
SUPPLEMENTARY MATERIAL

for

Environmental-Induced Work Extraction (EIWE)

In this supplementary material (SM), we �rst present
the calculations for the work extraction in Sec I. In
Sec. II, we demonstrate that a change in the curvature
takes place after the work extraction process, i.e., after
the entanglement is wiped out.

I. WORK EXTRACTION

In this section, we obtain the amount of work the en-
vironmental monitoring extracts. At the �rst step, in
Sec. I.1, we consider a two-mode (TM) squeezed ther-
mal (Gaussian) state. We show that the extracted work
is in the form W = ξ(r)× (n̄ℏω) at low-temperatures (T )
�e.g., room temperature for optical modes. Here, ξ(r),
given in Eq. (S14), is the degree of the entanglement. In
di�erence, e.g., to Refs. [1, 2] who employ Reyni entropy,
we use von Neumann entropy (SV ) in our calculations.
Second, in Sec. I.2, we also show that the same form, i.e.,
W = ξ(r) × (n̄ℏω), appears also for other TM Gaussian
states.

I.1. EIWE for two-mode squeezed thermal state

Initially, that is before the measurement, both modes,
a and b, are in thermal equilibrium with an environment
at temperature T . When the environmental monitoring
carries out the Gaussian measurement (λ = 1) on the b-
mode, entropy of the b-mode decreases compared to the
entropy at thermal equilibrium. When the a-mode re-
thermalizes with the environment it performs a work in
the amount of [3, 4]

W = kBT
(
S
(ther)
V − S

(meas)
V

)
. (S1)

Here, S
(meas)
V is the reduced entropy of the a-mode after

the measurement in the b-mode is carried out. S
(ther)
V is

the entropy of the a-mode after the rethermalization.
Entropy of a Gaussian state can be determined by its

covariance matrix that contains the noise elements. Co-
variance matrix of a biparitite Gaussian state can be cast
in the form [5�7]

σab =

[
σa cab
cTab σb

]
(S2)

via local symplectic transformations Sp(2,R)⊕Sp(2,R),
i.e., transformations altering neither entropy nor entan-
glement features. Here, σa = diag(a, a) and σb =
diag(b, b) are the reduced covariance matrices of the a
and b modes, respectively. cab = diag(c1, c2) refers to

the correlations/entanglement between the two modes.
For a symmetrically squeezed two-mode thermal state,
i.e., squeezing is done while both modes are in ther-
mal equilibrium with T , the coe�cients read b = a and
c2 = −c1 = −c.
The state into which the a-mode collapses is indepen-

dent from the outcome of the b-mode measurement as
long as a Gaussian measurement is carried out [8�11].
After the measurement, covariance matrix of the a-mode
becomes [8�11]

σπb
a = σa − cab (σb + γπb)−1 cTab (S3)

which does not depend on the particular out-
come of the b-measurement. Here, γπb =
R(ϕ) diag(λ/2, λ−1/2) R(ϕ)T refers to the covari-
ance matrix associated with a Gaussian operation
(measurement) [8�11]. λ is the measurement strength
which depends solely on the measurement setup. In
the case of environmental-monitoring, measurement
basis is the coherent states. For coherent states λ = 1
and γπb = diag(1/2, 1/2) is independent of intramode
rotations R(ϕ), i.e., â(ϕ) = âeiϕ.
The entropy of a Gaussian state is determined solely

by its purity, µ = 1
2n

√
Detσ

, which takes the form [7]

SV =
1− µ

2µ
ln

(
1 + µ

1− µ

)
− ln

(
2µ

1 + µ

)
(S4)

for a single-mode state 1.
After the b-measurement, purity of the a-mode can be

obtained as

µ1 ≡ µ(meas) =
a+ 1/2

2(a2 − c2 + a/2)
. (S5)

For a TM squeezed thermal state,

a = (n̄+
1

2
) cosh(2r), (S6)

c = (n̄+
1

2
) sinh(2r), (S7)

the purity becomes

µ1 =
a+ 1/2

2(n̄+ 1/2)2 + a
, (S8)

where n̄ = (eℏωa/kBT − 1)−1 is the occupation of the
a-mode, which becomes n̄ → e−ℏωa/kBT at low T, e.g.,

1 Please note that here we use von Neumann entropy in di�erence,
e.g., to Refs.Refs. [1, 2], where Renyi entropy is employed.
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the room temperature for optical modes. r is the two-
mode squeezing strength with which entanglement in-
creases [12].
n̄ is extremely small at low T regime. So, the purity

can be approximated as

µ1
∼= 1− 2n̄

a+ 1/2
. (S9)

Then, the entropy can be approximately written as

S
(meas)
V

∼=
n̄

a+ 1/2
[ln(2)− ln(2n̄) + ln(a+

1

2
)] (S10)

− 2n̄

a+ 1/2
,

where a = (n̄+1/2) cosh(2r). Here, the last term origins

from the ln
(

2µ
1+µ

)
term of Eq. (S4).

In Eq. (S10), the two terms in the square brackets are
ln(n̄) = ℏωa

kBT ≫ 1 and ln(a + 1/2) ∼= ln(cosh(2r)). As-

suming that the squeezing rate (entanglement degree) is
much smaller than ℏωa

kBT , which is about ∼100 at the room
temperature, i.e., r ≪ ℏωa

kBT , the entropy takes the form

S
(meas)
V

∼=
2n̄

1 + cosh(2r)

ℏωa

kBT
, (S11)

where the last term in Eq. (S10) is also neglected.
Some time after the measurement, a-mode rethermal-

izes with the enviroment and reaches the equilibrium
where purity becomes

µ2 ≡ µ(ther) =
1

1 + 2n̄
. (S12)

Entropy at the equilibrium can be calculated similarly
and becomes

S
(ther)
V

∼= n̄
ℏωa

kBT
. (S13)

Therefore, the extracted work reads

W =

(
1− 2

1 + cosh(2r)

)
× n̄ℏωa, (S14)

where the kBT term in Eq. (S1) is cancels with 1/kBT
appearing in (S11) and (S13). We refer the term in the
parenthesis

ξ(r) =

(
1− 2

1 + cosh(2r)

)
(S15)

as the entanglement degree which is a monotonically in-
creasing function of two-mode squeezing (entanglement)
parameter r [12].

I.2. EIWE for other Gaussian states

Above, we derived a simple form for the extracted
work, i.e., W = ξ(r) × (n̄ℏωa) for TM squeezed thermal

states. Now, we show that a similar form appears also
for other Gaussian states characterized by the covariance
matrix (S2).
After the measurement in the b-mode, the a-mode col-

lapses to a state having the covariance matrix σπb
a whose

determinant is

detσπb
a =

(a2 − c21 + a/2)(a2 − c22 + a/2)

(a+ 1/2)2
. (S16)

The purity after the measurement is µ(meas) =
1

2
√

detσ
πb
a

[7]. As a crosscheck, for c1 = −c2 = c, µ(meas)

becomes the purity given in Eq. (S5).
Here, we aim to show that the environmentally ex-

tracted work is in the �form� W = ξ × (n̄ℏωa) also for
other Gaussian states. Thus, we express Eq. (S16) in
terms of Sp(4,R) invariants

detσ = (a2 − c21)(a
2 − c22), (S17)

∆ = 2(a2 + c1c2), (S18)

where detσ is the determinant of the two-mode Gaus-
sian state before the measurement. We do this because
a random two-mode Gaussian state, Eq. (S2), can be ob-
tained as Sp(4,R) transformations of TM squeezed ther-
mal states. (See Lemma 1 in Ref. [7].) The determinant
in Eq. (S16) can be expressed as

detσπb
a =

(a2 − c21)(a
2 − c22) +

a
2
(2a2 − c21 − c22)

( 1
2
+ a)2

, (S19)

where the �rst term in the numerator is detσ �given
in Eq. (S17)� which is an Sp(4,R) invariant. In the
second term of the numerator, I = (2a2− c21− c22) can be
expressed in terms of Sp(4,R) invariants as

detσπb =
(a2I +∆2/4−∆a2)

(a+ 1
2 )

2
. (S20)

Please note that a is only a local Sp(2,R) invariant.
Below, we use a tilde, i.e., ã and c̃1,2, for the covari-

ance matrix elements belonging to TM squeezed states
in order to distinguish them from the coe�cients a and
c which belong to general Gaussian states in Eq. (S16)-
(S20).
One can realize that detσ = (ã2 − c̃2)2 and ∆ =

2(ã2 − c̃2), expressed in terms of TM squeezed thermal
state coe�cients ã and c̃, are Sp(4,R) invariant. Thus,
Eq. (S20) can be recast as

(ã2 − c̃2)2 = a2I + (ã2 − c̃2)2 −∆a2. (S21)

Cancellation in Eq. (S21) results

I = 2a2 − c21 − c2 = ∆. (S22)

Using this in Eq. (S20), we obtain the expression

µ(meas) =
a+ 1/2

2(z + a/2)
(S23)
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for the purity, where z = ã2 − c̃2 = (n̄ + 1/2)2. Please
note that Eq. (S23) is in the same form with Eq. (S5)
from which we obtain the extracted work

W = ξ × (n̄ℏωc) (S24)

for TM squeezed thermal states.
Thus, above we showed that environmentally extracted

work is in the form Eq. (S24) for general Gaussian states.

II. CHANGE IN THE CURVATURE

In this section, we demonstrate that environmental-
induced monitoring results a change in the background
curvature in expense of diminishing entanglement. In
the environmental-induced work extraction (EIWE) pro-
cess, only the character of the particles' motion (in cav-
ity a) changes. Before the environmental-monitoring,
there is a 0 ≤ ξ(r) ≤ 1 degree of entanglement. Parti-
cles (e.g., photons) in the cavity a (i) moves isotropically
in all directions, i.e., vmean = 0. See Fig. S1(i). After
environmental-monitoring performs the b measurement,
W = ξ×(n̄ℏωa) amount of work is extracted in the cavity
a. That is ξ portion of the entire thermal energy is con-
verted into directional (useful) energy. Assuming that
ξ = 1 for the moment, all of the constituent particles
(ii) move in a particular direction after the entanglement
vanishes. See Fig. S1(ii).
Below, we show that the two instances, (i) and (ii),

possess di�erent curvatures in Einstein equations for a
perfect relativistic �uid [13, 14]. The relativistic pressure
for a �uid (i) moving isotropically in all directions and
(ii) moving along a particular direction is di�erent. We
show that this creates a ∆R = 32πGp0 di�erence in the
scalar curvature where G is the gravitational constant
and p0 is the pressure of the isotropically moving �uid.
That is, the initial entanglement is converted into scalar
curvature.
As none of the authors of this paper has a background

on the general relativity, we received help from Bayram
Tekin and Metin Gürses. We gratefully thank them.
On a curved manifold, the full curvature tensor is the

Riemann tensor Rµανβ , of which one non-trivial trace is
the Ricci tensor Rµν . Considering the underlying grav-
ity theory to be Einstein's General Relativity, the �eld
equations read

Gµ,ν = Rµν − 1

2
gµνR =

8πG

c4
Tµν , (S25)

where R is the scalar curvature given as R = gµνRµν and
Tµν is the energy-momentum tensor which for a perfect
�uid [13, 14] source reads as

Tµν =
(
ρ+

p

c2

)
uµuν + pgµν , (S26)

where ρ is the energy density, p is the relativistic pressure
and uµ is the four velocity of the particle normalized as
uµuµ = −c2.

𝑣mean = 0 𝑣mean ≠ 0

(i) (ii)

FIG. S1. Character of the motion of the constituent parti-
cles (e.g., photons) di�ers (i) before and (ii) after the work
extraction process. (i) Thermal motion (isotropically mov-
ing in all directions) of the particles is converted into a state
where all particles (ii) move along a single direction, i.e., de-
scription of work extraction. The scalar curvature R di�ers
by ∆R = +32πGp0/c

4 between the two instances. The ini-
tial entanglement is converted into a change in the curvature.
Here, we assumed a perfect entanglement ξ = 1 between the
cavities a and b. For a partial entanglement degree, change
in the curvature ∆R = ξ(r) × 32πGp0

c4
is proportional to the

entanglement degree.

For particles moving in the same direction, we have no
pressure and the energy-momentum tensor is that of a
relativistic dust

Tµν = ρ uµuν . (S27)

If one seeks for the solutions of the Einstein equations,
she/he needs an equation of state: namely one must know
how ρ and p are related. Here, however, we are inter-
ested only in the di�erence between the two curvatures:
(i) R(i) when the �uid moves isotropically in all direc-
tions (vmean = 0) and (ii) R(ii) when the �uid moves in
a particular direction (vmean ̸= 0).
We can obtain the Ricci curvature R by multiplying

the Einstein equation (S25) by the inverse metric gµν as

gµν
(
Rµν − 1

2
gµνR

)
=

8πG

c4
gµνTµν . (S28)

We get −R on the left hand side since gµνgµν = 4. Using
Tµν , Eq. (S26), on the right hand side of Eq. (S28) we
obtain

−R =
8πG

c4

[(
ρ+

p

c2

)
gµνuµuν + p gµνgµν

]
. (S29)

Here, u2 = gµνuµuν is the same for a �uid (i) moving
isotropically in all directions and (ii) moving in a single
direction. For a normal �uid u2 = −c2 and for a photon

gas it is u2 = 0.
Thus, for a normal �uid, the scalar curvature is given

by

R = −8πG

c4
[
−ρc2 + 3p

]
. (S30)

Therefore, the scalar curvature changes by

∆R = +3× 8πG p0
c4

(S31)
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after the work is extracted, i.e., instances (i) p = p0 and
(ii) p = 0.
Similarly, for a photon gas, i.e., u2 = 0,

R = −8πG

c4
4p (S32)

and the Ricci curvature changes by

∆R = +4× 8πG p0
c4

. (S33)

Above, we considered perfect entanglement, i.e., ξ = 1
between two instances where all thermal energy is con-
verted into useful work W = n̄ℏωa. If entanglement is
not maximum, for instance let us take ξ = 0.2, W =
0.2 × (n̄ℏωa) work is extracted. This means that after

the work extraction, i.e., instance (ii), cavity a possesses
a 20% directional motion. Thus, moving to a properly
chosen reference frame, 20% of the directional motion can
be eliminated from the pressure. This means that there
takes place a

∆R = ξ(r)× 24πG p0
c4

(S34)

change in the scalar curvature for a normal perfect �uid.
For a photon gas, the change is

∆R = ξ(r)× 32πG p0
c4

. (S35)

That is, the change in the curvature is proportional to
the entanglement degree ξ.

[1] M. Brunelli, M. G. Genoni, M. Barbieri, and M. Pater-
nostro, Detecting gaussian entanglement via extractable
work, Physical Review A 96, 062311 (2017).

[2] M. Cuzminschi, A. Zubarev, and A. Isar, Extractable
quantum work from a two-mode gaussian state in a noisy
channel, Scienti�c Reports 11, 1 (2021).

[3] K. Maruyama, F. Nori, and V. Vedral, Colloquium: The
physics of maxwell's demon and information, Reviews of
Modern Physics 81, 1 (2009).

[4] S. Lloyd, Quantum-mechanical maxwell's demon, Physi-
cal Review A 56, 3374 (1997).

[5] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Insep-
arability criterion for continuous variable systems, Phys-
ical Review Letters 84, 2722 (2000).

[6] G. Adesso, A. Sera�ni, and F. Illuminati, Extremal en-
tanglement and mixedness in continuous variable sys-
tems, Physical Review A 70, 022318 (2004).

[7] A. Sera�ni, F. Illuminati, and S. De Siena, Symplectic

invariants, entropic measures and correlations of gaus-
sian states, Journal of Physics B: Atomic, Molecular and
Optical Physics 37, L21 (2004).

[8] J. Fiurá²ek, Gaussian transformations and distillation of
entangled gaussian states, Physical Review Letters 89,
137904 (2002).

[9] G. Giedke and J. I. Cirac, Characterization of gaussian
operations and distillation of gaussian states, Physical
Review A 66, 032316 (2002).

[10] J. Fiurá²ek and L. Mi²ta Jr, Gaussian localizable entan-
glement, Physical Review A 75, 060302 (2007).

[11] P. Giorda and M. G. Paris, Gaussian quantum discord,
Physical Review Letters 105, 020503 (2010).

[12] M. O. Scully and M. S. Zubairy, Quantum optics, Cam-
bridge Univ. Press (1997).

[13] J. D. Brown, Action functionals for relativistic perfect
�uids, Classical and Quantum Gravity 10, 1579 (1993).

[14] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravi-

tation (Macmillan, 1973).


