HID 362 MESLEKI İNGİLİZCE 2

Hafta 6

Prof. Dr. N. Nur ÖZYURT

2020-2021 Bahar Dönemi #evdekal

GW Flow Models

model - a simplified description of a system or process that can be used as an aide in analysis or design.

conceptual model - a clear, qualitative physical description of how a hydrogeological system behaves.

physical modelnumerical model-

PHYSICAL MODEL

GW flow equation for confined aquifers

$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = \frac{S}{T} \frac{\partial h}{\partial t}$

GW flow equation for unconfined aquifers

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} = \frac{S_y}{Kb} \frac{\partial h}{\partial t}$$

GROUNDWATER FLOW MODEL

finite-difference model - a computer approximation of a continuous (groundwater flow) system as a grid of finite, discrete cells. The finite element mesh offers minimal discretization error.

finite-element model

Arbitrary Object

Finite-Difference Discretization

Simpler to implement

- More complex implementation
- Smaller error

2020-2021 Bahar Dönemi #evdekal.hacettepe. Larger error

Required Data for GW Flow Models

- •Tüm akifer ve geçirimsiz birimlerim alansal yayılımları, kalınlıkları
- •Yüzey su kütleleri ve akarsuların alansal olarak konumları
- Akiferlerin iletimlilik ve depolama katsayıları
- •Geçirimsiz birimlerin iletimlilikleri
- •Akifer ile yüzey su kütleleri arasındaki hidrolik bağlantılar
- Akiferlere ait hidrolik yük dağılımları
- •Akiferlerin doğal ve beslenim ve boşalım bölgeleri
- •Beslenimi oluşturan yağış verisi ve alansal dağılımı
- Buharlaşma kayıpları
- •Üretim kuyularının konumları ve çekim miktarları

THE MODELING PROCESS

Figure 12. Flow chart of the ground-water flow modeling Bahar Dönemi #evdekal.hacettepe.edu.tr process. (From Reilly, 2001.)

STEPS of GROUNDWATER FLOW MODELING

- Setup model with available data
- **calibration** (1) the establishment of an analytical curve relating instrument response to analyte amount or concentration; (2) the adjusting of parameters of numerical model input data until model output matches a set of field observations with some degree of

accuracy.

validation

 Table 1. Types of problems that may initiate a hydrologic study involving a ground-water flow model.

Problem Type	Reason for Undertaking Study	Approach to Model the Problem
Basic Understanding of Ground- Water System	Investigation of hydrologic processes	Hypothetical system model Superposition Particle Tracking
	Determination of effective data collection network	Calibrated model Hypothetical system model Superposition Sensitivity analysis
	Preliminary model to determine current level of understanding	Calibrated model Hypothetical system model Superposition Sensitivity analysis
Estimation of Aquifer Properties	Aquifer test analysis	Calibrated model Superposition
	Determination of aquifer properties	Calibrated model
Understanding the Past	Understanding historical development of an aquifer system	Calibrated model
	Estimation of predevelopment conditions	Calibrated model
Understanding the Present	Determination of the effect of ground-water pumpage on surface-water bodies	Calibrated modelSuperpositionParticle Tracking
	Determination of sources of water to wells	Calibrated model Particle Tracking
	Determination of responsible parties causing impacts on the system	Calibrated model Particle Tracking
Forecasting the Future 2020-2021 Bahar Döner	Management of a system ni #evdekal.hacettepe.edu.tr	Calibrated model Superposition Particle Tracking

Guidelines for Evaluating Ground-Water Flow Models

By Thomas E. Reilly and Arlen W. Harbaugh

https://pubs.usgs.gov/sir/2004/5038/PDF/SIR20045038part2.pdf

MODFLOW - a finite-difference numerical model for groundwater flow which as developed by the U.S. Geological Survey.

decision support system - an interactive computer model that incorporates all available data relative to a water resource problem and through programmable analyses assists with formulation and selection of appropriate management decisions.

https://www.youtube.com/watch?v=GhEcWhWTHcs

Geographic Information System (GIS)

Geographic Information Systems is a computerbased tool that analyzes, stores, manipulates and visualizes geographic information, usually in a map.

Geographic Information Systems really comes down to just 4 simple ideas:

- •Create geographic data
- •Manage it.
- •Analyze it and...
- •Display it on a map

