A class of uniquely (strongly) clean rings

Orhan GÜRGÜN¹,* , Ayşe Çiğdem ÖZCAN²
¹Department of Mathematics, Ankara University, Ankara, Turkey
²Department of Mathematics, Hacettepe University, Beytepe Ankara, Turkey

Received: 10.09.2012 • Accepted: 03.01.2013 • Published Online: 09.12.2013 • Printed: 20.01.2014

Abstract: In this paper we call a ring \(R \) \(\delta_r \)-clean if every element is the sum of an idempotent and an element in \(\delta(R_R) \) where \(\delta(R_R) \) is the intersection of all essential maximal right ideals of \(R \). If this representation is unique (and the elements commute) for every element we call the ring uniquely (strongly) \(\delta_r \)-clean. Various basic characterizations and properties of these rings are proved, and many extensions are investigated and many examples are given. In particular, we see that the class of \(\delta_r \)-clean rings lies between the class of uniquely clean rings and the class of exchange rings, and the class of uniquely strongly \(\delta_r \)-clean rings is a subclass of the class of uniquely strongly clean rings. We prove that \(R \) is \(\delta_r \)-clean if and only if \(R/\delta_r(R_R) \) is Boolean and \(R/Soc(R_R) \) is clean where \(Soc(R_R) \) is the right socle of \(R \).

Key words: Clean ring, strongly clean ring, uniquely clean ring, strongly \(J \)-clean ring

1. Introduction

Clean rings have been studied by many ring and module theorists since 1977, and it is still a very popular subject. They were defined by Nicholson as a subclass of exchange rings. An associative ring with unity is called clean if every element is the sum of an idempotent and a unit [14]. If this representation is unique for every element, Nicholson and Zhou [17] call the ring uniquely clean. They proved that a ring \(R \) is uniquely clean if and only if for all \(a \in R \) there exists a unique idempotent \(e \in R \) such that \(a - e \in J(R) \) where \(J(R) \) is the Jacobson radical of \(R \) (we call the ring with this property uniquely \(J \)-clean). Chen et al. [7] call a ring uniquely strongly clean if every element can be written uniquely as the sum of an idempotent and a unit that commute. They proved that \(R \) is uniquely strongly clean if and only if for every \(a \in R \), there exists a unique idempotent \(e \in R \) such that \(a - e \in J(R) \) and \(ae = ea \) (we call the ring with this property uniquely strongly \(J \)-clean). Recently, Chen [6] defined strongly \(J \)-clean rings. A ring \(R \) is called strongly \(J \)-clean if for all \(a \in R \) there exists an idempotent \(e \in R \) such that \(a - e \in J(R) \) and \(ea = ae \) [6]. Note that strongly \(J \)-clean rings are strongly clean but the converse need not be true [6, Proposition 2.1 and Example 2.2].

These results motivate us to define the class of uniquely \(\delta(R_R) \)-clean and uniquely strongly \(\delta(R_R) \)-clean rings where \(\delta(R_R) \) is the ideal defined by Zhou [21]. These classes of rings give some new classes of uniquely clean and uniquely strongly clean rings and also give some ideas on the cleanness of \(R/Soc(R_R) \) where \(Soc(R_R) \) is the right socle of \(R \). Firstly basic properties of \(\delta(R_R) \)-clean rings are given in Section 2. Interestingly we see that the class of \(\delta(R_R) \)-clean rings lies between the class of uniquely clean rings and exchange rings. We also

*Correspondence: orhangurgun@gmail.com
2010 AMS Mathematics Subject Classification: 16S50, 16S70, 16U99.
prove that if \(R \) is \(\delta(R_R) \)-clean, then \(R/Soc(R_R) \) is clean and partially unit regular, i.e. every regular element is unit regular. In Section 3, uniquely \(\delta(R_R) \)-clean rings are studied. We see that any uniquely \(\delta(R_R) \)-clean ring is uniquely clean. Contrary to the result in [17] saying that \(R \) is uniquely clean if and only if \(R[[x]] \) is uniquely clean, just the necessity is true for uniquely \(\delta(R_R) \)-clean rings. Section 4 is devoted to uniquely strongly \(\delta(R_R) \)-clean rings (USDC for short). Any uniquely \(\delta(R_R) \)-clean ring is USDC, and any USDC ring is uniquely strongly clean. We prove that if \(R \) is a commutative ring, then \(R \) is USDC if and only if the ring of \(2 \times 2 \) upper triangular matrices, \(T_2(R) \), is USDC. In the last section \(\delta(R_R) \)-cleanness of the formal triangular matrix ring is investigated.

Recall some definitions. Following [21], a submodule \(N \) of a module \(M \) is called \(\delta \)-small in \(M \) (denoted by \(N \ll_\delta M \)) if \(N + K \neq M \) for any submodule \(K \) of \(M \) with \(M/K \) singular. Denote \(\delta(M) \) to be the sum of all \(\delta \)-small submodules of \(M \) (see [21, Lemma 1.5]). We use \(\delta_r \) (or \(\delta_r(R) \)) for \(\delta(R_R) \) for a ring \(R \). Clearly \(J(R) \subseteq \delta_r(R) \ll_\delta R_R \). If \(S \) is simple and \(M \) is essential, then \(S \cap M \) must equal \(S \) (as it cannot be zero). Since every simple right ideal is contained in every essential right ideal, then \(S_r := Soc(R_R) \subseteq \delta_r(R) \) (see also [21, Lemma 1.9]). By view of [21, Corollary 1.7], \(J(R/S_r) = \delta_r/S_r \); in particular, \(R \) is semisimple if and only if \(\delta(R_R) = R \).

A ring \(R \) is an exchange ring if, for every \(a \in R \), there exists an idempotent \(e \in aR \) such that \(1 - e \in (1 - a)R \) (see [14]). For example, (von Neumann) regular rings and clean rings are exchange. If \(I \) is a left ideal of a ring \(R \), idempotents lift modulo \(I \) if, given \(a \in R \) with \(a^2 - a \in I \), there exists \(e^2 = e \in R \) such that \(a - e \in I \) [14]. Note that \(R \) is an exchange ring if and only if idempotents lift modulo every left ideal of \(R \) [14, Corollary 1.3]. A ring \(R \) is called \(\delta \)-semiregular if \(R/\delta_r \) is a regular ring and idempotents lift modulo \(\delta_r \) [21, Theorem 3.5]. A ring \(R \) is called abelian if every idempotent of \(R \) is central.

Throughout this article, all rings are associative with unity and all modules are unitary. We denote \(S_r = Soc(R_R) \) and \(Z_r = Z(R_R) \) for the right socle and the right singular ideal of a ring \(R \). We write \(J \) (or \(J(R) \)) for the Jacobson radical of \(R \). \(U(R) \) is the set of all units in \(R \). The ring of integers modulo \(n \) is denoted by \(\mathbb{Z}_n \), and we write \(M_n(R) \) (resp. \(T_n(R) \)) for the rings of all (resp., all upper triangular) \(n \times n \) matrices over the ring \(R \).

2. \(\delta_r \)-clean rings

Chen [6] calls a ring \(R \) strongly \(J \)-clean if for every element \(a \in R \) there exists an idempotent \(e \in R \) such that \(a - e \in J \) and \(ce = ae \). Call a ring \(R \) \(J \)-clean if for any element \(a \in R \), there exists an idempotent \(e \in R \) such that \(a - e \in J \).

Any \(J \)-clean ring is clean. Let \(a \in R \) and \(a = e + w \) where \(e^2 = e \in R \), \(w \in J \). Then \(a = (1 - e) + (2e - 1 + w) \). Since \((2e - 1)^2 = 1\) we see that \(a - (1 - e) \in U(R) \) (see [6, Proposition 2.1]). It is easy to give an example of a ring that is clean but not \(J \)-clean (e.g., \(\mathbb{Z}_3 \)). Now we introduce the notion of \(\delta_r \)-clean rings.

Definition 2.1 A ring \(R \) is called \(\delta_r \)-clean if for every element \(a \in R \) there exists an idempotent \(e \in R \) such that \(a - e \in \delta_r \).

The class of \(\delta_r \)-clean rings contains Boolean rings, semisimple rings, and \(J \)-clean rings. Clearly, \(R \) is \(\delta_r \)-clean if and only if \(R/\delta_r \) is Boolean and idempotents lift modulo \(\delta_r \). Note that there exists a ring \(R \) with \(R/\delta_r \) is Boolean but such that idempotents do not lift modulo \(\delta_r \). There is a ring \(R \) with \(R/J(R) \) Boolean
but such that idempotents do not lift modulo $J(R)$ (see [13, Example 15]). In this ring, idempotents do not lift modulo δ_r, for, if they did, then R would be δ_r-clean and therefore exchange, by Theorem 2.2 below. Then idempotents would lift modulo $J(R)$, a contradiction.

On the other hand, if R is δ_r-clean, then R/J need not be a Boolean ring. For example, \mathbb{Z}_3 is semisimple but not Boolean.

Theorem 2.2 If R is a δ_r-clean ring, then

1) R/S_r is a semiregular ring, i.e. R is δ_r-semiregular;

2) R is an exchange ring;

3) R/S_r is a clean ring;

4) $Z_r \subseteq J$.

Proof

1) Since R/δ_r is a Boolean ring and idempotents lift modulo δ_r, R is δ-semiregular. By [19, Theorem 1.4], R is δ_r-semiregular if and only if R/S_r is semiregular.

2) If R/S_r is semiregular, then R is exchange by [19, Corollary 1.5].

3) If R is δ_r-clean, then R/S_r is $J(R/S_r)$-clean since $J(R/S_r) = \delta_r/S_r$. Any J-clean ring is clean. We thus conclude that R/S_r is a clean ring.

4) Since R is δ_r-semiregular, $Z_r \subseteq \delta_r$ by [16, Theorem 1.2]. Then Z_r is δ_r-small in R. This gives that Z_r is small in R. Hence, $Z_r \subseteq J$. \hfill \square

Example 2.3 If R is a semisimple ring that is not a Boolean ring (e.g., \mathbb{Z}_3), then R is δ_r-clean but not J-clean since $J = 0$ and $\delta_r = R$.

Example 2.4 There exist clean rings that are not δ_r-clean.

Proof

1) Let V_D be a nonzero vector space over a division ring D and let $R = \text{End}_D(V)$. Then R is regular (see [1, Exercise 15.13]) and clean [15, Lemma 1] (see also [3, Lemma 3.1]) and $S_r = S_l = \{f \in R | \text{rank} f < \infty\}$ (see [1, Exercise 18.4]). Since $J(R/S_r) = \delta_r/S_r$ and R is regular, we have that $\delta_r = S_r$.

Now assume that V_D is a countably infinite dimensional vector space and let $\{v_1, v_2, \ldots\}$ be a basis of V. Define the shift operator f on V by $f(v_n) = v_{n+1}$ for $n = 1, 2, 3, \ldots$. Then $f^2 - f \not\in S_r$. This shows that $R/S_r = R/\delta_r$ is not Boolean. Hence, R is not δ_r-clean.

2) Let p be a prime integer and consider the local ring $\mathbb{Z}_{(p)} = \{m/n | m, n \in \mathbb{Z}, (m, n) = 1, p \nmid n\}$. Since $\mathbb{Z}_{(p)}$ is not semisimple, $J = \delta_r = p\mathbb{Z}_{(p)}$. Then $\mathbb{Z}_{(p)}$ is clean but not δ_r-clean, because $\mathbb{Z}_{(p)}/\delta_r$ is not Boolean. \hfill \square

Note that any clean ring is exchange [14, Proposition 1.8]. Bergman’s example is an example of an exchange ring that is not clean. We prove below that this ring is not δ_r-clean, and so we pose the following question.

Question: Is any δ_r-clean ring clean?

Example 2.5 (Bergman) Let F be a field with $\text{char}(F) \neq 2$, and $A = F[[x]]$. Let Q be the field of fractions of A. Define

$$R = \{r \in \text{End}_F(A) | \exists q \in Q \text{ and } \exists n > 0 \text{ with } r(a) = qa \text{ for all } a \in x^nA\}.$$
Then R is a regular (so exchange) ring [10], but not clean [4]. There is also an epimorphism $\theta : R \to Q$ given by $r \mapsto q$, where r agrees with q on $x^n A$ for some $n > 0$ with $\ker \theta = S_r = \delta_r$ (see [12, Example 1]). Now assume that R is δ_r-clean. Then, for any $r \in R$, there exists an idempotent $e \in R$ such that $e - e \in \delta_r$. This gives that $\theta(r - e) = \theta(r) - \theta(e) = 0$ and $\theta(r) = \theta(e)$ is an idempotent in Q. Since Q is a field, $\theta(r) = 0$ or 1, which contradicts the fact that θ is an epimorphism. Therefore, R is not δ_r-clean.

Thus we conclude that

\[
\{ \text{ Boolean } \} \subsetneq \{ J\text{-clean}\} \subsetneq \{ \delta_r\text{-clean}\} \subsetneq \{ \text{ exchange } \}.
\]

Now we give a few conditions for a δ_r-clean ring to be clean or J-clean. First note that Baccella [2] proved the important fact that idempotents lift modulo S_r for any ring R.

Proposition 2.6 Any δ_r-clean ring R is J-clean if

1) R/J is Boolean, or 2) $S_r \subseteq J$.

Proof 1) Assume that R is δ_r-clean and R/J is Boolean. Let $a \in R$. Then $a^2 - a \in J$. By Theorem 2.2, idempotents lift modulo J. Hence, there exists an idempotent $e \in R$ such that $a - e \in J$.

2) Assume that R is δ_r-clean. If $S_r \subseteq J$, then $J/S_r = J(R/S_r) = \delta_r/S_r$, and we have that $J = \delta_r$. Hence, R is J-clean. \qed

Proposition 2.7 If R is δ_r-clean and R/J is abelian, then R is clean.

Proof Assume that R is δ_r-clean. According to Theorem 2.2, R is exchange and so R/J is exchange and idempotents lift modulo J by [14, Corollary 1.3]. Thus, R/J is abelian exchange and it is clean by [14, Proposition 1.8]. By [9, Proposition 6], R is clean. \qed

Recall that a ring R is called right quasi-duo if every maximal right ideal is a 2-sided ideal. If R is an exchange ring, then R/J is right quasi-duo iff R/J is reduced iff R/J is abelian [20, Proposition 4.1]. Hence, the following corollary is immediate.

Corollary 2.8 If R is δ_r-clean and right (or left) quasi-duo, then R is clean.

Proposition 2.9 Let R be a ring with only trivial idempotents (e.g., a local ring). Then R is δ_r-clean if and only if R is either a division ring or $R/J(R) \cong \mathbb{Z}_2$.

Proof Assume that R is δ_r-clean. Then R is exchange by Theorem 2.2. Since R is exchange and has only trivial idempotents, R is local. Then either $J(R) = 0$ or $J(R) = \delta_r$. If $J(R) = 0$, then R is a division ring. If $J(R) = \delta_r$, then R is J-clean and so R is strongly J-clean by hypothesis. Hence, $R/J(R) \cong \mathbb{Z}_2$ by [6, Lemma 4.2]. Conversely, if R is a division ring, then R is semisimple and so R is δ_r-clean. If $R/J(R) \cong \mathbb{Z}_2$, then R is J-clean by [17, Theorem 15] and so R is δ_r-clean. \qed

A characterization of δ_r-clean rings can be given as follows.

Theorem 2.10 Let R be a ring. The following statements are equivalent.

1) R is δ_r-clean.

2) R/S_r is J-clean.
3) \(R/\delta_r \) is Boolean and \(R/S_r \) is clean.

Proof Since \(J(R/S_r) = \delta_r/S_r \), (1) \(\Leftrightarrow \) (2). By Theorem 2.2, (1) \(\Rightarrow \) (3).

(3) \(\Rightarrow \) (1) Let \(a \in R \). Then \(a^2 - a \in \delta_r \). Since \(R = R/S_r \) is clean, idempotents of \(R/J(R) \) lift to idempotents of \(R \). By [19, Lemma 1.3], idempotents of \(R/\delta_r \) lift to idempotents of \(R \). Hence, there exists \(e^2 = e \in R \) such that \(a - e \in \delta_r \). Thus, \(R \) is \(\delta_r \)-clean.

Bergman's example (see Example 2.5) also shows that if \(R/S_r \) is a clean ring, then \(R \) need not be clean [12, Example 1].

Recall that a ring \(R \) is said to have stable range 1, written \(sr(R) = 1 \), if given \(a, b \in R \) for which \(aR + bR = R \), there exists a \(y \in R \) such that \(a + by \in U(R) \). It is obvious that \(sr(R) = 1 \) if and only if \(sr(R/J) = 1 \).

Lemma 2.11 Let \(R \) be a ring. Then \(sr(R/\delta_r) = 1 \) if and only if \(sr(R/S_r) = 1 \).

Proof It can be easily seen by the fact that \(J(R/S_r) = \delta_r/S_r \). \(\square \)

Recall that an element \(a \) of a ring \(R \) is called regular (resp., unit regular) if there exists \(u \in R \) (resp., \(u \in U(R) \)) such that \(a = auu \). A ring \(R \) is called partially unit regular if every regular element of \(R \) is unit regular. These rings are also called \(IC \)-ring in [11].

Theorem 2.12 If \(R \) is a \(\delta_r \)-clean ring, then \(R/S_r \) is partially unit regular.

Proof Since \(R/\delta_r \) is a Boolean ring, \(sr(R/\delta_r) = 1 \). By Theorem 2.2, \(R \) is an exchange ring. Hence, by Lemma 2.11 and [5, Theorem 3], \(R/S_r \) is partially unit regular. \(\square \)

The following example shows that if \(R \) is \(\delta_r \)-clean, then \(R/S_r \) need not be a regular ring in general.

Example 2.13 Let \(R = \mathbb{Z}_8 \). Then \(Soc(R) = 4R \) and \(J = 2R \). It is clear that \(R \) is \(J \)-clean, but since \(J \nsubseteq Soc(R) \), \(R/Soc(R) \) is not regular.

3. Uniquely \(\delta_r \)-clean rings

Definition 3.1 A ring \(R \) is called uniquely \(\delta_r \)-clean if for every element \(a \in R \) there exists a unique idempotent \(e \in R \) such that \(a - e \in \delta_r \).

Let \(I \) be an ideal of \(R \). Then idempotents lift uniquely modulo \(I \) if whenever \(a^2 - a \in I \), there exists a unique idempotent \(e \in R \) such that \(e - a \in I \) [17]. This condition implies that if \(e - f \in I \), \(e^2 = e \), \(f^2 = f \), then \(e = f \); in particular, 0 is the only idempotent in \(I \).

Clearly, \(R \) is uniquely \(\delta_r \)-clean if and only if \(R/\delta_r \) is Boolean and idempotents lift uniquely modulo \(\delta_r \).

Theorem 3.2 If \(R \) is uniquely \(\delta_r \)-clean, then the following hold.

1) \(\delta_r = J \).

2) \(R \) is uniquely clean.
Proof 1) Since idempotents lift uniquely modulo δ_r, by the remark above, the only idempotent in δ_r is 0. Now let $a \in \delta_r$. Then there exists a semisimple right ideal Y of R such that $R = (1-a)R \oplus Y$ by [21, Theorem 1.6]. Since $Y \subseteq S_r \subseteq \delta_r$, we have that $Y = 0$. Hence $1-a$ is right invertible in R, and so $a \in J$.

2) It is clear by (1) and [17, Theorem 20].

Examples 3.3 1) No semisimple ring is uniquely δ_r-clean, for, if R is a semisimple ring, then $\delta_r = R$ and for any $a \in R$, $a - 0 \in R$ and $a - 1 \in R$.

2) If $R \ncong \mathbb{Z}_2$, then $R/J \cong \mathbb{Z}_2$ if and only if R is local uniquely δ_r-clean, for, if $R/J \cong \mathbb{Z}_2$, then $J = \delta_r$ and R is uniquely clean by [17, Theorem 15] and so R is uniquely δ_r-clean. The converse is also true by Proposition 2.9.

Therefore, for example, the rings $R = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in \mathbb{Z}_2 \right\}$, $R = \left\{ \begin{bmatrix} x & y \\ 0 & x \end{bmatrix} \mid x \in \mathbb{Z}_4, y \in \mathbb{Z}_4 \oplus \mathbb{Z}_4 \right\}$, or $R = \mathbb{Z}_{2^n}$ where $1 \neq n \in \mathbb{N}$ are uniquely δ_r-clean.

Uniquely clean rings need not be uniquely δ_r-clean.

Example 3.4 1) \mathbb{Z}_2 is uniquely clean but not uniquely δ_r-clean.

2) Let $R = \prod_{i=1}^{\infty} R_i$ where $R_i \cong \mathbb{Z}_2$ for all $i = 1, 2, \ldots$. Then R is a Boolean ring with $S_r = \bigoplus_{i=1}^{\infty} R_i$. Since R/S_r is Boolean, $J(R/S_r) = 0$ and so $S_r = \delta_r$. Clearly R is uniquely J-clean, that is, uniquely clean but not uniquely δ_r-clean.

It is easy to see that every uniquely clean ring is δ_r-clean by the fact that R is uniquely clean if and only if R/J is uniquely J-clean [17, Theorem 20]. But if R is a semisimple ring that is not Boolean, then R is δ_r-clean but not uniquely clean (see Example 2.3).

Thus, we conclude that

$\{ \text{uniquely δ_r-clean} \} \subsetneq \{ \text{uniquely clean} \} \subsetneq \{ \delta_r\text{-clean} \} \subsetneq \{ \text{exchange} \}$.

If $S_r \subseteq J$ for a ring R, then $J/S_r = J(R/S_r) = \delta_r/S_r$ and so $J = \delta_r$. Hence, Proposition 3.5 below is obvious by Proposition 2.6.

Proposition 3.5 If R is a uniquely clean ring with $S_r \subsetneq J$, then R is uniquely δ_r-clean.

By [17, Theorem 20] we know that R is uniquely clean if and only if R/J is Boolean, R is abelian, and idempotents lift modulo J. However, this result cannot be restated for δ_r in general. The following theorem and examples prove our claim.

Theorem 3.6 Let R be a ring and consider the following conditions.

1) R is uniquely δ_r-clean.

2) R/δ_r is Boolean, R is abelian, and idempotents lift modulo δ_r.

3) R/δ_r is Boolean, R/S_r is abelian, and idempotents lift modulo δ_r.
4) \(R/S_r\) is uniquely clean.

Then (1) \(\Rightarrow\) (2) \(\Rightarrow\) (3) \(\iff\) (4).

Proof (1) \(\Rightarrow\) (2) Since \(R\) is uniquely clean, it is abelian by [17, Lemma 4].

(2) \(\Rightarrow\) (3) Since idempotents always lift modulo \(S_r\), it is clear.

(3) \(\iff\) (4) It is by [17, Theorem 20]. Note that idempotents lift modulo \(J\) [19, Lemma 1.3].

In Theorem 3.6, (2) \(\not\iff\) (1) in general.

Example 3.7 We consider again the ring \(R = \prod_{i=1}^{\infty} R_i\) where \(R_i \cong \mathbb{Z}_2\), \(i = 1, 2, \ldots\) (see Example 3.4). Since \(R\) is uniquely clean, \(R\) is abelian and \(\delta_r\)-clean. But \(R\) is not uniquely \(\delta_r\)-clean.

In Theorem 3.6, (4) \(\not\iff\) (2) in general.

Example 3.8 Let \(R = \left[\begin{array}{ll} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{array} \right]\). Then \(S_r = \delta_r = \left[\begin{array}{ll} 0 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{array} \right]\) and \(R/S_r \cong \mathbb{Z}_2\) is Boolean. Obviously \(R\) is \(\delta_r\)-clean but not abelian.

Theorem 3.9 If \(R\) is uniquely \(\delta_r\)-clean and \(e^2 = e \in R\), then \(eRe\) is uniquely \(\delta_r\)-clean.

Proof Since \(R\) is abelian, \(\delta_r(eRe) = e\delta_r e\) by [18, Theorem 3.11]. By Theorem 3.2, \(\delta_r = J\), so we have that \(J(eRe) = eJe = \delta_r(eRe)\). If \(R\) is uniquely \(\delta_r\)-clean, then \(R\) is uniquely clean by Theorem 3.2. By [17, Corollary 6], \(eRe\) is uniquely clean. By [17, Theorem 20], \(eRe\) is uniquely \(\delta_r\)-clean.

Although every factor ring of a uniquely clean ring is uniquely clean [17, Theorem 22], the same property does not hold for uniquely \(\delta_r\)-clean.

Remark 3.10 1) If \(R\) is a uniquely \(\delta_r\)-clean ring, then factor rings of \(R\) need not be uniquely \(\delta_r\)-clean in general. For example, if \(R \not\cong \mathbb{Z}_2\) and \(R/J \cong \mathbb{Z}_2\), then \(R\) is uniquely \(\delta_r\)-clean by Example 3.3, but \(R/J\) is not uniquely \(\delta_r\)-clean.

(2) Since matrix ring \(M_n(R)\) and upper triangular matrix ring \(T_n(R)\) are not abelian for \(n \geq 2\), they are not uniquely \(\delta_r\)-clean by Theorem 3.2.

Let \(R\) be a ring and \(V\) an \((R, R)\)-bimodule that is a general ring (possibly with no unity) in which \((vw)r = v(wr), (vr)w = v(rw), and (rv)w = r(vw)\) hold for all \(v, w \in V\) and \(r \in R\). Then the ideal-extension (also called the Dorroh extension) \(I(R; V)\) of \(R\) by \(V\) is defined to be the additive abelian group \(I(R; V) = R \oplus V\) with multiplication \((r, v)(s, w) = (rs, rw + vs + vw)\).

Uniquely clean ideal-extensions are considered in [17, Proposition 7]. Now we deal with uniquely \(\delta_r\)-clean ideal-extensions.

Proposition 3.11 An ideal-extension \(S = I(R; V)\) is uniquely \(\delta_r\)-clean if the following conditions are satisfied:

1) \(R\) is uniquely \(\delta_r\)-clean;

2) if \(e^2 = e \in R\) then \(ev = ve\) for all \(v \in V\);

3) if \(v \in V\) then \(v + w + vw = 0\) for some \(w \in V\).
Proof Assume that (1), (2), and (3) are satisfied. Since R is uniquely δ_r-clean, R is uniquely clean by Theorem 3.2 and so S is uniquely clean by [17, Proposition 7]. Then S is δ_r-clean. Note by the proof of [17, Proposition 7] that any idempotent in S is of the form $(e, 0)$ where $e^2 = e \in R$. Now suppose that $(e, 0) + (u, v) = (e_1, 0) + (u_1, v_1)$ in S where $(e, 0)$ and $(e_1, 0)$ are idempotents and $(u, v), (u_1, v_1) \in \delta_r(S)$. Then $e + u = e_1 + u_1$ in R where e and e_1 are idempotents in R and $u, u_1 \in \delta_r(R)$ by the following result, and so $(e, 0) = (e_1, 0)$ by (1).

Claim. If $(u, v) \in \delta_r(S)$ then $u \in \delta_r(R)$.

Proof. Let $(u, v) \in \delta_r(S)$. Then $(u, 0) \in \delta_r(S)$ because $(0, V) \subseteq J(S) \subseteq \delta_r(S)$ by (3). Let L be a right ideal of R such that $uR + L = R$. It is enough to show that L is a direct summand of R by [21, Theorem 1.6]. Since $(u, 0)S + (L + V) = S$ and $(u, 0) \in \delta_r(S)$, we have that $L + V$ is a direct summand of S and so is generated by an idempotent $(e, 0) \in S$ where $e^2 = e \in R$. Then we see that $L = eR$, and hence L is a direct summand of R, as desired.

Example 3.12 Let R be a uniquely δ_r-clean ring and let $S = \{a_{ij} \in T_n(R) \mid a_{11} = \ldots = a_{nn} \}$. Then S is uniquely δ_r-clean and is noncommutative if $n \geq 3$.

Proof. If $V = \{a_{ij} \in T_n(R) \mid a_{11} = \ldots = a_{nn} = 0 \}$, then $S \cong I(R; V)$. The conditions in Proposition 3.11 hold as in [17, Example 8].

If R is a ring and $\sigma : R \to R$ is a ring endomorphism, let $R[[x, \sigma]]$ denote the ring of skew formal power series over R, that is, all formal power series in x with coefficients from R with multiplication defined by $xr = \sigma(r)x$ for all $r \in R$. In particular, $R[[x]] = R[[x, 1_R]]$ is the ring of formal power series over R. Since $R[[x, \sigma]] \cong I(R; < x >)$ where $< x >$ is the ideal generated by x, the proof of [17, Example 9] and Proposition 3.11 give the next results.

Corollary 3.13 Let R be a ring and $\sigma : R \to R$ a ring endomorphism and $e = \sigma(e)$ for all $e^2 = e \in R$. If R is uniquely δ_r-clean, then $R[[x, \sigma]]$ is uniquely δ_r-clean.

Corollary 3.14 If R is a uniquely δ_r-clean ring, then $R[[x]]$ is uniquely δ_r-clean.

Corollary 3.14 can be proven by using Proposition 3.15 below, for, if R is uniquely δ_r-clean, then $R[[x]]$ is a uniquely clean ring by Theorem 3.2 and [17, Corollary 10]. By Proposition 3.15, $J(R[[x]]) = J(R) + < x > \subseteq \delta_r(R[[x]]) \subseteq \delta_r(R) + < x >$. Then since $J(R) = \delta_r(R)$ by Theorem 3.2(1), $J(R[[x]]) = \delta_r(R[[x]])$. Hence, $R[[x]]$ is a uniquely δ_r-clean ring.

Proposition 3.15 Let R be a ring. Then $\delta_r(R[[x]]) \subseteq \delta_r(R) + < x >$.

Proof. Let $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots \in \delta_r(R[[x]])$. Since $< x > \subseteq J(R[[x]])$, $a_0 \in \delta_r(R[[x]])$. Let L be a right ideal of R such that $a_0 R + L = R$. It is enough to show that L is a direct summand of R by [21, Theorem 1.6]. Since $a_0 R[[x]] + L[[x]] = R[[x]]$ and $a_0 \in \delta_r(R[[x]])$, we have that $L[[x]]$ is a direct summand of $R[[x]]$ and so is generated by an idempotent $e(x) = e_0 + e_1 x + e_2 x^2 + \ldots \in R[[x]]$. Then e_0 is an idempotent in R and it can be seen that $L = e_0 R$. Thus, $a_0 \in \delta_r(R)$, as desired.

Note that $J(\mathbb{Z}_2[[x]]) = \delta_r(\mathbb{Z}_2[[x]]) \subseteq \delta_r(\mathbb{Z}_2) + < x > = \mathbb{Z}_2[[x]]$. 47
Corollary 3.16 If $R[[x]]$ is δ_r-clean, then R is δ_r-clean.

Proof Let $a \in R$. Then there exist $e(x)^2 = e(x) \in R[[x]]$ and $w(x) \in \delta_r(R[[x]])$ such that $a = e(x) + w(x)$ and so $w(0) \in \delta_r(R)$ by Proposition 3.15. Thus, $a = e(0) + w(0)$ where $e(0)^2 = e(0) \in R$, as asserted. \hfill \blacksquare

If $R[[x]]$ is uniquely δ_r-clean, then R need not be uniquely δ_r-clean. For example, \mathbb{Z}_2 is not uniquely δ_r-clean but since $\mathbb{Z}_2[[x]]/J(\mathbb{Z}_2[[x]]) \cong \mathbb{Z}_2$, $\mathbb{Z}_2[[x]]$ is uniquely δ_r-clean by Example 3.3(2).

4. Uniquely strongly δ_r-clean rings

Uniquely strongly clean rings were studied in [7]. A ring R is called uniquely strongly clean if for every element $a \in R$ there exists a unique idempotent $e \in R$ such that $a - e \in U(R)$ and $ea = ae$. In Theorem 17 of [7] it is proven that a uniquely strongly clean ring is exactly the same as a uniquely strongly J-clean, i.e. for any $a \in R$ there exists a unique idempotent $e \in R$ such that $a - e \in J$ and $ea = ae$.

Definition 4.1 A ring R is called uniquely strongly δ_r-clean if for every element $a \in R$ there exists a unique idempotent $e \in R$ such that $a - e \in \delta_r$ and $ea = ae$.

Proposition 4.2 A ring R is uniquely strongly δ_r-clean if and only if R is an abelian USDC ring.

Proof Since uniquely δ_r-clean rings are abelian by Theorem 3.6, the proof is obvious. \hfill \blacksquare

Proposition 4.3 Let R be a USDC ring. Then the following hold:

1) If $e^2 = e \in \delta_r$ then $e = 0$.

2) R/J is Boolean.

3) $\delta_r = J$.

4) R is uniquely strongly clean.

Proof 1) Let $e^2 = e \in \delta_r$. Then $e + 0 = 0 + e$ and $0.e = e.0$ yield $e = 0$.

2) R is exchange by Theorem 2.2. If we show that every nonzero idempotent of R is not the sum of 2 units, then by [13, Theorem 13], R/J will be Boolean. Let e be a nonzero idempotent in R. Write $e = u + v$, where $u, v \in U(R)$. Since R is USDC, R/δ_r is Boolean and so $2 \in \delta_r$. Therefore, u and v are congruent to 1, modulo δ_r, which means that their sum is in δ_r. This contradicts with (1).

3) Let $a \in \delta_r$. Since R/J is Boolean, $a^2 - a \in J$. By Theorem 2.2, R is exchange and so idempotents lift modulo J. Thus, there exist $e^2 = e \in R$ such that $a - e \in J$. Since $J \subseteq \delta_r$, $e = 0$ by (1). Hence, $a \in J$, as asserted.

4) It is clear by (3) and [7, Theorem 17].

However, a uniquely strongly clean ring need not be USDC. The ring $R = \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{bmatrix}$ is uniquely strongly clean by [7, Theorem 10] but not USDC by Example 3.8.

Thus, we conclude that

\{ uniquely δ_r-clean \} \subsetneq \{ USDC \} \subsetneq \{ uniquely strongly clean \} \subsetneq \{ δ_r-clean \}.

48
The first and the last containments above are proper because, for example, the ring \(\mathbb{Z}_p\), where \(2 \neq p\) is a prime is \(\delta_-\)-clean but not uniquely strongly clean because \(J(\mathbb{Z}_p) = 0\) and \(\mathbb{Z}_p\) is not Boolean. If \(R\) is a commutative uniquely \(\delta_-\)-clean ring, then \(T_n(R)\) is USDC by Theorem 4.5 for any \(n \in \mathbb{N}\), but \(T_n(R)\) is never uniquely \(\delta_-\)-clean by Remark 3.10(2).

Any factor ring of any USDC ring need not be USDC. For example, since \(\mathbb{Z}_4\) is uniquely \(\delta_-\)-clean by Example 3.3, it is USDC by Proposition 4.2. However, \(\mathbb{Z}_4/J(\mathbb{Z}_4) \cong \mathbb{Z}_2\) is not USDC by Proposition 4.2 and Example 3.3.

Proposition 4.4 Let \(e\) be an idempotent of a ring \(R\) such that \(eR = eRe\) (i.e. right semicentral) or \(ReR = R\) (i.e. full idempotent). If \(R\) is USDC, then \(eRe\) is USDC.

Proof Assume that \(R\) is USDC. For any idempotent \(e\) of \(R\), \(eRe\) is uniquely strongly clean by Proposition 4.3(4) and [7, Example 5]. Since uniquely strongly clean rings are uniquely strongly \(J\)-clean, for any \(a \in eRe\), there exists an idempotent \(f \in eRe\) and \(v \in \delta_e(eRe)\) such that \(a = f + v\) and \(fv = vf\). It remains to show the uniqueness. Let \(a = f + v = g + w\) where \(f\) and \(g\) are idempotents in \(eRe\) and \(v, w \in \delta_e(eRe)\) such that \(fv = vf\) and \(gw = wg\). If \(e\) is an idempotent as in the hypothesis, then \(\delta_e(eRe) \subseteq e\delta_e \subseteq \delta_e(R)\) by [18, Theorems 3.9 and 3.11]. Hence, by assumption, \(f = g\).

Since \(M_n(R)\) is never uniquely strongly clean by [7, Lemma 6], \(M_n(R)\) is never USDC.

Theorem 4.5 Let \(R\) be a commutative ring. Then the following are equivalent.

1. \(R\) is USDC.
2. \(R\) is uniquely \(\delta_-\)-clean.
3. \(T_n(R)\) is USDC for all \(n \geq 1\).
4. \(T_2(R)\) is USDC.

Proof (1) \(\Leftrightarrow\) (2) This follows by Proposition 4.2.

(3) \(\Rightarrow\) (4) It is clear.

(4) \(\Rightarrow\) (1) Suppose that \(T_2(R)\) is USDC and let \(e = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in T_2(R)\). Since \(e\) is right semicentral and \(eT_2(R)e \cong R\), \(R\) is USDC by Proposition 4.4.

(1) \(\Rightarrow\) (3) If \(R\) is USDC, then \(T_n(R)\) is uniquely strongly clean by Proposition 4.3(4) and [7, Theorem 10]. According to Proposition 4.3(3) and Lemma 5.1, \(\delta_e(T_n(R)) = J(T_n(R))\) and so \(T_n(R)\) is USDC by [7, Theorem 17]. Therefore, the proof is completed.

5. On the formal triangular matrix rings

Let \(S\) and \(T\) be any ring, \(M\) an \((S,T)\)-bimodule, and \(R\) the formal triangular matrix ring \(\begin{bmatrix} S & M \\ 0 & T \end{bmatrix}\). It is well known that \(J(R) = \begin{bmatrix} J(S) & M \\ 0 & J(T) \end{bmatrix}\) (e.g., [8, Corollary 2.2]), but for \(\delta_e(R)\) the similar property does
not hold in general. For example, if $S = M = T = F$ is a field, then $\delta_r(R) = \text{Soc}_r(R) = \begin{bmatrix} 0 & F \\ 0 & F \end{bmatrix}$ since $R/\text{Soc}_r(R)$ has zero Jacobson radical, but $\begin{bmatrix} \delta_r(S) & M \\ 0 & \delta_r(T) \end{bmatrix} = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix} = R$. Now we prove the following.

Lemma 5.1 Let $R = \begin{bmatrix} S & M \\ 0 & T \end{bmatrix}$ where S, T are any ring and M is an (S,T)-bimodule. Then $\delta_r(R) \subseteq \begin{bmatrix} \delta_r(S) & M \\ 0 & \delta_r(T) \end{bmatrix}$.

Proof Let $r = \begin{bmatrix} s & m \\ 0 & t \end{bmatrix} \in \delta_r(R)$ where $s \in S$, $t \in T$ and $m \in M$. We claim that $s \in \delta_r(S)$. Let I be a right ideal of S such that $sS + I = S$. It is enough to show that I is a direct summand of S by [21, Theorem 1.6]. Since $rR + \begin{bmatrix} I & M \\ 0 & T \end{bmatrix} = R$ and $r \in \delta_r(R)$, we have that $\begin{bmatrix} I & M \\ 0 & T \end{bmatrix}$ is a direct summand of R and so is generated by an idempotent $e \in R$. Let $e = \begin{bmatrix} g & n \\ 0 & f \end{bmatrix}$ where $g \in S$, $f \in T$ and $n \in M$. Then g is an idempotent in S and we see that $I = gS$, and hence I is a direct summand of S, as desired. By a similar argument we see that $t \in \delta_r(T)$. Hence, the proof is completed.

According to [8, Proposition 6.3], $R = \begin{bmatrix} S & M \\ 0 & T \end{bmatrix}$ is clean if and only if S and T are clean. This result also holds for J-clean ring.

Proposition 5.2 Let $R = \begin{bmatrix} S & M \\ 0 & T \end{bmatrix}$. Then R is J-clean if and only if S and T are J-clean.

Proof Since S and T are factor rings of R, the necessity is obvious. Now assume that S and T are J-clean.

Let $r = \begin{bmatrix} s & m \\ 0 & t \end{bmatrix} \in R$ where $s \in S$, $t \in T$ and $m \in M$. Then $s = e + w$ where $e^2 = e \in S$ and $w \in J(S)$, and $t = f + v$ where $f^2 = f \in T$ and $v \in J(T)$. This gives that $\begin{bmatrix} s & m \\ 0 & t \end{bmatrix} = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix} + \begin{bmatrix} w & m \\ 0 & v \end{bmatrix}$ where $\begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}$ is an idempotent in R and $\begin{bmatrix} w & m \\ 0 & v \end{bmatrix} \in J(R)$. Hence, R is J-clean.

If S and T are local rings with nonzero maximal left ideal, then $J(S) = \delta_r(S)$ and $J(T) = \delta_r(T)$. By Lemma 5.1, one can thus deduce that $J(R) = \delta_r(R)$. Hence, the following corollary is immediate from Proposition 5.2.

Corollary 5.3 Let $R = \begin{bmatrix} S & M \\ 0 & T \end{bmatrix}$ where S and T are local rings with nonzero maximal left ideals. Then R is δ_r-clean if and only if S and T are δ_r-clean.

If $R = \begin{bmatrix} Z_3 & Z_3 \\ 0 & Z_3 \end{bmatrix}$, then Z_3 is a δ_r-clean ring, but R is not δ_r-clean since no quotient of it is Boolean.
Acknowledgement

The first author thanks the Scientific and Technological Research Council of Turkey (TÜBİTAK) for grant support.

References