A Generalization of Semiregular and Almost Principally Injective Rings

A. Çiğdem Özcan Pınar Aydoğdu

Department of Mathematics, Hacettepe University
06800 Beytepe Ankara, Turkey
E-mail: ozcan@hacettepe.edu.tr paydogdu@hacettepe.edu.tr

Dedicated to Professor Abdullah Harmancı, on his 65th birthday.

Abstract. In this article, we call a ring R right almost I–semiregular if, for any $a \in R$, there exists a left R–module decomposition $l_{R}R(a) = P \oplus Q$ such that $P \subseteq Ra$ and $Q \cap Ra \subseteq I$, where I is an ideal of R, l and r are the left and right annihilators, respectively. This definition generalizes the right almost principally injective rings defined by Page and Zhou [10], I–semiregular rings defined by Nicholson and Yousif [7], and right generalized semiregular rings defined by Xiao and Tong [11]. We prove that R is I–semiregular if and only if, for any $a \in R$, there exists a decomposition $l_{R}R(a) = P \oplus Q$, where $P = Re \subseteq Ra$ for some $e^2 = e \in R$ and $Q \cap Ra \subseteq I$. Among the results for right almost I–semiregular rings, we are able to show that if I is the left socle $\text{Soc}(R_{R})$ or the right singular ideal $Z(R_{R})$, then R being right almost I–semiregular implies that R is right almost J–semiregular, where J is the Jacobson radical of R. We show that $\delta(eRe) = e\delta(R_{R})e$ for any idempotent e of R satisfying $ReR = R$ and, for such an idempotent, R being right almost $\delta(R_{R})$–semiregular implies that eRe is right almost $\delta(eRe)$–semiregular.

2000 Mathematics Subject Classification: 16A30, 16D50, 16D10
Keywords: almost principally (quasi) injective, (almost) semiregular.

1 Introduction

Throughout this paper, R denotes an associative ring with identity and all modules are unitary right R–modules.

*The second author was supported by The Scientific Technological Research Council of Turkey (TÜBİTAK).
Let M be an R–module and F a submodule of M_R. Following Alkan and Özcan [1], M is called F–semiregular if, for any $m \in M$, there exists a decomposition $M = P \oplus Q$ such that P is projective, $P \subseteq mR$ and $Q \cap mR \subseteq F$. If F is a fully–invariant submodule of M_R, then M is F–semiregular if and only if, for any $m \in M$, there exists a decomposition $mR = P \oplus S$ such that P is a projective (direct) summand of M and $S \subseteq F$. A ring R is called I–semiregular for an ideal I of R if R_R is an I–semiregular module. Such rings are studied in [7] and [9]. Note that being I–semiregular for an ideal I of a ring R is left-right symmetric by [9, Lemma 27 and Theorem 28].

A module M is said to be principally injective (or P–injective for short) if $l_{MR}(a) = Ma$ for all $a \in R$, where l and r are the left and right annihilators, respectively. As a generalization of P–injective modules, Page and Zhou [10] call a module M almost principally injective (or AP–injective for short) if, for any $a \in R$, there exists an S–submodule X_a of M such that $l_{MR}(a) = Ma \oplus X_a$ as S–modules, where $S = \text{End}_R(M)$. A ring R is called right AP–injective if R_R is AP–injective.

In [13], M is called almost principally quasi–injective (or APQ–injective for short) if, for any $m \in M$, there exists an S–submodule X_m of M such that $l_{MR}(m) = Sm \oplus X_m$, where $S = \text{End}_R(M)$. Then R_R is APQ–injective if and only if R_R is AP–injective.

In this article, we call a right R–module M almost F–semiregular if, for any $m \in M$, there exists an S–module decomposition $l_{MR}(m) = P \oplus Q$ such that $P \subseteq Sm$ and $Q \cap Sm \subseteq F$, where $S = \text{End}_R(M)$ and F is a submodule of sM. A ring R is called right almost I–semiregular for an ideal I of R if R_R is almost I–semiregular. If sM is F–semiregular, then M_R is almost F–semiregular. An APQ–injective module M_R is almost F–semiregular for any S–submodule F of M. Moreover,

$$M_R \text{ is } APQ\text{–injective} \Leftrightarrow M_R \text{ is almost } 0\text{–semiregular.}$$

Right almost J–semiregular rings are examined in [11] and named as right generalized semiregular rings.

In Section 2, firstly we give a new characterization of F–semiregular modules by modifying the definition of almost F–semiregular modules. Next, we give conditions under which a right almost I–semiregular ring is I–semiregular. Some of the results in [11] are extended. We also prove that if R is a right almost I–semiregular ring, then eRe is a right almost eIe–semiregular ring for a right semicentral idempotent e of R (i.e., $eR = eRe$) or an idempotent e of R satisfying $ReR = R$. If the matrix ring $M_n(R)$ is right almost $M_n(I)$–semiregular for an ideal I of R, then R is right almost I–semiregular.

In [1, Corollary 4.6], it is shown that if M_R is projective and $\text{Soc}(M)$–semiregular, then M is semiregular (i.e., for any $m \in M$, there exists a decomposition $M = A \oplus B$ such that A is projective, $A \subseteq mR$ and $B \cap mR \ll M$).
In the last section, we prove that if M_R is almost $Soc(SM)$–semiregular, then M_R is almost semiregular, i.e., for any $m \in M$, there exists an S–module decomposition $l_M r_R(m) = P \oplus Q$ such that $P \subseteq Sm$ and $Q \cap Sm \ll SM$. We also consider right almost I–semiregular rings for some ideals such as the socle, the singular ideal and the ideal δ. If R is right almost Z_r–semiregular, then R_R satisfies $(C2)$ and is almost semiregular.

The following implications hold for a ring R.

S_l–semiregular \Rightarrow right almost S_l–semiregular \Rightarrow right almost δ_r–semiregular and right almost δ_l–semiregular.

Z_r–semiregular \Rightarrow right almost Z_r–semiregular \Rightarrow right almost δ_r–semiregular and right almost δ_l–semiregular.

Counterexamples to each of the inverse implications are given.

It is well known that $J(eRe) = eJe$ for any idempotent $e \in R$. But $\delta_r(eRe) \neq e\delta_r(R)e$ even for a right semicentral idempotent e (see Example 3.13). However if $e \in R$ is an idempotent with $ReR = R$, then $\delta_r(eRe) = e\delta_r(R)e$. Consequently, if R is right almost $\delta(rR)$–semiregular and $ReR = R$, then eRe is right almost $\delta_l(eRe)$–semiregular.

The symbols $Rad(M)$, $Soc(M)$ and $Z(M)$ will stand for the Jacobson radical, the socle and the singular submodule of a module M, respectively. In the ring case we use the abbreviations: $S_r = Soc(R_R)$, $S_l = Soc(R_R)$, $Z_r = Z(R_R)$ and $Z_l = Z(R_R)$. We write $J = J(R)$ for the Jacobson radical of R. For a small (resp. an essential) submodule K of M, we write $K \ll M$ (resp. $K \leq_r M$). For any non-empty subset X of R, $l_M(X)$ (resp. $r_M(X)$) is used for the left (resp. right) annihilator of X in M. For any subset N of M, $l_R(N)$ (resp. $r_R(N)$) will denote the left (resp. right) annihilator of N in R.

Following [12], a submodule N of a module M is called δ–small in M, denoted by $N \ll_\delta M$, if $N + K \neq M$ for any submodule K of M with M/K singular. Let

$$\delta(M) = \cap \{N \subseteq M : M/N \text{ is singular simple}\}.$$

Then $\delta(M)$ is the sum of all δ–small submodules of M and is a fully invariant submodule of M [12, Lemma 1.5]. Clearly $Rad(M) \leq \delta(M)$. If M is a projective module, then $Soc(M) \subseteq \delta(M)$ [12, Lemma 1.9]. We use δ_r for $\delta(rR)$ and δ_l for $\delta(rR)$. Note that δ_r need not be equal to δ_l. For example, if R is the ring of 2×2 upper triangular matrices over a field F, then $\delta_r = S_r$ and $\delta_l = S_l$.

2 Almost F–semiregular Modules

Definition 2.1. Let M be a right R–module, $S = End_R(M)$ and F a submodule of SM. The module M_R is called almost F–semiregular if, for any $m \in M$,
there exists an S–module decomposition $l_{M}r_{R}(m) = P \oplus Q$ such that $P \subseteq Sm$ and $Q \cap Sm \subseteq F$. A ring R is called right almost I–semiregular for an ideal I of R if R_{I} is almost I–semiregular.

If M_{R} is APQ–injective, then M_{R} is almost F–semiregular for any submodule F of $S M$. Moreover, M_{R} is almost 0–semiregular if and only if M_{R} is APQ–injective.

Proposition 2.2. Let M be a right R–module, $S = \text{End}_{R}(M)$ and F any submodule of $S M$. If $S M$ is F–semiregular, then M_{R} is almost F–semiregular.

Proof. Let $m \in M$. Then there exists a decomposition $S M = P \oplus Q$ such that $P \subseteq Sm$ and $Q \cap Sm \subseteq F$. Since $l_{M}r_{R}(m) = l_{M}r_{R}(m) \cap M$, by the modular law, we have $l_{M}r_{R}(m) = P \oplus (l_{M}r_{R}(m) \cap Q)$ and $(l_{M}r_{R}(m) \cap Q) \cap Sm = Q \cap Sm \subseteq F$. Hence, M_{R} is almost F–semiregular. \hfill \square

In particular, if $S M$ is semiregular, then M_{R} is almost $\text{Rad}(S M)$–semiregular. If R is an I–semiregular ring for an ideal I, then it is right and left almost I–semiregular, because the notion of I–semiregular rings is left–right symmetric.

When we take the summand P of $l_{M}r_{R}(m)$ as a summand of M in Definition 2.1, we have the following result.

Theorem 2.3 Let M be a right R–module and $S = \text{End}_{R}(M)$. If $S M$ is projective and $S F$ is a fully–invariant submodule of $S M$, then the following are equivalent:

1. $S M$ is F–semiregular.
2. For any $m \in M$, there exists an S–module decomposition $l_{M}r_{R}(m) = P \oplus Q$, where $P \subseteq Sm$, P is a summand of M and $Q \cap Sm \subseteq F$.

Proof. (1) \Rightarrow (2) Follows from the proof of Proposition 2.2.

(2) \Rightarrow (1) Let $m \in M$ and $l_{M}r_{R}(m) = P \oplus Q$, where $P \subseteq Sm$, P is a summand of M and $Q \cap Sm \subseteq F$. Then $Sm = P \oplus (Q \cap Sm)$, where P is a projective summand of M and $Q \cap Sm \subseteq F$. Hence, $S M$ is F–semiregular. \hfill \square

By Theorem 2.3, we obtain the following characterization of I–semiregular rings for an ideal I.

Corollary 2.4 Let I be an ideal of a ring R. The following are equivalent:

1. R is I–semiregular.
2. For any $a \in R$, there exists a decomposition $l_{R}r_{R}(a) = P \oplus Q$, where $P = Re \subseteq Ra$ for some $e^{2} = e \in R$ and $Q \cap Ra \subseteq I$.
3. For any $a \in R$, there exists a decomposition $r_{R}l_{R}(a) = P \oplus Q$, where $P = eR \subseteq aR$ for some $e^{2} = e \in R$ and $Q \cap aR \subseteq I$.
Now we consider the module-theoretic version of right generalized semiregular rings defined by Xiao and Tong [11].

Definition 2.5 Let M be a right R–module and $S = \text{End}_R(M)$. M is called *almost semiregular* if, for any $m \in M$, there exists an S–module decomposition $l_Mr_R(m) = P \oplus Q$ such that $P \subseteq Sm$ and $Q \cap Sm \ll M$. A ring R is called a right almost semiregular if R_R is almost semiregular. Clearly, R is right almost J–semiregular if and only if R is right almost semiregular. Semiregular or right AP–injective rings are right almost semiregular by [11, Proposition 1.2]. Example 1.3 in [11] shows that right almost semiregular rings need not be right AP–injective or semiregular.

Let M be a right R–module and $S = \text{End}_R(M)$. If SM is semiregular, then MR is almost semiregular by a proof similar to that of Proposition 2.2. Moreover, if MR is almost semiregular, then it is almost $\text{Rad}(SM)$–semiregular. The converse is true if $\text{Rad}(SM) \ll SM$.

The following result generalizes [11, Lemma 1.4].

Proposition 2.6 Let I be an ideal of a ring R. If R is right almost I–semiregular and there exists $e^2 = e \in R$ such that $r_R(a) = r_R(e)$ for any $a \in R$, then R is I–semiregular.

Proof. Let $a \in R$. Then there exists a decomposition $l_Rr_R(a) = P \oplus Q$ such that $P \subseteq Ra$ and $Q \cap Ra \subseteq I$ as left ideals. Since $r_R(a) = r_R(e)$ for some $e^2 = e \in R$, $Re = P \oplus Q$ and $a = ae$. Let $e = p + q$, where $p = ra \in P$ and $q \in Q$. Then $a = ae = ara + aq$ and $ra = raa + raq$. Since $ra - raa = raq \in P \cap Q = 0$, ra is an idempotent. Also, we have $a(1 - ra) = a - ara = aq \in Q \cap Ra \subseteq I$. Hence, R is I–semiregular. □

Corollary 2.7 If $l_Rr_R(a)$ is a summand of R for any $a \in R$ and R is right almost I–semiregular for an ideal I, then R is I–semiregular.

Proof. Let $a \in R$. By hypothesis $l_Rr_R(a) = Re$ for some idempotent e. Then $r_R(a) = r_R(e)$ and the claim holds by Proposition 2.6. □

A ring R is called a right PP–ring if every principal right ideal of R is projective ([2]), or equivalently, for any $a \in R$, $r_R(a) = eR$ for some idempotent $e \in R$. Hence, we have the following result.

Corollary 2.8 Let R be a right PP–ring. If R is a right almost I–semiregular ring for an ideal I, then R is I–semiregular.
Nicholson and Zhou [9, Proposition 41] prove that if R is I–semiregular for an ideal I, then eRe is eIe–semiregular for any idempotent e of R. We consider this property for almost I–semiregular rings.

An idempotent $e \in R$ is called right semicentral if $eRe = eRe [3]$.

Theorem 2.9 If R is a right almost I–semiregular ring for an ideal I and e is a right semicentral idempotent of R, then eRe is a right almost eIe–semiregular ring.

Proof. Let $a \in eRe$. Then there is a decomposition $l_{Re}r_{Re}(a) = P \oplus Q$ such that $P \subseteq Ra$ and $Q \cap Ra \subseteq I$. Since e is right semicentral, by the proof of [11, Proposition 1.11], $l_{eRe}r_{eRe}(a) = eP \oplus eQ$. Then $eP \subseteq eRa = eRea$ and $eQ \cap eRea \subseteq e(eQ \cap eRea)e$. Hence, $eQ \cap eRea \subseteq Q \cap Ra \subseteq I$ implies that $eQ \cap eRea \subseteq eIe$. □

Theorem 2.10 Let e be an idempotent of R such that $ReR = R$. If R is a right almost I–semiregular ring for an ideal I, then eRe is a right almost eIe–semiregular ring.

Proof. Follows from the proof of [11, Theorem 1.15]. □

Proposition 2.11 Let S be a right almost I–semiregular ring for an ideal I of S. If $\varphi : S \to R$ is a ring isomorphism, then R is a right almost $\varphi(I)$–semiregular ring.

Proof. Let $a \in R$. Then there is a decomposition $l_{Sr}r_{Sr}(\varphi^{-1}(a)) = P \oplus Q$ such that $P \subseteq S\varphi^{-1}(a)$ and $Q \cap S\varphi^{-1}(a) \subseteq I$. If $x \in l_{Rr}r_{Rr}(a)$, then $\varphi^{-1}(x) \in l_{Sr}r_{Sr}(\varphi^{-1}(a))$. Then we obtain a decomposition $l_{Rr}r_{Rr}(a) = \varphi(P) \oplus \varphi(Q)$, where $\varphi(P) \subseteq Ra$ and $\varphi(Q) \cap Ra \subseteq \varphi(I)$. Hence, R is a right almost $\varphi(I)$–semiregular ring. □

The following result generalizes [11, Corollary 1.16].

Corollary 2.12 Let I be an ideal of a ring R and let $n \geq 1$. If $M_n(R)$ is right almost $M_n(I)$–semiregular, then R is right almost I–semiregular.

Proof. Let $S = M_n(R)$. Then $Se_{11}S = S$ and $R \cong e_{11}Se_{11}$, where e_{11} is the $n \times n$ matrix whose $(1,1)$-entry is 1, others are 0. By Theorem 2.10, $e_{11}Se_{11}$ is right almost $e_{11}M_n(I)e_{11}$–semiregular. Let $\varphi : e_{11}Se_{11} \to R$ be the isomorphism. Since $\varphi(e_{11}M_n(I)e_{11}) = I$, R is right almost I–semiregular by Proposition 2.11. □
3 Special cases: Soc, δ, Z

In this section, we consider a few fully invariant submodules. We begin with some examples.

Recall that if R is a ring and V is an R–R bimodule, the trivial extension $R \ltimes V$ of R by V is the ring with additive group $R \oplus V$ and multiplication $(a, v)(b, w) = (ab, aw + vb)$.

Example 3.1 There exists a right AP-injective ring R that is not semiregular. Hence, there exists a right almost I–semiregular ring R that is not I–semiregular for ideals $I = J$ or $Z(R)$ or $Soc(R)$.

Proof. Let $R = \mathbb{Z} \ltimes (\mathbb{Q}/\mathbb{Z})$ be the trivial extension. So R is a commutative AP-injective ring that is not semiregular by [7, Examples (8), p. 2435]. R is almost I–semiregular for any ideal I, because R is AP-injective. But R is neither $Z(R)$–semiregular nor $Soc(R)$–semiregular by [7, Theorem 2.4] and [1, Corollary 4.6].

Example 3.2 There exists a right almost $Soc(R)$–semiregular ring R that is not $Soc(R)$–semiregular.

Proof. Let $R = \mathbb{Z}/8$. Since R is a self–injective ring, it is almost I–semiregular for any ideal I of R. But since $2R = J \nsubseteq Soc(R) = 4R$, R is not $Soc(R)$–semiregular (see [1, Example 4.21]).

Example 3.1 also shows that the class of right almost semiregular rings is not closed under homomorphic images, because $R/J \cong \mathbb{Z}$ is not right almost semiregular by [11, Example 4.8].

In [1], it is proved that if M_R is a projective $Soc(M_R)$–semiregular module, then M_R is semiregular.

Proposition 3.3 Let M be a right R-module and $S = \text{End}_R(M)$. If M_R is almost $Soc(SM)$–semiregular, then M_R is almost semiregular.

Proof. Let $m \in M$. Then there exists a decomposition $l_{M_R}(m) = A \oplus B$ such that $A \subseteq Sm$ and $B \cap Sm \subseteq Soc(SM)$. By the modular law, $Sm = A \oplus (B \cap Sm)$. Then $B \cap Sm$ is a finite direct sum of simple S–submodules. If every simple submodule of $B \cap Sm$ is in $\text{Rad}(SM)$, then $B \cap Sm \leq M$ and hence M_R is almost semiregular. Assume that there exists a simple submodule S_1 of $B \cap Sm$ such that $S_1 \nsubseteq \text{Rad}(SM)$. Then S_1 is a summand of M and hence a summand of B. Let L_1 be such that $B = S_1 \oplus L_1$. Then $l_{M_R}(m) = A \oplus S_1 \oplus L_1$.

Similarly, $L_1 \cap Sm$ is a finite direct sum of simple submodules. If every simple submodule of $L_1 \cap Sm$ is in $\text{Rad}(SM)$, then M_R is almost semiregular. Assume
that there exists a simple submodule S_2 of $L_1 \cap Sm$ such that $S_2 \not\subseteq \text{Rad}(SM)$. Then S_2 is a summand of M and so there exists a submodule L_2 such that $L_1 = S_2 \oplus L_2$. It follows that $l_{MR}(m) = A \oplus S_1 \oplus S_2 \oplus L_2$. This process produces a strictly descending chain $B \cap Sm \supset L_1 \cap Sm \supset L_2 \cap Sm \ldots$. Since $B \cap Sm$ is semisimple and finitely generated, it is Artinian. Hence, this process must stop so that $L_n \cap Sm \subseteq \text{Rad}(SM)$ for some positive integer n. Hence, $l_{MR}(m) = (A \oplus S_1 \oplus \ldots \oplus S_n) \oplus L_n$, where $A \oplus S_1 \oplus \ldots \oplus S_n \leq Sm$ and $L_n \cap Sm \ll M$. Thus, MR is almost semiregular. \qed

Corollary 3.4 If R is right almost S_l–semiregular, then R is right almost semiregular.

The next example shows that the converse of Corollary 3.4 is not true in general.

Example 3.5 There exists a right almost semiregular ring that is not right almost S_l (S_r)–semiregular.

Proof. (Camillo Example) (see [8, p. 39 and p. 114]) Let $R = \mathbb{Z}_2[x_1, x_2, \ldots]$, where the x_i are commuting indeterminants satisfying the relations $x_i^3 = 0$ for all i, $x_i x_j = 0$ for all $i \neq j$ and $x_i^2 = x_i^3$ for all i and j. Let $m = x_1^2 = x_2^2 = \ldots$. Then R is a commutative local uniform (i.e., every nonzero right ideal is essential) ring. Then R is semiregular with $J = \text{Span}_{\mathbb{Z}_2} \{m, x_1, x_2, \ldots\}$ and $S_l = S_r = J^2 = \mathbb{Z}_2m$. We claim that R is not (right) almost S_l–semiregular. Let $a = x_1 + x_2$. If R is almost S_l–semiregular, then there exists a decomposition $l_{RR}(a) = P \oplus Q$ such that $P \subseteq Ra$ and $Q \cap Ra \subseteq S_l$. Since $l_{RR}(a)$ is uniform, either $P = 0$ or $Q = 0$. If $P = 0$, then we have that $l_{RR}(a) \cap Ra = Ra \subseteq S_l$, a contradiction. If $Q = 0$, then $l_{RR}(a) = Ra$. But since $r_R(a) = \text{Span}_{\mathbb{Z}_2} \{m, x_3, x_4, \ldots\}$, $x_1 \in l_{RR}(a)$ and $x_1 \notin Ra$. This gives a contradiction. Hence, R is not almost S_l–semiregular. \qed

If R is right almost S_l–semiregular, then R need not be semiregular, because right AP–injective rings need not be semiregular (see Example 3.1).

We know from [9, Corollary 30] that R is S_l–semiregular if and only if R/S_l is (von Neumann) regular. If R is right almost S_l–semiregular, then $(Ra + S_l)/S_l$ is a summand of $(l_{RR}(a) + S_l)/S_l$ for any $a \in R$ by [4, Lemma 18.4].

Note also that if R is S_l–semiregular, then R is semiregular, $J \subseteq S_l$ and $Z_r \subseteq S_l$ by [7, Theorem 1.2], [1, Theorem 2.3] and by the proof of [1, Theorem 4.5]. On the other hand, J or Z_r need not be contained in S_l if R is right almost S_l–semiregular (see Example 3.2).

According to [11], we know that if R is right almost semiregular, then $Z_r \subseteq J$. Hence, if R is right almost S_l–semiregular, then $Z_r \subseteq J$.

\[\text{8} \]
Because of the fact that $S_1 \subseteq \delta_1$, R being right almost δ_1-semiregular implies that R is right almost δ_1-semiregular. Also if R is δ_1-semiregular, then $Z_r \subseteq \delta_1$ by [7, Theorem 1.2]. We have the following result for right almost δ_1-semiregular rings.

Proposition 3.6 If R is right almost δ_1-semiregular and R/S_1 is a projective right R-module, then $Z_r \subseteq \delta_1$.

Proof. Let $a \in Z_r$. If $a \notin \delta_1$, then there exists an essential maximal left ideal N of R such that $a \notin N$. Then $R = Ra + N$. Write $1 = ya + n$, where $y \in R$ and $n \in N$. Since Z_r is an ideal and $R \neq Z_r$, we have $n \neq 0$. Since $r_R(ya) \cap r_R(n) = 0$ and $ya \in Z_r$, we obtain that $r_R(n) = 0$. By hypothesis, $R = I_R(n) = P \oplus Q$, where $P = Re \subseteq Rn$, $Q \cap Rn \subseteq \delta_1$ and $e^2 = e \in R$.

Let $\overline{R} = R/S_1$. If $\overline{R} = 0$, then R is semisimple and $Z_r = 0 \subseteq \delta_1 = R$. Assume that $\overline{R} \neq 0$. If $\overline{\pi} = \overline{1}$, then $\overline{Rn} = \overline{N} = \overline{R}$. Since $S_1 \subseteq N$, $N = R$, which is a contradiction. So $\overline{\pi} \neq \overline{1}$. Since $r_R(ya) \leq e$, $\overline{R}/r_R(ya) \cong R/(r_R(ya) + S_1)$ is a singular right R-module. This implies that $r_R(ya) \leq e$, \overline{R} is a projective right R-module. Since $r_R(ya) \subseteq r_R(ya)$, we have that $r_R(ya) \leq e$, \overline{R}.

Now $(\overline{1} - \overline{\pi})\overline{R} \cap r_{\overline{R}}(ya) \neq 0$. Let $0 \neq (\overline{1} - \overline{\pi})\overline{\pi} \in (\overline{1} - \overline{\pi})\overline{R} \cap r_{\overline{R}}(ya)$. Let $n = se + t$, where $s \in R$ and $t \in Q$. Then $t = n - se \in Q \cap Rn \subseteq \delta_1$ and $\overline{t} \in \delta_1/S_1 = J(R/S_1)$ by [12, Corollary 1.7]. So $\overline{1} - \overline{\pi}$ is unit in \overline{R}. Also, we have $\overline{\pi}(\overline{1} - \overline{\pi})\overline{\pi} = (\overline{1} - \overline{\pi})\overline{\pi} = (\overline{1} - \overline{\pi})\overline{\pi}$ and $\overline{\pi}(\overline{1} - \overline{\pi})\overline{\pi} = (\overline{\pi} + \overline{\pi})(\overline{1} - \overline{\pi})\overline{\pi} = \overline{1}(\overline{1} - \overline{\pi})\overline{\pi}$. Then $(\overline{1} - \overline{\pi})\overline{\pi} \neq 0$. Hence, $(\overline{1} - \overline{\pi})\overline{\pi} = \overline{0}$, a contradiction. \qed

Proposition 3.7 If R is right almost δ_1-semiregular, R/S_1 is a projective right R-module and $S_1 \subseteq Z_1$, then $Z_r \subseteq J$.

Proof. By a proof similar to that of Proposition 3.6. \qed

Example 3.8 There exists a right almost δ_1 (or δ_r)-semiregular ring that is not right almost semiregular.

Proof. [12, Example 4.3] Let F be a field and $I = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, and

$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) \mid n \in \mathbb{N}, x_i \in M_2(F), x \in I\}$.

Then R is δ_r (δ_l)-semiregular but not semiregular by [12]. Since every nonzero one-sided ideal contains a nonzero idempotent, $Z_r = Z_l = J = 0$. If R was right almost semiregular, then R would be regular by [11, Lemma 3.1], which is a contradiction. Hence, R is not right almost semiregular. \qed
It is well known that \(J(eRe) = eJe \) for any idempotent \(e \) of \(R \). We consider this property for \(\delta \) which will be used in the forthcoming corollary. Recall by [12, Theorem 1.6] that

\[
\delta_e = \{ x \in R : \forall y \in R, \exists a \text{ semisimple right ideal } Y \text{ of } R \ni R_e = (1-xy)R \oplus Y \}
\]

\[
= \bigcap \{ \text{ideals } P \text{ of } R : R/P \text{ has a faithful singular simple module} \}
\]

Theorem 3.9 Let \(e \) be an idempotent of \(R \) such that \(ReR = R \). Then \(\delta_1(eRe) = e\delta_i e \).

Proof. We know that if \(e \) is an idempotent such that \(ReR = R \), then the category of left \(R \)-modules, \(R \text{-Mod} \), and the category of left \(eRe \)-modules, \(eRe\text{-Mod} \), are Morita equivalent (see [6]) under the functors given by

\[
F : R\text{-Mod} \rightarrow eRe\text{-Mod}, \quad \mathcal{G} : eRe\text{-Mod} \rightarrow R\text{-Mod}
\]

\[
M \mapsto eM \quad T \mapsto Re \otimes_{eRe} T.
\]

By [12], \(\delta_1 \neq R \) if and only if \(R \) is semisimple. Therefore if \(\delta_1 = R \), then \(R \) is semisimple and so is \(eRe \). This gives that \(\delta_1(eRe) = eRe = e\delta_i e \).

Now assume that \(\delta_1 \neq R \). Let \(P \) be an ideal of \(R \) such that \(R/P \) has a faithful singular simple module \(N \). Denote \(\overline{R} = R/P \). Since \(\overline{eRe} = \overline{R} \), the categories \(\overline{R} \text{-Mod} \) and \(\overline{eRe}\text{-Mod} \) are Morita equivalent. So \(\overline{N} \) is a faithful \(\overline{eRe} \)-module by [6, 18.47 and 18.30], a singular \(\overline{eRe} \)-module by [5, p. 34] and a simple \(\overline{eRe} \)-module. Since \(\overline{eRe} \cong eRe/ePe \), we have that \(\delta_1(eRe) \subseteq ePe \subseteq P \). This holds for any ideal \(P \) such that \(R/P \) has a faithful singular simple module. Thus, \(\delta_1(eRe) \subseteq e\delta_i e \).

For the reverse inclusion, let \(a \in \delta_1 \). Then \(Reae \preceq_R R \). Now we claim that \(eRe(cae) \preceq_R eRe \). Let \(K \) be a left ideal of \(eRe \) such that \(eRe = eRe(cae) + K \). Write \(e = erae + k \), where \(r \in R \) and \(k \in K \). This implies that \(1 = e + (1-e) = erae + k + (1-e) \in Reae + RK + R(1-e) \) and so \(R = Reae + RK + R(1-e) \). Since \(Reae \preceq_R R \), there exists a semisimple projective left ideal \(Y \) of \(R \) such that \(Y \subseteq Reae \) and \(R = Y \oplus [RK + R(1-e)] \) by [12, Lemma 1.2]. Hence, we obtain that \(eRe = eYe + (eRe)K = eY + K \). Since \(Y \cap RK = 0 \), we have that \(eY \cap K = 0 \). On the other hand, since \(ReR = R \), \(eY \) is a semisimple projective left \(eRe \)-module. So \(eRe = eY \oplus K \), \(eY \subseteq eRe(cae) \) and \(eY \) is a semisimple projective \(eRe \)-module. By [12, Lemma 1.2], \(eRe(cae) \preceq_R eRe \). Thus, \(e\delta_i e \subseteq \delta_1(eRe) \).

Corollary 3.10 Let \(e \) be an idempotent of \(R \) such that \(ReR = R \). If \(R \) is right almost \(\delta_i \)-semiregular, then \(eRe \) is right almost \(\delta_i(eRe) \)-semiregular.

Proof. Follows from Theorems 3.9 and 2.10. □

Now we consider the ring \(eRe \), where \(e \) is a right semicentral idempotent.
Theorem 3.11 If e is a right semicentral idempotent of R, then $e\delta_l e \subseteq \delta_l(eRe)$ and $\delta_r(eRe) \subseteq e\delta_r e$.

Proof. Let $a \in \delta_l$. Since δ_l is an ideal, $eae \in \delta_l$. By [12, Theorem 1.6], there exists a semisimple left ideal Y of R such that $R = R(1 - eae) \oplus Y$. Let $1 = x(1 - eae) + y$, where $x \in R$ and $y \in Y$. Then $e = ex(1 - eae)e + eye = exe(e - eae) + eye$ and so $eRe = eRe(e - eae) + eYe$. Since e is right semicentral, this sum is direct. Now we claim that eYe is semisimple. Let $Y = \oplus_{i=1}^n S_i$, where S_i is a simple left R-module, for $i = 1, 2, \ldots, n$. Since e is right semicentral, $eYe = \oplus_{i=1}^n eS_i e$. Let $S_1 = Re$ for some $s \in R$. Then $eS_1 e = eRe = eRe(ese) \cong eRe/l_{eRe}(ese)$. Let K be a left ideal of eRe such that $l_{eRe}(ese) \subseteq K$. Then there exists $k \in K$ such that $k \not\in l_{eRe}(ese)$. Since $l_{eRe}(ese) = l_{eRe}(es) = l_R(es) \cap eRe$, $k \not\in l_R(es)$. Then $kes \neq 0$. But since $l_R(s)$ is maximal in R, we have that $l_R(s) + Rke = R$. Let $1 = x + yke$, where $x \in l_R(s)$ and $y \in R$. Then $e = ex + eye$. Since $xs = 0$, we have $exese = 0$. Then $ex \in l_{eRe}(ese) \subseteq K$, so $ex \in K$. It follows that $e \in K$. Hence, we show that $l_{eRe}(ese)$ is a maximal left ideal of eRe. So $eS_1 e$ is simple. This proves that eYe is semisimple. Now $eRe = eRe(e - eae) + eYe$ with eYe semisimple. Since a is any element in δ_l, we have that $e\delta_l e \subseteq \delta_l(eRe)$.

For the other inclusion, let P be an ideal of R and V be a faithful singular simple right R/P-module. Then Ve is an eRe-module. If $Ve = 0$, then $\delta_r(eRe) \subseteq eRe \subseteq P$.

Assume that $Ve \neq 0$. Since V is a simple R-module, Ve is a simple eRe-module. We claim that Ve is a singular eRe-module. Let ve be the generator of Ve. To show that $r_{eRe}(ve) = r_R(v) \cap eRe$ is an essential right ideal of eRe, let $0 \neq exe \in eRe$. Since $ex \neq 0$ and $r_R(v)$ is essential in R, there exists $r \in R$ such that $0 \neq ext \in r_{eRe}(v)$. Then $0 \neq ext = exe \in r_{eRe}(ve)$ (e is right semicentral). Hence, Ve is a singular simple eRe-module. Now, $V\delta_r(eRe) = Ve\delta_r(eRe) = 0$ by the definition of δ. Since V is a faithful R/P-module, we have that $\delta_r(eRe) \subseteq P$. Therefore $\delta_r(eRe) \subseteq P$ for each ideal P of R such that R/P has a faithful singular simple module. So $\delta_r(eRe) \subseteq \delta_r$ and hence $\delta_r(eRe) \subseteq e\delta_r e$. □

Corollary 3.12 Let e be a right semicentral idempotent of R. If R is right almost δ_l-semiregular, then eRe is right almost $\delta_l(eRe)$-semiregular.

Proof. Follows from Theorems 3.11 and 2.9. □

The following example shows that the equality $e\delta_l e = \delta_l(eRe)$ does not hold even for a right semicentral idempotent.

Example 3.13 There exists a right semicentral idempotent $e \in R$ such that $e\delta_l e \subset \delta_l(eRe)$.

Proof. Let R be the ring of 2×2 upper triangular matrices over a field F and $e = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$. Then $eR = eRe$ and $e\delta_l e = 0$, where δ_l is the first row of R. Since eRe is a semisimple projective left eRe–module, $\delta_l(eRe) = eRe$.

Recall that R_R is said to satisfy $(C2)$ if any right ideal of R isomorphic to a summand of R_R is itself a summand of R. We have the following results about right almost $Z_r(Z_l)$–semiregular rings.

Theorem 3.14 Let I be an ideal of R. If R is right almost I–semiregular and $I \subseteq Z_l$, then R_R satisfies $(C2)$.

Proof. Let $a \in R$ such that $aR \cong eR$, where $e^2 = e \in R$. By [10, Lemma 2.12], there exists an idempotent $f \in R$ such that $a = af$ and $r_R(a) = r_R(f)$. By the proof of Proposition 2.6, there exists an idempotent $h \in R$ such that $h \in Ra$ and $a(1-h) \in I$. By [9, Lemma 27], there exists an idempotent $g \in R$ such that $g \in aR$ and $(1-g)a \in I$. Then $aR = gR \oplus S$, where $S = (1-g)aR \subseteq I$. By assumption, S is a singular right R–module. Since aR is projective, we have that $S = 0$. Thus, $aR = gR$. \qed

Corollary 3.15 Let R be a right PP–ring and I an ideal of R. If R is right almost I–semiregular and $I \subseteq Z_r$, then R is regular.

Proof. Let $a \in R$ and $r_R(a) = eR$, where e is an idempotent of R. Then $aR \cong (1-e)R$. By Theorem 3.14, there exists an idempotent $g \in R$ such that $aR = gR$. Hence, R is regular. \qed

Corollary 3.16 If R is right almost Z_r–semiregular, then R_R satisfies $(C2)$.

We know from [7, Lemma 2.3] that if R_R satisfies $(C2)$, then $Z_r \subseteq J$. Hence, we have the following result.

Corollary 3.17 If R is right almost Z_r–semiregular, then R is right almost semiregular.

The following two examples show that the converse of Corollary 3.17 is not true in general.

Example 3.18 There is an Artinian ring R such that R is Z_l–semiregular but not right almost Z_r–semiregular.

Proof. Let $R = \begin{bmatrix} Z_4 & Z_2 \\ 0 & Z_2 \end{bmatrix}$. Then
By [9, Example 40], \(R \) is \(Z_l \)-semiregular but not \(Z_r \)-semiregular. Now we claim that \(R \) is not right almost \(Z_r \)-semiregular. Let \(a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) in \(R \).

Then \(Ra = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix} \) and \(l_{rR}(a) = \begin{bmatrix} 0 & Z_2 \\ 0 & 0 \end{bmatrix} \). If \(R \) is right almost \(Z_r \)-semiregular, then there is a decomposition \(l_{rR}(a) = P \oplus Q \), where \(P \subseteq Ra \) and \(Q \cap Ra \subseteq Z_r \). Since \(Ra \cap Z_r = 0 \), \(Q \cap Ra = 0 \). This implies that \(Ra = P \) is a summand of \(l_{rR}(a) \) which is a contradiction. Hence, \(R \) is not right almost \(Z_r \)-semiregular.

Example 3.19 Let \(R \) be the ring of \(2 \times 2 \) upper triangular matrices over a field \(F \). Then \(R \) is an Artinian ring which does not satisfy \((C2)\) ([8, Example 1.20]). Hence, \(R \) is right almost semiregular but not right almost \(Z_r \)-semiregular.

Recall that \(R_R \) is said to satisfy \((C1)\) if every right ideal of \(R \) is essential in a summand of \(R \). A ring \(R \) satisfying \((C1)\) and \((C2)\) as a right \(R \)-module is called right continuous. The following result generalizes [1, Corollary 3.5] in the ring case.

Proposition 3.20 A ring \(R \) is right almost \(Z_r \)-semiregular and \(R_R \) satisfies \((C1)\) if and only if \(R \) is right continuous.

Proof. It is well known that if \(R_R \) is right continuous, then it is semiregular and \(Z_r = J \). Now the proof follows from Corollary 3.16.

The ring \(R \) in Example 3.19 is right almost semiregular but not right almost \(Z_l \)-semiregular, because \(Z_l = 0 \) and \(R \) is not right \(AP \)-injective.

Proposition 3.21 If \(R \) is a right almost \(Z_l \)-semiregular and left \(PP \)-ring, then \(R \) is right \(AP \)-injective.

Proof. Let \(a \in R \). By hypothesis, \(Ra = P \oplus Q \), where \(P \) is a summand of \(l_{rR}(a) \) and \(Q \subseteq Z_l \). Since \(Ra \) is a projective left ideal, \(Q \) is projective, and so \(Q = 0 \). Hence, \(Ra \) is a summand of \(l_{rR}(a) \).

Proposition 3.22 If \(R \) is right almost \(Z_l \cap \delta_l \)-semiregular, then it is right almost semiregular.
Proof. Let \(a \in R \). Then there exists a decomposition \(l_{R}r_{R}(a) = P \oplus Q \) such that \(P \subseteq Ra \) and \(Q \cap Ra \subseteq Z_{I} \cap \delta_{I} \). We claim that \(Q \cap Ra \subseteq J \). Let \(x \in Q \cap Ra \). To see that \(x \in J \), we must show that \(1 - yx \) is left invertible in \(R \) for any \(y \in R \). Let \(u = 1 - yx \), where \(y \in R \). Since \(x \in \delta_{I} \), there exists a semisimple left ideal \(Y \) of \(R \) such that \(R(1 - yx) \oplus Y = R \) by [12, Theorem 1.6]. Let \(\varphi: R \rightarrow Y \) be the projection. Then \(\varphi(Q \cap Ra) \subseteq \varphi(Z_{I}) \subseteq Z(Y) = 0 \), and so \(Ryx \subseteq Q \cap Ra \subseteq \ker \varphi = R(1 - yx) \). Since \(R = Ryx + R(1 - yx) \), we have that \(R = R(1 - yx) \). Hence, \(x \in J \) and \(Q \cap Ra \triangleleft R \). \(\square \)

Proposition 3.23 If \(R \) is right almost \(I \)-semiregular for an ideal \(I \) such that \(J \cap I = 0 \), then \(J \subseteq Z_{r} \).

Proof. Let \(a \in J \) and assume that \(a \notin Z_{r} \). Then there exists a nonzero right ideal \(K \) of \(R \) such that \(r_{R}(a) \cap K = 0 \). Take \(s \in K \) such that \(as \neq 0 \). Let \(0 \neq u \in asR \). By hypothesis, \(l_{R}r_{R}(u) = P \oplus Q \), where \(P \subseteq Ru \), \(Q \cap Ru \subseteq I \). Without loss of generality we can assume that \(u = as \). Then it can be seen that \(r_{R}(as) = r_{R}(s) \). Then \(l_{R}r_{R}(as) = l_{R}r_{R}(s) = P \oplus Q \). Write \(s = das + x \), where \(d \in R \) and \(x \in Q \). Then \((1 - da)s = x \) and so \(u = as = a(1 - da)^{-1}x \in J \cap (Q \cap Ru) \subseteq J \cap I = 0 \), a contradiction. Hence, \(a \in Z_{r} \). \(\square \)

Corollary 3.24 If \(R \) is right almost \(S_{I} \)-semiregular and \(R/S_{I} \) is a projective right \(R \)-module, then \(J \subseteq Z_{r} \) and \(R \) is right almost \(Z_{r} \)-semiregular.

Proof. Since \(S_{I} \) is a summand of \(R \), \(J \cap S_{I} = \text{Rad}(S_{I}) = 0 \). By Proposition 3.23, \(J \subseteq Z_{r} \). By Corollary 3.4, \(R \) is right almost semiregular. Then \(Z_{r} \subseteq J \) and hence \(J = Z_{r} \) and \(R \) is right almost \(Z_{r} \)-semiregular. \(\square \)

The following example shows that the assumption “\(J \cap I = 0 \)” in Proposition 3.23 is not removable in case \(I = Z_{I} \).

Example 3.25 Let \(R \) be the ring in Example 3.18. \(R \) is a right almost \(Z_{I} \)-semiregular ring. Since \(J = \begin{bmatrix} \mathbb{Z}_{4} & \mathbb{Z}_{2} \\ 0 & 0 \end{bmatrix} \), \(J \cap Z_{I} \neq 0 \) and \(J \nsubseteq Z_{r} \).

Acknowledgments. The authors are grateful to the referee and Professor N. Ding for their valuable suggestions and careful reading.

References

