. We observe
that real-k approach (77) results in higher velocity everywhere
than real-ω approach (75).

Then, the velocity of the center of pulse propagation in spa-
tially is always greater than the average arrival time velocity.

We plan to check the similar velocities for defined as the
energy average.

D. Why to treat ⟨t⟩x and ⟨x⟩t in different approaches?

In section V-A, while calculating the time average ⟨t⟩x, we
used the real-ω approach. In section V-B, while calculating
position average ⟨x⟩t, we preferred to use the real-k approach.
This parallelism, at first, may seem like that; we performed
the calculation of the same quantity in the two approaches and
found different results. This is a misunderstanding.

The true story is as follows. After we showed the equiva-
lence of the two approaches, in section IV, we calculated the
two different quantities ⟨t⟩x and ⟨x⟩t. The first is analytically
trackable in the real-ω approach, second is in the real-k
approach.

As an example we try to treat spatial average ⟨x⟩t in
the real-ω approach, and show the dead-end. Starting from
equation (57) we fourier expand the electric fields with real-
ω’s∫ ∞

−∞
dx x S(x, t) =

1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2 ×

×1

i

∂eik(ω1)x

∂k(ω1)
e−iω1tE(ω1)e

ik(ω2)xe−iω2t
k(ω2)

ω2
E(ω2), (78)

which can be put in to the form, using similar arguments as
in equation (64),

∆x =

∫ ∞

−∞
dx

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

(
∂ω1

∂k(ω1)
∆t

)
E(ω1)

×k(ω2)

ω2
E(ω2)e

ik(ω1)xe−iω1teik(ω2)xe−iω2t . (79)

This is, however, cannot be simplified further. Because integral∫ ∞

−∞
dxeik(ω1)xeik(ω2)x ̸= 2πδ(k1 − k2) , (80)

since k1 and k2 are now complex. Furthermore, this integral
diverges. In order to make a progress in (79), one already has
to study the mathematics of the previous sections.
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[1] M.E. Taşgın, Phys. Rev. A 86, 033833 (2012).
[2] J.D. Jackson, Classical Electrodynamics(Wiley, Newyork, 1998), 3rd ed.,

pp. 336, 348
[3] M. Tanaka, M. Fujiwara, and Hideo Ikegami, Phys. Rev. A, 34, 4851

(1986)
[4] J. Peatross, S.A. Glasgow, and M. Ware, Phys. Rev. Lett. 84 2370 (2000)
[5] V. Kuzmiak and A.A. Maradudin, Phys. Rev. B 55, 7427 (1997).
[6] M. Fleischhauer, C.H. Keitel, M.O. Scully, C. Su, B.T. Ulrich, and S.Y.

Zhu, Phys. Rev. A 46, 1468 (1992).
[7] M.O. Scully and M.S. Zubairy, Quantum Optics (Cambridge University

Press, Cambridge, 1997).



BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, VOL. 1, NO. 1, 2013 41
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